1
|
Butt M, Imran M, Rehman T, Intisar A, Lindsey K, Sarwar G, Qaisar U. Seed-specific expression of AtWRI1 enhanced the yield of cotton seed oil. Sci Rep 2024; 14:30750. [PMID: 39730486 DOI: 10.1038/s41598-024-80684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains. The amino acid sequence of GhWRI1 exhibited 62% homology with AtWRI1 and phylogenetic analysis showed that GhWRI1 and AtWRI1 originated from common ancestors. Comparison of three dimensional structures of AtWRI1 and GhWRI1 indicated the presence of an altered alpha helix on the C-terminus that harbours spore coat protein domain in A. thaliana and other members of Brassicaceae but Kin17 domain in G.hirsutum. In the present study, we constructed a novel gene cassette containing AtWRI1 driven by seed-specific promoter and Tobacco Etch Virus enhancer. The transgenic plantlets of G. hirsutum exhibited 35% enhancement in seed oil content and nearly 4-fold increase in oil-bodies in seed endosperm. GC-MS analysis exhibited additional fatty acids i.e. lauric acid methyl ester, 1-dodecanol, palmitoleic acid, margaric acid, stearic acid, linolenic acid, methyl 9,10-methylene-octadecanoate, methyl 18-methylnonadecanoate, 13-docosenoic acid methyl ester, methyl 20-methyl-heneicosanoate, lignoceric acid in the transformants. This is an important study highlighting the enhancement of seed oil content in cotton by seed-specific expression of AtWRI1.
Collapse
Affiliation(s)
- Maria Butt
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mahnoor Imran
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Tanzeela Rehman
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Azeem Intisar
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | | | - Uzma Qaisar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
Alam B, Liu R, Gong J, Li J, Yan H, Ge Q, Xiao X, Pan J, Shang H, Shi Y, Yuan Y, Gong W. Hub Genes in Stable QTLs Orchestrate the Accumulation of Cottonseed Oil in Upland Cotton via Catalyzing Key Steps of Lipid-Related Pathways. Int J Mol Sci 2023; 24:16595. [PMID: 38068920 PMCID: PMC10706765 DOI: 10.3390/ijms242316595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Upland cotton is the fifth-largest oil crop in the world, with an average supply of nearly 20% of vegetable oil production. Cottonseed oil is also an ideal alternative raw material to be efficiently converted into biodiesel. However, the improvement in kernel oil content (KOC) of cottonseed has not received sufficient attention from researchers for a long time, due to the fact that the main product of cotton planting is fiber. Previous studies have tagged QTLs and identified individual candidate genes that regulate KOC of cottonseed. The regulatory mechanism of oil metabolism and accumulation of cottonseed are still elusive. In the current study, two high-density genetic maps (HDGMs), which were constructed based on a recombinant inbred line (RIL) population consisting of 231 individuals, were used to identify KOC QTLs. A total of forty-three stable QTLs were detected via these two HDGM strategies. Bioinformatic analysis of all the genes harbored in the marker intervals of the stable QTLs revealed that a total of fifty-one genes were involved in the pathways related to lipid biosynthesis. Functional analysis via coexpression network and RNA-seq revealed that the hub genes in the co-expression network that also catalyze the key steps of fatty acid synthesis, lipid metabolism and oil body formation pathways (ACX4, LACS4, KCR1, and SQD1) could jointly orchestrate oil accumulation in cottonseed. This study will strengthen our understanding of oil metabolism and accumulation in cottonseed and contribute to KOC improvement in cottonseed in the future, enhancing the security and stability of worldwide food supply.
Collapse
Affiliation(s)
- Beena Alam
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Ruixian Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Haoliang Yan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Qun Ge
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Xiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Jingtao Pan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Haihong Shang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Youlu Yuan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| |
Collapse
|
3
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Shockey J, Gilbert MK, Thyssen GN. A mutant cotton fatty acid desaturase 2-1d allele causes protein mistargeting and altered seed oil composition. BMC PLANT BIOLOGY 2023; 23:147. [PMID: 36932365 PMCID: PMC10021949 DOI: 10.1186/s12870-023-04160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cotton (Gossypium sp.) has been cultivated for centuries for its spinnable fibers, but its seed oil also possesses untapped economic potential if, improvements could be made to its oleic acid content. RESULTS Previous studies, including those from our laboratory, identified pima accessions containing approximately doubled levels of seed oil oleic acid, compared to standard upland cottonseed oil. Here, the molecular properties of a fatty acid desaturase encoded by a mutant allele identified by genome sequencing in an earlier analysis were analyzed. The mutant sequence is predicted to encode a C-terminally truncated protein lacking nine residues, including a predicted endoplasmic reticulum membrane retrieval motif. We determined that the mutation was caused by a relatively recent movement of a Ty1/copia type retrotransposon that is not found associated with this desaturase gene in other sequenced cotton genomes. The mutant desaturase, along with its repaired isozyme and the wild-type A-subgenome homoeologous protein were expressed in transgenic yeast and stably transformed Arabidopsis plants. All full-length enzymes efficiently converted oleic acid to linoleic acid. The mutant desaturase protein produced only trace amounts of linoleic acid, and only when strongly overexpressed in yeast cells, indicating that the missing C-terminal amino acid residues are not strictly required for enzyme activity, yet are necessary for proper subcellular targeting to the endoplasmic reticulum membrane. CONCLUSION These results provide the biochemical underpinning that links a genetic lesion present in a limited group of South American pima cotton accessions and their rare seed oil oleic acid traits. Markers developed to the mutant desaturase allele are currently being used in breeding programs designed to introduce this trait into agronomic upland cotton varieties.
Collapse
Affiliation(s)
- Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA, 70124, USA.
| | - Matthew K Gilbert
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA, 70124, USA
| | - Gregory N Thyssen
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA, 70124, USA
| |
Collapse
|
5
|
Shockey J, Parchuri P, Thyssen GN, Bates PD. Assessing the biotechnological potential of cotton type-1 and type-2 diacylglycerol acyltransferases in transgenic systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:940-951. [PMID: 36889233 DOI: 10.1016/j.plaphy.2023.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The chemical and physical properties of vegetable oils are largely dictated by the ratios of 4-6 common fatty acids contained within each oil. However, examples of plant species that accumulate from trace amounts to >90% of certain unusual fatty acids in seed triacylglycerols have been reported. Many of the general enzymatic reactions that drive both common and unusual fatty acid biosynthesis and accumulation in stored lipids are known, but which isozymes have evolved to specifically fill this role and how they coordinate in vivo is still poorly understood. Cotton (Gossypium sp.) is the very rare example of a commodity oilseed that produces biologically relevant amounts of unusual fatty acids in its seeds and other organs. In this case, unusual cyclopropyl fatty acids (named after the cyclopropane and cyclopropene moieties within the fatty acids) are found in membrane and storage glycerolipids (e.g. seed oils). Such fatty acids are useful in the synthesis of lubricants, coatings, and other types of valuable industrial feedstocks. To characterize the role of cotton acyltransferases in cyclopropyl fatty acid accumulation for bioengineering applications, we cloned and characterized type-1 and type-2 diacylglycerol acyltransferases from cotton and compared their biochemical properties to that of litchi (Litchi chinensis), another cyclopropyl fatty acid-producing plant. The results presented from transgenic microbes and plants indicate both cotton DGAT1 and DGAT2 isozymes efficiently utilize cyclopropyl fatty acid-containing substrates, which helps to alleviate biosynthetic bottlenecks and enhances total cyclopropyl fatty acid accumulation in the seed oil.
Collapse
Affiliation(s)
- Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA, 70124.
| | - Prasad Parchuri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA, 99164
| | - Gregory N Thyssen
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA, 70124
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA, 99164
| |
Collapse
|
6
|
Yang Z, Gao C, Zhang Y, Yan Q, Hu W, Yang L, Wang Z, Li F. Recent progression and future perspectives in cotton genomic breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:548-569. [PMID: 36226594 DOI: 10.1111/jipb.13388] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content. Progress in cotton genomics promotes the advancement of cotton genetics, evolutionary studies, functional genetics, and breeding, and has ushered cotton research and breeding into a new era. Here, we summarize high-impact genomics studies for cotton from the last 10 years. The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studies. We next review recent progress in cotton molecular biology and genetics, which builds on cotton genome sequencing efforts, population studies, and functional genomics, to provide insights into the mechanisms shaping abiotic and biotic stress tolerance, plant architecture, seed oil content, and fiber development. We also suggest the application of novel technologies and strategies to facilitate genome-based crop breeding. Explosive growth in the amount of novel genomic data, identified genes, gene modules, and pathways is now enabling researchers to utilize multidisciplinary genomics-enabled breeding strategies to cultivate "super cotton", synergistically improving multiple traits. These strategies must rise to meet urgent demands for a sustainable cotton industry.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingdi Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
7
|
Fox M, Newcomb K, Oliveira C, Shakiba E, Nawarathne IN. Facile analysis of rice bran oil to compare free unsaturated fatty acid compositions of parental and hybrid rice lines. J AM OIL CHEM SOC 2022; 99:1103-1111. [PMID: 36589259 PMCID: PMC9798847 DOI: 10.1002/aocs.12631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/09/2022] [Indexed: 02/01/2023]
Abstract
Rice bran oil (RBO) has been a popular choice of cooking oil in several Asian countries for decades, and the interest in RBO is fast growing in Western countries due to the high levels of hearty unsaturated fats and other components beneficial to health. Further knowledge of unsaturated fatty acid content and composition in rice lines will assist in improving the quality of rice bran processing by allowing robust extraction of rice bran for oil production. The studies focused on the RBO composition of rice lines with beneficial genotypes are scarce. Accordingly, we investigated the total bran lipid content and composition of three of the most abundant, healthy, unsaturated fatty acids that freely exist in RBO: oleic, linoleic, and α-linolenic acids in nine parental lines (two male sterile lines and seven male lines) and seven hybrid rice lines, by utilizing an efficacious organic extraction to collect RBO and by developing a user-friendly reverse-phase high-performance liquid chromatography (HPLC) methodology. Our results showed that the hybrid lines had the highest oil content (F ratio = 7.2017, p value = 0.0019), while the male lines had the highest levels of two of the three free unsaturated fatty acids analyzed (linoleic acid,x ¯ = 212.801 mg and oleic acid,x ¯ = 48.132 mg). Oil weight was negatively correlated with α-linolenic acid (r = -0.6535, p value <0.0001). All three free unsaturated fatty acids were positively correlated. Our samples' natural variation in lipid content suggests that some rice lines are more suitable for oil production.
Collapse
Affiliation(s)
- McKinley Fox
- Division of Mathematics and Sciences, Lyon College, Batesville, Arkansas, USA
| | - Kaleb Newcomb
- Division of Mathematics and Sciences, Lyon College, Batesville, Arkansas, USA
| | - Cassia Oliveira
- Division of Mathematics and Sciences, Lyon College, Batesville, Arkansas, USA
| | - Ehsan Shakiba
- Rice Research and Extension Center, University of Arkansas, Stuttgart, Arkansas, USA
| | | |
Collapse
|
8
|
Wu M, Pei W, Wedegaertner T, Zhang J, Yu J. Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:864850. [PMID: 35360295 PMCID: PMC8961181 DOI: 10.3389/fpls.2022.864850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 05/17/2023]
Abstract
Upland cotton (Gossypium hirsutum) is the world's leading fiber crop and one of the most important oilseed crops. Genetic improvement of cotton has primarily focused on fiber yield and quality. However, there is an increased interest and demand for enhanced cottonseed traits, including protein, oil, fatty acids, and amino acids for broad food, feed and biofuel applications. As a byproduct of cotton production, cottonseed is an important source of edible oil in many countries and could also be a vital source of protein for human consumption. The focus of cotton breeding on high yield and better fiber quality has substantially reduced the natural genetic variation available for effective cottonseed quality improvement within Upland cotton. However, genetic variation in cottonseed oil and protein content exists within the genus of Gossypium and cultivated cotton. A plethora of genes and quantitative trait loci (QTLs) (associated with cottonseed oil, fatty acids, protein and amino acids) have been identified, providing important information for genetic improvement of cottonseed quality. Genetic engineering in cotton through RNA interference and insertions of additional genes of other genetic sources, in addition to the more recent development of genome editing technology has achieved considerable progress in altering the relative levels of protein, oil, fatty acid profile, and amino acids composition in cottonseed for enhanced nutritional value and expanded industrial applications. The objective of this review is to summarize and discuss the cottonseed oil biosynthetic pathway and major genes involved, genetic basis of cottonseed oil and protein content, genetic engineering, genome editing through CRISPR/Cas9, and QTLs associated with quantity and quality enhancement of cottonseed oil and protein.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
10
|
Zhu D, Le Y, Zhang R, Li X, Lin Z. A global survey of the gene network and key genes for oil accumulation in cultivated tetraploid cottons. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1170-1182. [PMID: 33382517 PMCID: PMC8196633 DOI: 10.1111/pbi.13538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 05/14/2023]
Abstract
To enrich our knowledge about gene network of fatty acid biosynthesis in cottonseed, we conducted comparative transcriptome to reveal the differences in gene expression between Gossypium hirsutum and Gossypium barbadense during cottonseed development. The prolonged expression period and increased expression abundance of oil-related genes are the main reasons for producing high seed oil content (SOC) in G. barbadense, which manifested as the bias of homeologous gene expression in Dt-subgenome after 25 day postanthesis (DPA). The dynamic expression profile showed that SAD6 and FATA are more important for oil biosynthesis in G. barbadense than that in G. hirsutum. Three key transcription factors, WRI1, NF-YB6 and DPBF2, showed their elite roles in regulating seed oil in cotton. We observed that sequence variations in the promoter region of BCCP2 genes might contribute to its divergence in expression level between the two species. Based on the quantitative trait loci (QTL) information of the seed oil content and utilizing additional G. barbadense introgression lines (ILs), we propose 21 candidate genes on the basis of their differential expression level, of which the GbSWEET and the GbACBP6 showed the potential functional to improve the oil content. Taken together, studying the different expression of oil-related genes and their genetic regulation mechanisms between G. hirsutum and G. barbadense provide new insights to understanding the mechanism of fatty acid biosynthesis network and fatty acid genetic improving breeding in cotton.
Collapse
Affiliation(s)
- De Zhu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Sciences & TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yu Le
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Sciences & TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Sciences & TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiaojing Li
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Sciences & TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Sciences & TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
11
|
Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z, Zhang X, Jin S. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:424-426. [PMID: 33131175 PMCID: PMC7955888 DOI: 10.1111/pbi.13507] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/28/2020] [Indexed: 05/14/2023]
Affiliation(s)
- Yizhen Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of Agriculture and Rural AffairsCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Mingchuan Fu
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of Agriculture and Rural AffairsCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Hao Li
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of Agriculture and Rural AffairsCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Liguo Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of Agriculture and Rural AffairsCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Renzhong Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of Agriculture and Rural AffairsCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Zhanji Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of Agriculture and Rural AffairsCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
12
|
Affiliation(s)
- Andres Zambelli
- Facultad de Ciencias Agrarias Universidad Nacional de Mar del Plata Ruta Nacional 226 Km 73.5 Balcarce Provincia de Buenos Aires 7620 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Ruta Nacional 226 Km 73.5 Balcarce 7620 Argentina
| |
Collapse
|
13
|
Contreras C, Mariotti R, Mousavi S, Baldoni L, Guerrero C, Roka L, Cultrera N, Pierantozzi P, Maestri D, Gentili L, Tivani M, Torres M. Characterization and validation of olive FAD and SAD gene families: expression analysis in different tissues and during fruit development. Mol Biol Rep 2020; 47:4345-4355. [PMID: 32468255 DOI: 10.1007/s11033-020-05554-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
Stearoyl-ACP desaturases (SADs) and fatty acid desaturases (FADs) play a critical role in plant lipid metabolism and also affect oil fatty acid composition introducing double bonds into the hydrocarbon chains to produce unsaturated fatty acids. In the present study, the genomic sequences of three SAD and three FAD candidate genes were characterized in olive and their expression was evaluated in different plant tissues. OeSAD genes corresponded to olive SAD1 and SAD2 and to a newly identified OeSAD4, sharing the conserved protein structure with other plant species. On the other hand, the full-length genomic sequences of two microsomal OeFAD genes (FAD2-1 and FAD2-2) and the plastidial FAD6, were released. When the level of expression was tested on different tissues of cv. Leccino, OeSAD1 and OeSAD2 were mainly expressed in the fruits, while OeFAD genes showed the lowest expression in this tissue. The mRNA profiling of all genes was directly studied in fruits of Leccino and Coratina cultivars during fruit development. In both genotypes, the expression level of OeSAD1 and OeSAD2 had the highest value during and after the pit-hardening period, when oil accumulation in fruit mesocarp is intensively increasing. Furthermore, the expression level of both OeFAD2 genes, which were the main candidates for oleic acid desaturation, were almost negligible during fruit ripening. These results have made possible to define candidate genes of the machinery regulation of fatty acid composition in olive oil, providing information on their sequence, gene structure and chromosomal location.
Collapse
Affiliation(s)
- C Contreras
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| | - R Mariotti
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy.
| | - S Mousavi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - L Baldoni
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - C Guerrero
- Department of Molecular Biology and Biochemistry, Science Faculty, University of Malaga, Malaga, Spain
| | - L Roka
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - N Cultrera
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - P Pierantozzi
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| | - D Maestri
- Instituto Multidisciplinario de Biología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Gentili
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| | - M Tivani
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| | - M Torres
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan, Argentina
| |
Collapse
|
14
|
Bollinedi H, Singh AK, Singh N, S GK, Bhowmick PK, K K V, M N, R K E. Genetic and genomic approaches to address rapid rancidity of rice bran. Crit Rev Food Sci Nutr 2020; 61:75-84. [PMID: 31997650 DOI: 10.1080/10408398.2020.1718598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rice bran is an invaluable by-product of paddy processing industry. It is rich in minerals, protein, lipids, and crude fiber. In addition, it also possesses compounds with anti-oxidant, anti-allergic, anti-diabetic, and anti-cancer properties. It forms a basis for the extraction of rice bran oil and preparation of various functional foods with health benefits and potential to prevent chronic health issues. Nevertheless, the rapid deterioration of bran upon storage acts as a major limitation in exploiting the full potential of rice bran. In this review, we have discussed three strategies to address rapid rancidity of rice bran and enhance its shelf life and storability vis-a-vis emphasizing the importance of rice bran in terms of its nutritional composition. One strategy is through exploitation of the null mutations in the genes governing lipases and lipoxygenases leading to nonfunctional enzymes (enzyme deficient approach), another strategy is through reducing the PUFA content that is more prone to oxidation (substrate deficient approach) and a third strategy is through enhancing the antioxidant content that effectively terminate the lipid peroxidation by donating the hydrogen atom.
Collapse
Affiliation(s)
- Haritha Bollinedi
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - A K Singh
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Neha Singh
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Gopala Krishnan S
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Prolay K Bhowmick
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Vinod K K
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| | - Nagarajan M
- ICAR - IARI and Genetics Research Centre, Aduthurai, Tamil Nadu, India
| | - Ellur R K
- Division of Genetics, ICAR - Indian Agriculture Research Institute (IARI), New Delhi, India
| |
Collapse
|
15
|
Wu P, Zhang L, Feng T, Lu W, Zhao H, Li J, Lü S. A Conserved Glycine Is Identified to be Essential for Desaturase Activity of IpFAD2s by Analyzing Natural Variants from Idesia polycarpa. Int J Mol Sci 2018; 19:E3932. [PMID: 30544564 PMCID: PMC6321622 DOI: 10.3390/ijms19123932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022] Open
Abstract
High amounts of polyunsaturated fatty acids (PUFAs) in vegetable oil are not desirable for biodiesel or food oil due to their lower oxidative stability. The oil from Idesia polycarpa fruit contains 65⁻80% (mol%) linoleic acid (C18:2). Therefore, development of Idesia polycarpa cultivars with low PUFAs is highly desirable for Idesia polycarpa oil quality. Fatty acid desaturase 2 (FAD2) is the key enzyme converting oleic acid (C18:1) to C18:2. We isolated four FAD2 homologs from the fruit of Idesia polycarpa. Yeast transformed with IpFAD2-1, IpFAD2-2 and IpFAD2-3 can generate appreciable amounts of hexadecadienoic acid (C16:2) and C18:2, which are not present in wild-type yeast cells, revealing that the proteins encoded by these genes have Δ12 desaturase activity. Only trace amounts of C18:2 and little C16:2 were detected in yeast cells transformed with IpFAD2-4, suggesting IpFAD2-4 displays low activity. We also analyzed the activity of several FAD2 natural variants of Idesia polycarpa in yeast and found that a highly conserved Gly376 substitution caused the markedly reduced products catalyzed by IpFAD2-3. This glycine is also essential for the activity of IpFAD2-1 and IpFAD2-2, but its replacement in other plant FAD2 proteins displays different effects on the desaturase activity, suggesting its distinct roles across plant FAD2s proteins.
Collapse
Affiliation(s)
- Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingling Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Tao Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wenying Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huayan Zhao
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan 430415, China.
| | - Jianzhong Li
- Tianjin Garrison hangu farm, Tianjin 300480, China.
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
16
|
Abe K, Araki E, Suzuki Y, Toki S, Saika H. Production of high oleic/low linoleic rice by genome editing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:58-62. [PMID: 29735369 DOI: 10.1016/j.plaphy.2018.04.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 05/24/2023]
Abstract
Rice bran oil (RBO) contains many valuable healthy constituents, including oleic acid. Improvement of the fatty acid composition in RBO, including an increase in the content of oleic acid, which helps suppress lifestyle disease, would increase health benefits. The enzyme fatty acid desaturase 2 (FAD2) catalyzes the conversion of oleic acid to linoleic acid in plants, and FAD2 mutants exhibit altered oleic and linoleic acid content in many crops. There are three functional FAD2 genes in the genome of rice (Oryza sativa L.), and, of these, expression of the OsFAD2-1 gene is highest in rice seeds. In order to produce high oleic/low linoleic RBO, we attempted to disrupt the OsFAD2-1 gene by CRISPR/Cas9-mediated targeted mutagenesis. We succeeded in the production of homozygous OsFAD2-1 knockout rice plants. The content of oleic acid increased to more than twice that of wild type, and, surprisingly, linoleic acid, a catabolite of oleic acid by FAD2, decreased dramatically to undetectable levels in fad2-1 mutant brown rice seeds. In this study, by genome editing based on genome information, we succeeded in the production of rice whose fatty acid composition is greatly improved. We suggest that CRISPR/Cas9-mediated mutagenesis of a major gene that shows dominant expression in the target tissue could be a powerful tool to improve target traits in a tissue-specific manner.
Collapse
Affiliation(s)
- Kiyomi Abe
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Etsuko Araki
- Rice Quality Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yasuhiro Suzuki
- Bio-oriented Technology Research Advancement Institution, National Agriculture and Food Research Organization, 1-40-2, Nissinmachi, Kita-ku, Saitama, Saitama, 331-8537, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, Kanagawa, 244-0813, Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
17
|
Sturtevant D, Horn P, Kennedy C, Hinze L, Percy R, Chapman K. Lipid metabolites in seeds of diverse Gossypium accessions: molecular identification of a high oleic mutant allele. PLANTA 2017; 245:595-610. [PMID: 27988885 DOI: 10.1007/s00425-016-2630-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/30/2016] [Indexed: 05/12/2023]
Abstract
Genetically diverse cottonseeds show altered compositions and spatial distributions of phosphatidylcholines and triacylglycerols. Lipidomics profiling led to the discovery of a novel FAD2 - 1 allele, fad2 - 1D - 1 , resulting in a high oleic phenotype. The domestication and breeding of cotton for elite, high-fiber cultivars have led to reduced variation of seed constituents within currently cultivated upland cotton genotypes. However, a recent screen of the genetically diverse U.S. National Cotton Germplasm Collection identified Gossypium accessions with marked differences in seed oil and protein content. Here, several of these accessions representing substantial variation in seed oil content were analyzed for quantitative and spatial differences in lipid compositions by mass spectrometric approaches. Results indicate considerable variation in amount and spatial distribution of pathway metabolites for triacylglycerol biosynthesis in embryos across Gossypium accessions, suggesting that this variation might be exploited by breeders for seed composition traits. By way of example, these lipid metabolite differences led to the identification of a mutant allele of the D-subgenome homolog of the delta-12 desaturase (fad2-1D-1) in a wild accession of G. barbadense that has a high oil and high oleic seed phenotype. This mutation is a 90-bp insertion in the 3' end of the FAD2-1D coding sequence and a modification of the 3' end of the gene beyond the coding sequence leading to the introduction of a premature stop codon. Given the large amounts of cottonseed produced around the world that is currently not processed into higher value products, these efforts might be one avenue to raise the overall value of the cotton crop for producers.
Collapse
Affiliation(s)
- Drew Sturtevant
- Department of Biological Sciences, Center for Plant Lipid Research, BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5217, USA
| | - Patrick Horn
- Department of Biological Sciences, Center for Plant Lipid Research, BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5217, USA
- U.S. Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher Kennedy
- Department of Biological Sciences, Center for Plant Lipid Research, BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5217, USA
| | - Lori Hinze
- USDA/ARS, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Richard Percy
- USDA/ARS, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Kent Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5217, USA.
| |
Collapse
|