1
|
Zhao Y, Ma Y, Qiu H, Zhou L, He K, Ye Y. Wake up: the regulation of dormancy release and bud break in perennial plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1553953. [PMID: 40115948 PMCID: PMC11924409 DOI: 10.3389/fpls.2025.1553953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
In order to survive harsh winter conditions, perennial trees in the temperate and frigid regions enter a dormant state and cease growth in late summer after vigorous growth in spring and summer. After experiencing prolonged cold temperature and short days in winter, trees release their dormancy, and they resume growth to produce new buds in the following spring, a process known as bud break. The establishment/release of bud dormancy and bud break are crucial for the adaptations of woody plants and their survival in the natural environment. Photoperiod and temperature are key regulators in the bud dormancy and break cycle. In recent years, significant progress has been made in understanding the molecular mechanism for how photoperiod and temperature regulate seasonal growth and dormancy. Here, we summarized the regulatory network and mechanisms underlying the seasonal growth of perennial woody plants in the temperate and frigid regions, focusing on several molecular modules including the photoperiod, circadian clock, EARLY BUD BREAK 1 (EBB1) - SHORT VEGETATIVE PHASE Like (SVL) - EARLY BUD BREAK 3 (EBB3) module and hormone regulation. Through these modules, we will summarize how perennial trees release dormancy and bud break in order to better understand their differences and connections. By elucidating the interactions among these factors, we also point out the questions and challenges need to be addressed in understanding the bud dormancy and break cycle of perennial plants.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yahui Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Hanruo Qiu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Kunrong He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Cai F, Jin X, Han L, Chen H, Shao C, Shi G, Bao M, Sun Y, Zhang J. AINTEGUMENTA-LIKE genes regulate reproductive growth and bud dormancy in Platanus acerifolia. PLANT CELL REPORTS 2024; 43:261. [PMID: 39400607 DOI: 10.1007/s00299-024-03349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
KEY MESSAGE Platanus acerifolia AIL genes PaAIL5a/b and PaAIL6b participate in FT-AP1/FUL-AIL pathways to regulate bud dormancy. In addition, PaAIL6a/b can promote flowering, and PaAIL5b and PaAIL6b affect floral development. Bud dormancy and floral induction are essential processes for perennial plants, they are both regulated by photoperiod, temperature, and hormones, indicating the existence of common regulators for both processes. AINTEGUMENTA-LIKE (AIL) genes regulate reproductive growth of annual plants, including floral induction and flower development, and their homologs in poplar and grape act downstream of the florigen gene FT and the floral meristem identity genes AP1/FUL and function to maintain growth and thus inhibit dormancy induction. However, it is not known whether AIL homologs participate in the reproduction processes in perennials and whether the Platanus acerifolia AIL genes are involved in dormancy. P. acerifolia is a perennial woody plant whose reproductive growth is strongly associated with dormancy. Here, we isolated four AIL homologs from P. acerifolia, PaAIL5a, PaAIL5b, PaAIL6a, and PaAIL6b, and systematically investigated their functions by ectopic-overexpression in tobacco. The findings demonstrate that PaAIL5a/b and PaAIL6b respond to short day, low temperature, and hormone signals and act as the components of the FT-AP1/FUL-AIL pathway to regulate the bud dormancy in P. acerifolia. Notably, PaAIL5a/b and PaAIL6b function downstream of PaFTL-PaFUL1/2/3 to inhibit the dormancy induction and downstream of PaFT-PaFUL2/3 to promote the dormancy release. In addition, PaAIL6a/b were found to accelerate flowering in transgenic tobacco, whereas PaAIL5b and PaAIL6b affected the flower development. Together, our results suggest that PaAIL genes may act downstream of different PaFT/PaFTL and PaFUL proteins to fulfill conservative and diverse roles in floral initiation, floral development, and dormancy regulation in P. acerifolia.
Collapse
Affiliation(s)
- Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin Jin
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Linshan Han
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Hui Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hangzhou Vocational & Technical College, Hangzhou, 310018, Zhejiang, China
| | - Gehui Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
Carvalho A, Dinis LT, Luzio A, Bernardo S, Moutinho-Pereira J, Lima-Brito J. Cytogenetic and Molecular Effects of Kaolin's Foliar Application in Grapevine ( Vitis vinifera L.) under Summer's Stressful Growing Conditions. Genes (Basel) 2024; 15:747. [PMID: 38927683 PMCID: PMC11202698 DOI: 10.3390/genes15060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Grapevine varieties from "Douro Superior" (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer's stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity. However, the foliar application of kaolin (KL) can mitigate the impact of abiotic stress by decreasing leaf temperature and enhancing antioxidant defence. Hence, this study hypothesised that KL-treated grapevine plants growing in NE Portugal would reveal, under summer stressful growing conditions, higher progression and stability of the leaf mitotic cell cycle than the untreated (control) plants. KL was applied after veraison for two years. Leaves, sampled 3 and 5 weeks later, were cytogenetically, molecularly, and biochemically analysed. Globally, integrating these multidisciplinary data confirmed the decreased leaf temperature and enhanced antioxidant defence of the KL-treated plants, accompanied by an improved regularity and completion of the leaf cell cycle relative to the control plants. Nevertheless, the KL efficacy was significantly influenced by the sampling date and/or variety. In sum, the achieved results confirmed the hypothesis initially proposed.
Collapse
Affiliation(s)
- Ana Carvalho
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, Laboratorial Complex, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Lia-Tânia Dinis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sara Bernardo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - José Lima-Brito
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, Laboratorial Complex, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Fan S, Luo F, Wang M, Xu Y, Chen W, Yang G. Comparative transcriptome analysis of genes involved in paradormant bud release response in 'Summer Black' grape. FRONTIERS IN PLANT SCIENCE 2023; 14:1236141. [PMID: 37818318 PMCID: PMC10561283 DOI: 10.3389/fpls.2023.1236141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023]
Abstract
Grapevines possess a hierarchy of buds, and the fruitful winter bud forms the foundation of the two-crop-a-year cultivation system, yielding biannual harvests. Throughout its developmental stages, the winter bud sequentially undergoes paradormancy, endodormancy, and ecodormancy to ensure survival in challenging environmental conditions. Releasing the endodormancy of winter bud results in the first crop yield, while breaking the paradormancy of winter bud allows for the second crop harvest. Hydrogen cyanamide serves as an agent to break endodormancy, which counteracting the inhibitory effects of ABA, while H2O2 and ethylene function as signaling molecules in the process of endodormancy release. In the context of breaking paradormancy, common agronomic practices include short pruning and hydrogen cyanamide treatment. However, the mechanism of hydrogen cyanamide contributes to this process remains unknown. This study confirms that hydrogen cyanamide treatment significantly improved both the speed and uniformity of bud sprouting, while short pruning proved to be an effective method for releasing paradormancy until August. This observation highlights the role of apical dominance as a primary inhibitory factor in suppressing the sprouting of paradormant winter bud. Comparative transcriptome analysis revealed that the sixth node winter bud convert to apical tissue following short pruning and established a polar auxin transport canal through the upregulated expression of VvPIN3 and VvTIR1. Moreover, short pruning induced the generation of reactive oxygen species, and wounding, ethylene, and H2O2 collectively acted as stimulating signals and amplified effects through the MAPK cascade. In contrast, hydrogen cyanamide treatment directly disrupted mitochondrial function, resulting in ROS production and an extended efficacy of the growth hormone signaling pathway induction.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoshun Yang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
5
|
Velappan Y, de Simone A, Signorelli S, Considine JA, Foyer CH, Considine MJ. Hydrogen Cyanamide Causes Reversible G2/M Cell Cycle Arrest Accompanied by Oxidation of the Nucleus and Cytosol. Antioxidants (Basel) 2023; 12:1330. [PMID: 37507870 PMCID: PMC10376265 DOI: 10.3390/antiox12071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Hydrogen cyanamide (HC) has been widely used in horticulture to trigger bud burst following dormancy. Its use has been banned in some countries due to human health concerns, however the search for effective safe alternatives is delayed by lack of knowledge of the mechanism of HC action. Earlier studies demonstrate that HC stimulates the production of reactive oxygen species (ROS) and alters the rate of cell division. However, the relationships between HC effects on ROS, redox (reduction/oxidation) homeostasis and cell division are unknown. This study used Arabidopsis thaliana ((L.) Heynh.) seedlings expressing the redox reporter roGFP2 to measure the oxidation states of the nuclei and cytosol in response to HC treatment. The Cytrap dual cell cycle phase marker system and flow cytometry were used to study associated changes in cell proliferation. HC (1.5 mM) reversibly inhibited root growth during a 24 h treatment. Higher concentrations were not reversible. HC did not synchronise the cell cycle, in contrast to hydroxyurea. Rather, HC caused a gradual accumulation of cells in the G2/M phase and decline of G1/S phase cells, 16 to 24 h post-treatment. This was accompanied by increased oxidation of both the nuclei and cytosol. Taken together, these findings show that HC impairs proliferation of embryonic root meristem cells in a reversible manner through restriction of G2/M transition accompanied by increased cellular oxidation.
Collapse
Affiliation(s)
- Yazhini Velappan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Ambra de Simone
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Santiago Signorelli
- Food and Plant Biology Group, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP 12900, Uruguay
| | - John A Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Horticulture and Irrigated Agriculture, Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| |
Collapse
|
6
|
Takahashi H, Nishihara M, Yoshida C, Itoh K. Gentian FLOWERING LOCUS T orthologs regulate phase transitions: floral induction and endodormancy release. PLANT PHYSIOLOGY 2022; 188:1887-1899. [PMID: 35026009 PMCID: PMC8968275 DOI: 10.1093/plphys/kiac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 05/17/2023]
Abstract
Perennial plants undergo a dormant period in addition to the growth and flowering phases that are commonly observed in annuals and perennials. Consequently, the regulation of these phase transitions in perennials is believed to be complicated. Previous studies have proposed that orthologs of FLOWERING LOCUS T (FT) regulate not only floral initiation but also dormancy. We, therefore, investigated the involvement of FT orthologs (GtFT1 and GtFT2) during the phase transitions of the herbaceous perennial gentian (Gentiana triflora). Analysis of seasonal fluctuations in the expression of these genes revealed that GtFT1 expression increased prior to budbreak and flowering, whereas GtFT2 expression was induced by chilling temperatures with the highest expression occurring when endodormancy was released. The expression of FT-related transcription factors, reportedly involved in flowering, also fluctuated during each phase transition. These results suggested the involvement of GtFT1 in budbreak and floral induction and GtFT2 in dormancy regulation, implying that the two gentian FT orthologs activated a different set of transcription factors. Gentian ft2 mutants generated by CRISPR/Cas9-mediated genome editing had a lower frequency of budbreak and budbreak delay in overwintering buds caused by an incomplete endodormancy release. Our results highlighted that the gentian orthologs of FRUITFULL (GtFUL) and SHORT VEGETATIVE PHASE-like 1 (GtSVP-L1) act downstream of GtFT2, probably to prevent untimely budbreak during ecodormancy. These results suggest that each gentian FT ortholog regulates a different phase transition by having variable responses to endogenous or environmental cues, leading to their ability to induce the expression of distinct downstream genes.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Liberal Arts Education Center, Tokai University, Kumamoto 862-8652, Japan
| | | | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | | |
Collapse
|
7
|
Li L, Liu J, Liang Q, Feng Y, Wang C, Wu S, Li Y. Downregulation of lncRNA PpL-T31511 and Pp-miRn182 Promotes Hydrogen Cyanamide-Induced Endodormancy Release through the PP2C-H 2O 2 Pathway in Pear ( Pyrus pyrifolia). Int J Mol Sci 2021; 22:ijms222111842. [PMID: 34769273 PMCID: PMC8584160 DOI: 10.3390/ijms222111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bud endodormancy is an important, complex process subject to both genetic and epigenetic control, the mechanism of which is still unclear. The endogenous hormone abscisic acid (ABA) and its signaling pathway play important roles in the endodormancy process, in which the type 2C protein phosphatases (PP2Cs) is key to the ABA signal pathway. Due to its excellent effect on endodormancy release, hydrogen cyanamide (HC) treatment is considered an effective measure to study the mechanism of endodormancy release. In this study, RNA-Seq analysis was conducted on endodormant floral buds of pear (Pyrus pyrifolia) with HC treatment, and the HC-induced PP2C gene PpPP2C1 was identified. Next, software prediction, expression tests and transient assays revealed that lncRNA PpL-T31511-derived Pp-miRn182 targets PpPP2C1. The expression analysis showed that HC treatment upregulated the expression of PpPP2C1 and downregulated the expression of PpL-T31511 and Pp-miRn182. Moreover, HC treatment inhibited the accumulation of ABA signaling pathway-related genes and hydrogen peroxide (H2O2). Furthermore, overexpression of Pp-miRn182 reduced the inhibitory effect of PpPP2C1 on the H2O2 content. In summary, our study suggests that downregulation of PpL-T31511-derived Pp-miRn182 promotes HC-induced endodormancy release in pear plants through the PP2C-H2O2 pathway.
Collapse
Affiliation(s)
- Liang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Jinan District, Fuzhou 350013, China
| | - Jinhang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Qin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Yu Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Chao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China; (L.L.); (J.L.); (Q.L.); (Y.F.); (C.W.); (S.W.)
- Correspondence:
| |
Collapse
|
8
|
Vergara R, Noriega X, Pérez FJ. VvDAM-SVPs genes are regulated by FLOWERING LOCUS T (VvFT) and not by ABA/low temperature-induced VvCBFs transcription factors in grapevine buds. PLANTA 2021; 253:31. [PMID: 33438039 DOI: 10.1007/s00425-020-03561-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
In deciduous fruit trees in which dormancy is induced by low temperatures, the expression of DORMACY-ASSOCIATED MADS-BOX genes (DAM) is regulated by CBF/DREB1 transcription factors. In Vitis vinifera, in which dormancy is induced by the photoperiod, VvDAM-SVPs gene expression is regulated by FLOWERING LOCUS T (VvFT). Using the sequences of the six peach (Prunus persica) DORMACY-ASSOCIATED MADS-box genes (DAM) as query, eight putative DAM genes belonging to the family of MADS-box transcription factors and related to the Arabidopsis floral regulators SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) were identified in the V. vinifera genome. Among these, five belong to the subfamily SVP-like genes which have been associated with the regulation of flowering and dormancy in annual and perennial plants, respectively. It has been proposed that they play a direct role in the induction and maintenance of endodormancy (ED) through the regulation of the FLOWERING LOCUS T (FT) gene. In the present study, it is demonstrated that in V. vinifera: (1) VvDAM-SVPs genes are not regulated by ABA/low temperature-induced VvCBFs transcription factors as described for other species of deciduous fruit trees. (2) A contrasting expression pattern between VvDAM3-SVP and VvFT was found under different experimental conditions related to the entry and exit of grapevine buds from ED. (3) Overexpression of VvFT in somatic grapevine embryos (SGE) repressed the expression of VvDAM3-SVP and VvDAM4-SVP. Taken together, the results suggest that VvDAM3-SVP could be associated with ED in grapevine buds, and that its expression could be regulated by VvFT.
Collapse
Affiliation(s)
- Ricardo Vergara
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
- Instituto de Investigaciones Agropecuarias, La Platina, Santiago, Chile
| | - Ximena Noriega
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Francisco J Pérez
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
9
|
RNA-Seq Time Series of Vitis vinifera Bud Development Reveals Correlation of Expression Patterns with the Local Temperature Profile. PLANTS 2020; 9:plants9111548. [PMID: 33198137 PMCID: PMC7698159 DOI: 10.3390/plants9111548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Plants display sophisticated mechanisms to tolerate challenging environmental conditions and need to manage their ontogenesis in parallel. Here, we set out to generate an RNA-Seq time series dataset throughout grapevine (Vitis vinifera) early bud development. The expression of the developmental regulator VviAP1 served as an indicator of the progression of development. We investigated the impact of changing temperatures on gene expression levels during the time series and detected a correlation between increased temperatures and a high expression level of genes encoding heat-shock proteins. The dataset also allowed the exemplary investigation of expression patterns of genes from three transcription factor (TF) gene families, namely MADS-box, WRKY, and R2R3-MYB genes. Inspection of the expression profiles from all three TF gene families indicated that a switch in the developmental program takes place in July which coincides with increased expression of the bud dormancy marker gene VviDRM1.
Collapse
|
10
|
Cai F, Shao C, Zhang Y, Bao Z, Li Z, Shi G, Bao M, Zhang J. Identification and characterisation of a novel FT orthologous gene in London plane with a distinct expression response to environmental stimuli compared to PaFT. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1039-1051. [PMID: 31192516 DOI: 10.1111/plb.13019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/06/2019] [Indexed: 05/26/2023]
Abstract
FLOWERING LOCUS T (FT) is a key integrator of environmental signals and internal cues, and codes for florigen-like activity which regulates the transition from vegetative to reproductive growth in flowering plants. Unlike annual plants, perennial tree species undergo several years of vegetative growth prior to the transition to the reproductive stage, as characterised by the ability to form flower buds. Thereafter, trees in temperate regions typically display an annual growth cycle involving distinct vegetative growth, flowering and dormancy stages. In London plane (Platanus acerifolia Willd.), a FT-like gene has previously been identified. Here, we report the isolation of a novel FT orthologous gene, PaFTL, and investigate the functions of PaFT and PaFTL through the analysis of expression profiles and transgenic phenotypes. PaFT displayed the highest levels of expression during tree dormancy, and similarly elevated expression levels were seen under conditions of low temperature and short days (LT/SD). In contrast, PaFTL transcripts were up-regulated during the floral transition phase, the early stages of inflorescence development and throughout the main flowering period, whereas expression levels were low and variable during dormancy and in response to LT/SD treatments. Ectopic expression of 35s::PaFTL in tobacco produced a phenotype similar to that with PaFT, namely, advanced floral initiation. Overall, the results suggest that PaFT and PaFTL have both conserved and diverse functions in floral initiation, floral development and dormancy regulation.
Collapse
Affiliation(s)
- F Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - C Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Y Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Z Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Z Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - G Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - M Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - J Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Lin YJ, Li MJ, Hsing HC, Chen TK, Yang TT, Ko SS. Spike Activator 1, Encoding a bHLH, Mediates Axillary Bud Development and Spike Initiation in Phalaenopsis aphrodite. Int J Mol Sci 2019; 20:ijms20215406. [PMID: 31671600 PMCID: PMC6862315 DOI: 10.3390/ijms20215406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Double-spikes Phalaenopsis orchids have greater market value than those with single-spike. In this study, a gene designated as Spike Activator 1 (SPK1), which encodes a basic helix-loop-helix (bHLH) transcription factor, was isolated and characterized from Phalaenopsis aphrodite (moth orchid). SPK1 was highly expressed in the meristematic tissues. In the axillary bud, SPK1 was highly upregulated by a moderately low temperature of 20 °C but downregulated by a spike inhibition temperature of 30 °C. SPK1 protein is localized in the nucleus. Another bHLH, bHLH35, which is also highly expressed in young tissues in the same way as SPK1 was also identified. In contrast to SPK1, bHLH35 transcripts are downregulated at 20 °C but upregulated at 30 °C. Bimolecular florescence complementation assay and yeast two-hybrid assays indicated that SPK1 interacts with bHLH35 and forms a heterodimer. Virus-induced gene silencing (VIGS) showed that 7 out of 15 vector control plants produced double spikes but that only 1 out of 15 VIGS-spk1 plants produced double spikes. RT-qPCR results indicated that VIGS-spk1 downregulated gene expression levels of SPK1, FT, CYCB, and EXPA8. Overall, we propose that SPK1 plays an essential role in early axillary bud development and spike initiation of P. aphrodite.
Collapse
Affiliation(s)
- Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Hung-Chien Hsing
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Tien-Kuan Chen
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
12
|
Natarajan B, Kondhare KR, Hannapel DJ, Banerjee AK. Mobile RNAs and proteins: Prospects in storage organ development of tuber and root crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:73-81. [PMID: 31084881 DOI: 10.1016/j.plantsci.2019.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 05/04/2023]
Abstract
Storage tuber and root crops make up a significant portion of the world's subsistence food supply. Because of their importance in food security, yield enhancement has become a priority. A major focus has been to understand the biology of belowground storage organ development. Considerable insights have been gained studying tuber development in potato. We now know that two mobile signals, a full-length mRNA, StBEL5, and a protein, StSP6A, play pivotal roles in regulating tuber development. Under favorable conditions, these signals move from leaves to a belowground modified stem (stolon) and regulate genes that activate tuberization. Overexpression of StBEL5 or StSP6A increases tuber yield even under non-inductive conditions. The mRNAs of two close homologs of StBEL5, StBEL11 and StBEL29, are also known to be mobile but act as repressors of tuberization. Polypyrimidine tract-binding proteins (PTBs) are RNA-binding proteins that facilitate the movement of these mRNAs. Considering their role in tuberization, it is possible that these mobile signals play a major role in storage root development as well. In this review, we explore the presence of these signals and their relevance in the development and yield potential of several important storage root crops.
Collapse
Affiliation(s)
- Bhavani Natarajan
- Indian Institute of Science Education and Research (IISER), Biology Division, Pune, 411008, India
| | - Kirtikumar R Kondhare
- Indian Institute of Science Education and Research (IISER), Biology Division, Pune, 411008, India
| | - David J Hannapel
- Plant Biology Major, 253 Horticulture Hall, Iowa State University (ISU), Ames, IA, United States
| | - Anjan K Banerjee
- Indian Institute of Science Education and Research (IISER), Biology Division, Pune, 411008, India.
| |
Collapse
|
13
|
Zheng C, Acheampong AK, Shi Z, Mugzech A, Halaly-Basha T, Shaya F, Sun Y, Colova V, Mosquna A, Ophir R, Galbraith DW, Or E. Abscisic acid catabolism enhances dormancy release of grapevine buds. PLANT, CELL & ENVIRONMENT 2018; 41:2490-2503. [PMID: 29907961 DOI: 10.1111/pce.13371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 05/13/2023]
Abstract
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It was formerly proposed that dormancy is maintained by abscisic acid (ABA)-mediated repression of bud-meristem activity and that removal of this repression triggers dormancy release. It was also proposed that such removal of repression may be achieved via natural or artificial up-regulation of VvA8H-CYP707A4, which encodes ABA 8'-hydroxylase, and is the most highly expressed paralog in grapevine buds. The current study further examines these assumptions, and its experiments reveal that (a) hypoxia and ethylene, stimuli of bud dormancy release, enhance expression of VvA8H-CYP707A4 within grape buds, (b) the VvA8H-CYP707A4 protein accumulates during the natural transition to the dormancy release stage, and (c) transgenic vines overexpressing VvA8H-CYP707A4 exhibit increased ABA catabolism and significant enhancement of bud break in controlled and natural environments and longer basal summer laterals. The results suggest that VvA8H-CYP707A4 functions as an ABA degrading enzyme, and are consistent with a model in which the VvA8H-CYP707A4 level in the bud is up-regulated by natural and artificial bud break stimuli, which leads to increased ABA degradation capacity, removal of endogenous ABA-mediated repression, and enhanced regrowth. Interestingly, it also hints at sharing of regulatory steps between latent and lateral bud outgrowth.
Collapse
Affiliation(s)
- Chuanlin Zheng
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Atiako Kwame Acheampong
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Zhaowan Shi
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Amichay Mugzech
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Tamar Halaly-Basha
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Felix Shaya
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yufei Sun
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Violeta Colova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, Tallahassee, Florida
| | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - David W Galbraith
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona
| | - Etti Or
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
14
|
Meitha K, Agudelo-Romero P, Signorelli S, Gibbs DJ, Considine JA, Foyer CH, Considine MJ. Developmental control of hypoxia during bud burst in grapevine. PLANT, CELL & ENVIRONMENT 2018; 41:1154-1170. [PMID: 29336037 DOI: 10.1111/pce.13141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 05/08/2023]
Abstract
Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds.
Collapse
Affiliation(s)
- Karlia Meitha
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Patricia Agudelo-Romero
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, 6009, Australia
| | - Santiago Signorelli
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - John A Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Department of Primary Industries and Rural Development, South Perth, 6151, Australia
| |
Collapse
|
15
|
Chen M, Tan Q, Sun M, Li D, Fu X, Chen X, Xiao W, Li L, Gao D. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy. Mol Genet Genomics 2016; 291:1319-32. [PMID: 26951048 PMCID: PMC4875958 DOI: 10.1007/s00438-016-1171-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Bud dormancy in deciduous fruit trees is an important adaptive mechanism for their survival in cold climates. The WRKY genes participate in several developmental and physiological processes, including dormancy. However, the dormancy mechanisms of WRKY genes have not been studied in detail. We conducted a genome-wide analysis and identified 58 WRKY genes in peach. These putative genes were located on all eight chromosomes. In bioinformatics analyses, we compared the sequences of WRKY genes from peach, rice, and Arabidopsis. In a cluster analysis, the gene sequences formed three groups, of which group II was further divided into five subgroups. Gene structure was highly conserved within each group, especially in groups IId and III. Gene expression analyses by qRT-PCR showed that WRKY genes showed different expression patterns in peach buds during dormancy. The mean expression levels of six WRKY genes (Prupe.6G286000, Prupe.1G393000, Prupe.1G114800, Prupe.1G071400, Prupe.2G185100, and Prupe.2G307400) increased during endodormancy and decreased during ecodormancy, indicating that these six WRKY genes may play a role in dormancy in a perennial fruit tree. This information will be useful for selecting fruit trees with desirable dormancy characteristics or for manipulating dormancy in genetic engineering programs.
Collapse
Affiliation(s)
- Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|