1
|
Koç A, De Storme N. Structural regulation and dynamic behaviour of organelles during plant meiosis. Front Cell Dev Biol 2022; 10:925789. [DOI: 10.3389/fcell.2022.925789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes use various mechanisms to maintain cell division stability during sporogenesis, and in particular during meiosis to achieve production of haploid spores. In addition to establishing even chromosome segregation in meiosis I and II, it is crucial for meiotic cells to guarantee balanced partitioning of organelles to the daughter cells, to properly inherit cellular functions. In plants, cytological studies in model systems have yielded insights into the meiotic behaviour of different organelles, i.e., clearly revealing a distinct organization at different stages throughout meiosis indicating for an active regulatory mechanism determining their subcellular dynamics. However, how, and why plant meiocytes organize synchronicity of these elements and whether this is conserved across all plant genera is still not fully elucidated. It is generally accepted that the highly programmed intracellular behaviour of organelles during meiosis serves to guarantee balanced cytoplasmic inheritance. However, recent studies also indicate that it contributes to the regulation of key meiotic processes, like the organization of cell polarity and spindle orientation, thus exhibiting different functionalities than those characterized in mitotic cell division. In this review paper, we will outline the current knowledge on organelle dynamics in plant meiosis and discuss the putative strategies that the plant cell uses to mediate this programmed spatio-temporal organization in order to safeguard balanced separation of organelles. Particular attention is thereby given to putative molecular mechanisms that underlie this dynamic organelle organization taken into account existing variations in the meiotic cell division program across different plant types. Furthermore, we will elaborate on the structural role of organelles in plant meiosis and discuss on organelle-based cellular mechanisms that contribute to the organization and molecular coordination of key meiotic processes, including spindle positioning, chromosome segregation and cell division. Overall, this review summarizes all relevant insights on the dynamic behaviour and inheritance of organelles during plant meiosis, and discusses on their functional role in the structural and molecular regulation of meiotic cell division.
Collapse
|
3
|
Akita K, Takagi T, Kobayashi K, Kuchitsu K, Kuroiwa T, Nagata N. Ultrastructural characterization of microlipophagy induced by the interaction of vacuoles and lipid bodies around generative and sperm cells in Arabidopsis pollen. PROTOPLASMA 2021; 258:129-138. [PMID: 32968871 PMCID: PMC7782417 DOI: 10.1007/s00709-020-01557-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/08/2020] [Indexed: 05/14/2023]
Abstract
During pollen maturation, various organelles change their distribution and function during development as male gametophytes. We analyzed the behavior of lipid bodies and vacuoles involved in lipophagy in Arabidopsis pollen using serial section SEM and conventional TEM. At the bicellular pollen stage, lipid bodies in the vegetative cells lined up at the surface of the generative cell. Vacuoles then tightly attached, drew in, and degraded the lipid bodies and eventually occupied the space of the lipid bodies. Degradation of lipid began before transfer of the entire contents of the lipid body. At the tricellular stage, vacuoles instead of lipid bodies surrounded the sperm cells. The degradation of lipid bodies is morphologically considered microautophagy. The atg2-1 Arabidopsis mutant is deficient in one autophagy-related gene (ATG). In this mutant, the assembly of vacuoles around sperm cells was sparser than that in wild-type pollen. The deficiency of ATG2 likely prevents or slows lipid degradation, although it does not prevent contact between organelles. These results demonstrate the involvement of microlipophagy in the pollen development of Arabidopsis.
Collapse
Affiliation(s)
- Kae Akita
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Takagi
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Keiko Kobayashi
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Noriko Nagata
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Marciniec R, Zięba E, Winiarczyk K. Distribution of plastids and mitochondria during male gametophyte formation in Tinantia erecta (Jacq.) Fenzl. PROTOPLASMA 2019; 256:1051-1063. [PMID: 30852672 PMCID: PMC6579867 DOI: 10.1007/s00709-019-01363-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 05/27/2023]
Abstract
During meiosis in microsporogenesis, autonomous cellular organelles, i.e., plastids and mitochondria, move and separate into daughter cells according to a specific pattern. This process called chondriokinesis is characteristic for a given plant species. The key criterion for classification of the chondriokinesis types was the arrangement of cell organelles during two meiosis phases: metaphase I and telophase I. The autonomous organelles participate in cytoplasmic inheritance; therefore, their precise distribution to daughter cells determines formation of identical viable microspores. In this study, the course of chondriokinesis during the development of the male gametophyte in Tinantia erecta was analyzed. The study was conducted using optical and transmission electron microscopes. During microsporogenesis in T. erecta, autonomous cell organelles moved in a manner defined as a neutral-equatorial type of chondriokinesis. Therefore, metaphase I plastids and mitochondria were evenly dispersed around the metaphase plate and formed an equatorial plate between the daughter nuclei in early telophase I. Changes in the ultrastructure of plastids and mitochondria during pollen microsporogenesis were also observed.
Collapse
Affiliation(s)
- Rafał Marciniec
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Emil Zięba
- Confocal and Electron Microscopy Laboratory, Centre for Interdisciplinary Research, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718, Lublin, Poland
| | - Krystyna Winiarczyk
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
5
|
Li B, Chen X, Wu Y, Gu A, Zhang J, Luo S, Gao X, Zhao J, Pan X, Shen S. Gene characterization and molecular pathway analysis of reverse thermosensitive genic male sterility in eggplant ( Solanum melongena L.). HORTICULTURE RESEARCH 2019; 6:118. [PMID: 31700645 PMCID: PMC6823389 DOI: 10.1038/s41438-019-0201-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/05/2019] [Accepted: 09/02/2019] [Indexed: 05/02/2023]
Abstract
The naturally occurring mutant eggplant line 05ms was identified with reverse thermosensitive genic male sterility (rTGMS), but its temperature-responsive fertility mechanisms remain largely unknown. Here, we studied the flower morphology, anther cellular structure, and genome-wide gene expression of this rTGMS line. Candidate genes for thermosensitive male sterility during the microspore development of 05ms and the temperature-insensitive line S63 under low-temperature (LT) and high-temperature (HT) conditions were identified. Under LT, tapetum cells were vacuolated and had delayed disintegration in 05ms. RNA-seq analysis indicated that DEGs were enriched in the KEGG pathways 'plant hormone signal transduction', 'starch and sucrose metabolism', and 'phenylpropanoid biosynthesis'. We identified two genes, 4CLL1 (Sme2.5_00368.1_g00010.1) and CKI1 (Sme2.5_10056.1_g00002.1), which could potentially regulate eggplant anther development and may be candidate genes for rTGMS. Finally, we propose a working model of anther abortion for rTGMS in eggplant. CKI1 responds to LT stress and causes expression changes in genes related to anther development, such as 4CLL1, and the cellular structure of the tapetum becomes abnormal, causing male sterility. The findings of this study explain the underlying molecular mechanisms of male sterility in eggplant rTGMS lines.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000 China
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 China
| | - Xueping Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000 China
| | - Yanrong Wu
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 China
| | - Aixia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000 China
| | - Jingjing Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 China
| | - Shuangxia Luo
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000 China
| | - Xiurui Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000 China
| | - Xiuqing Pan
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 China
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071000 China
| |
Collapse
|
6
|
Li WF, Mao J, Yang SJ, Guo ZG, Ma ZH, Dawuda MM, Zuo CW, Chu MY, Chen BH. Anthocyanin accumulation correlates with hormones in the fruit skin of 'Red Delicious' and its four generation bud sport mutants. BMC PLANT BIOLOGY 2018; 18:363. [PMID: 30563462 PMCID: PMC6299587 DOI: 10.1186/s12870-018-1595-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/06/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Bud sport mutants of apple (Malus domestica Borkh.) trees with a highly blushed colouring pattern are mainly caused by the accumulation of anthocyanins in the fruit skin. Hormones are important factors modulating anthocyanin accumulation. However, a good understanding of the interplay between hormones and anthocyanin synthesis in apples, especially in mutants at the molecular level, remains elusive. Here, physiological and comparative transcriptome approaches were used to reveal the molecular basis of color pigmentation in the skin of 'Red Delicious' (G0) and its mutants, including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee spur' (G4). RESULTS Pigmentation in the skin gradually proliferated from G0 to G4. The anthocyanin content was higher in the mutants than in 'Red Delicious'. The activation of early phenylpropanoid biosynthesis genes, including ASP3, PAL, 4CL, PER, CHS, CYP98A and F3'H, was more responsible for anthocyanin accumulation in mutants at the color break stage. In addition, IAA and ABA had a positive regulatory effect on the synthesis of anthocyanins, while GA had the reverse effect. The down-regulation of AACT1, HMGS, HMGR, MVK, MVD2, IDI1 and FPPS2 involved in terpenoid biosynthesis influences anthocyanin accumulation by positively regulating transcripts of AUX1 and SAUR that contribute to the synthesis of IAA, GID2 to GA, PP2C and SnRK2 to ABA. Furthermore, MYB and bHLH members, which are highly correlated (r=0.882-0.980) with anthocyanin content, modulated anthocyanin accumulation by regulating the transcription of structural genes, including CHS and F3'H, involved in the flavonoid biosynthesis pathway. CONCLUSIONS The present comprehensive transcriptome analyses contribute to the understanding of the the relationship between hormones and anthocyanin synthesis as well as the molecular mechanism involved in apple skin pigmentation.
Collapse
Affiliation(s)
- Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Shi-Jin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Zhi-Gang Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- Department of Horticulture, FoA, University for Development Studies, 1882 Tamale, Ghana
| | - Cun-Wu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ming-Yu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
7
|
Zou T, Liu M, Xiao Q, Wang T, Chen D, Luo T, Yuan G, Li Q, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Wang L, Li P, Li S. OsPKS2 is required for rice male fertility by participating in pollen wall formation. PLANT CELL REPORTS 2018; 37:759-773. [PMID: 29411094 DOI: 10.1007/s00299-018-2265-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/30/2018] [Indexed: 05/07/2023]
Abstract
OsPKS2, the rice orthologous gene of Arabidopsis PKSB/LAP5, encodes a polyketide synthase that is involved in pollen wall formation in rice. In flowering plants, the pollen wall protects male gametes from various environmental stresses and pathogen attacks, as well as promotes pollen germination. The biosynthesis of sporopollenin in tapetal cell is critical for pollen wall formation. Recently, progress has been made in understanding sporopollenin metabolism during pollen wall development in Arabidopsis. However, little is known about the molecular mechanism that underlies the sporopollenin synthesis in pollen wall formation in rice (Oryza sativa). In this study, we identified that a point mutation in OsPKS2, a plant-specific type III polyketide synthase gene, caused male sterility in rice by affecting the normal progress of pollen wall formation. Two other allelic mutants of OsPKS2 were generated using the CRISPR/Cas9 system and are also completely male sterile. This result thus further confirmed that OsPKS2 controls rice male fertility. We also showed that OsPKS2 is an orthologous gene of Arabidopsis PKSB/LAP5 and has a tapetum-specific expression pattern. In addition, its product localizes in the endoplasmic reticulum. Results suggested that OsPKS2 is critical for pollen wall formation, and plays a conserved but differentiated role in sporopollenin biosynthesis from Arabidopsis.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Mingxing Liu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiao Xiao
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Tao Luo
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiao Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| |
Collapse
|