1
|
Seregin IV, Kozhevnikova AD. The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. Int J Mol Sci 2024; 25:9542. [PMID: 39273488 PMCID: PMC11394999 DOI: 10.3390/ijms25179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Low-molecular-weight organic acids (LMWOAs) are essential O-containing metal-binding ligands involved in maintaining metal homeostasis, various metabolic processes, and plant responses to biotic and abiotic stress. Malate, citrate, and oxalate play a crucial role in metal detoxification and transport throughout the plant. This review provides a comparative analysis of the accumulation of LMWOAs in excluders, which store metals mainly in roots, and hyperaccumulators, which accumulate metals mainly in shoots. Modern concepts of the mechanisms of LMWOA secretion by the roots of excluders and hyperaccumulators are summarized, and the formation of various metal complexes with LMWOAs in the vacuole and conducting tissues, playing an important role in the mechanisms of metal detoxification and transport, is discussed. Molecular mechanisms of transport of LMWOAs and their complexes with metals across cell membranes are reviewed. It is discussed whether different endogenous levels of LMWOAs in plants determine their metal tolerance. While playing an important role in maintaining metal homeostasis, LMWOAs apparently make a minor contribution to the mechanisms of metal hyperaccumulation, which is associated mainly with root exudates increasing metal bioavailability and enhanced xylem loading of LMWOAs. The studies of metal-binding compounds may also contribute to the development of approaches used in biofortification, phytoremediation, and phytomining.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| |
Collapse
|
2
|
Gracheva M, Klencsár Z, Homonnay Z, Solti Á, Péter L, Machala L, Novak P, Kovács K. Revealing the nuclearity of iron citrate complexes at biologically relevant conditions. Biometals 2024; 37:461-475. [PMID: 38110781 PMCID: PMC11006783 DOI: 10.1007/s10534-023-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Citric acid plays an ubiquitous role in the complexation of essential metals like iron and thus it has a key function making them biologically available. For this, iron(III) citrate complexes are considered among the most significant coordinated forms of ferric iron that take place in biochemical processes of all living organisms. Although these systems hold great biological relevance, their coordination chemistry has not been fully elucidated yet. The current study aimed to investigate the speciation of iron(III) citrate using Mössbauer and electron paramagnetic resonance spectroscopies. Our aim was to gain insights into the structure and nuclearity of the complexes depending on the pH and iron to citrate ratio. By applying the frozen solution technique, the results obtained directly reflect the iron speciation present in the aqueous solution. At 1:1 iron:citrate molar ratio, polynuclear species prevailed forming most probably a trinuclear structure. In the case of citrate excess, the coexistence of several monoiron species with different coordination environments was confirmed. The stability of the polynuclear complexes was checked in the presence of organic solvents.
Collapse
Affiliation(s)
- Maria Gracheva
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. s. 1/A, 1117, Budapest, Hungary
- Nuclear Analysis and Radiography Department, Centre for Energy Research, Konkoly-Thege Miklós út. 29-33, 1121, Budapest, Hungary
| | - Zoltán Klencsár
- Nuclear Analysis and Radiography Department, Centre for Energy Research, Konkoly-Thege Miklós út. 29-33, 1121, Budapest, Hungary
| | - Zoltán Homonnay
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. s. 1/A, 1117, Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/C, 1117, Budapest, Hungary
| | - László Péter
- Department of Complex Fluids, Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, 1121, Budapest, Hungary
| | - Libor Machala
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Petr Novak
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Krisztina Kovács
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. s. 1/A, 1117, Budapest, Hungary.
| |
Collapse
|
3
|
Peng JS, Zhang XJ, Xiong JN, Zhou Y, Wang WL, Chen SY, Zhang DW, Gu TY. Characterization of genes involved in micronutrients and toxic metals detoxification in Brassica napus by genome-wide cDNA library screening. Metallomics 2023; 15:mfad068. [PMID: 37989719 DOI: 10.1093/mtomcs/mfad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Stresses caused by deficiency/excess of mineral nutrients or of pollution of toxic metals have already become a primary factor in limiting crop production worldwide. Genes involved in minerals and toxic metals accumulation/tolerance could be potential candidates for improving crop plants with enhanced nutritional efficiency and environmental adaptability. In this study, we first generated a high-quality yeast expression cDNA library of Brassica napus (Westar), and 46 genes mediating excess micronutrients and toxic metals detoxification were screened using the yeast genetic complementation system, including 11, 5, 6, 14, 6, and 5 genes involved in cadmium (Cd), zinc (Zn), iron (Fe), manganese (Mn), boron (B), and copper (Cu) tolerance, respectively. Characterization of genes mediating excess ions stress resistance in this study is beneficial for us to further understand ions homeostasis in B. napus.
Collapse
Affiliation(s)
- Jia-Shi Peng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Xue-Jie Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Jia-Ni Xiong
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Ying Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Wei-Li Wang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, Guangdong, China
| | - Si-Ying Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Da-Wei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Tian-Yu Gu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| |
Collapse
|
4
|
Müller B. Iron transport mechanisms and their evolution focusing on chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154059. [PMID: 37586271 DOI: 10.1016/j.jplph.2023.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
5
|
Sági-Kazár M, Sárvári É, Cseh B, Illés L, May Z, Hegedűs C, Barócsi A, Lenk S, Solymosi K, Solti Á. Iron uptake of etioplasts is independent from photosynthesis but applies the reduction-based strategy. FRONTIERS IN PLANT SCIENCE 2023; 14:1227811. [PMID: 37636109 PMCID: PMC10457162 DOI: 10.3389/fpls.2023.1227811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Introduction Iron (Fe) is one of themost important cofactors in the photosynthetic apparatus, and its uptake by chloroplasts has also been associated with the operation of the photosynthetic electron transport chain during reduction-based plastidial Fe uptake. Therefore, plastidial Fe uptake was considered not to be operational in the absence of the photosynthetic activity. Nevertheless, Fe is also required for enzymatic functions unrelated to photosynthesis, highlighting the importance of Fe acquisition by non-photosynthetic plastids. Yet, it remains unclear how these plastids acquire Fe in the absence of photosynthetic function. Furthermore, plastids of etiolated tissues should already possess the ability to acquire Fe, since the biosynthesis of thylakoid membrane complexes requires a massive amount of readily available Fe. Thus, we aimed to investigate whether the reduction-based plastidial Fe uptake solely relies on the functioning photosynthetic apparatus. Methods In our combined structure, iron content and transcript amount analysis studies, we used Savoy cabbage plant as a model, which develops natural etiolation in the inner leaves of the heads due to the shading of the outer leaf layers. Results Foliar and plastidial Fe content of Savoy cabbage leaves decreased towards the inner leaf layers. The leaves of the innermost leaf layers proved to be etiolated, containing etioplasts that lacked the photosynthetic machinery and thus were photosynthetically inactive. However, we discovered that these etioplasts contained, and were able to take up, Fe. Although the relative transcript abundance of genes associated with plastidial Fe uptake and homeostasis decreased towards the inner leaf layers, both ferric chelate reductase FRO7 transcripts and activity were detected in the innermost leaf layer. Additionally, a significant NADP(H) pool and NAD(P)H dehydrogenase activity was detected in the etioplasts of the innermost leaf layer, indicating the presence of the reducing capacity that likely supports the reduction-based Fe uptake of etioplasts. Discussion Based on these findings, the reduction-based plastidial Fe acquisition should not be considered exclusively dependent on the photosynthetic functions.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Levente Illés
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán May
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csaba Hegedűs
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
6
|
Seregin IV, Kozhevnikova AD. Nicotianamine: A Key Player in Metal Homeostasis and Hyperaccumulation in Plants. Int J Mol Sci 2023; 24:10822. [PMID: 37446000 DOI: 10.3390/ijms241310822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Nicotianamine (NA) is a low-molecular-weight N-containing metal-binding ligand, whose accumulation in plant organs changes under metal deficiency or excess. Although NA biosynthesis can be induced in vivo by various metals, this non-proteinogenic amino acid is mainly involved in the detoxification and transport of iron, zinc, nickel, copper and manganese. This review summarizes the current knowledge on NA biosynthesis and its regulation, considers the mechanisms of NA secretion by plant roots, as well as the mechanisms of intracellular transport of NA and its complexes with metals, and its role in radial and long-distance metal transport. Its role in metal tolerance is also discussed. The NA contents in excluders, storing metals primarily in roots, and in hyperaccumulators, accumulating metals mainly in shoots, are compared. The available data suggest that NA plays an important role in maintaining metal homeostasis and hyperaccumulation mechanisms. The study of metal-binding compounds is of interdisciplinary significance, not only regarding their effects on metal toxicity in plants, but also in connection with the development of biofortification approaches to increase the metal contents, primarily of iron and zinc, in agricultural plants, since the deficiency of these elements in food crops seriously affects human health.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| |
Collapse
|
7
|
Singh A, Gracheva M, Kovács Kis V, Keresztes Á, Sági-Kazár M, Müller B, Pankaczi F, Ahmad W, Kovács K, May Z, Tolnai G, Homonnay Z, Fodor F, Klencsár Z, Solti Á. Apoplast utilisation of nanohaematite initiates parallel suppression of RIBA1 and FRO1&3 in Cucumis sativus. NANOIMPACT 2023; 29:100444. [PMID: 36470408 DOI: 10.1016/j.impact.2022.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/13/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Nanoscale Fe containing particles can penetrate the root apoplast. Nevertheless, cell wall size exclusion questions that for Fe mobilisation, a close contact between the membrane integrating FERRIC REDUCTASE OXIDASE (FRO) enzymes and Fe containing particles is required. Haematite nanoparticle suspension, size of 10-20 nm, characterized by 57Fe Mössbauer spectroscopy, TEM, ICP and SAED was subjected to Fe utilisation by the flavin secreting model plant cucumber (Cucumis sativus). Alterations in the structure and distribution of the particles were revealed by 57Fe Mössbauer spectroscopy, HRTEM and EDS element mapping. Biological utilisation of Fe resulted in a suppression of Fe deficiency responses (expression of CsFRO 1, 2 & 3 and RIBOFLAVIN A1; CsRIBA1 genes and root ferric chelate reductase activity). Haematite nanoparticles were stacked in the middle lamella of the apoplast. Fe mobilisation is evidenced by the reduction in the particle size. Fe release from nanoparticles does not require a contact with the plasma membrane. Parallel suppression in the CsFRO 1&3 and CsRIBA1 transcript amounts support that flavin biosynthesis is an inclusive Fe deficiency response involved in the reduction-based Fe utilisation of Cucumis sativus roots. CsFRO2 is suggested to play a role in the intracellular Fe homeostasis.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; PhD School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Maria Gracheva
- Laboratory of Nuclear Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary; Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary; Centre for Energy Research, Eötvös Loránd Research Network, Konkoly-Thege Miklós út. 29-33, Budapest H-1121, Hungary
| | - Viktória Kovács Kis
- Centre for Energy Research, Eötvös Loránd Research Network, Konkoly-Thege Miklós út. 29-33, Budapest H-1121, Hungary; Institute of Environmental Sciences, University of Pannonia, Egyetem út. 10, Veszprém H-8200, Hungary
| | - Áron Keresztes
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; PhD School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Fruzsina Pankaczi
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; PhD School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Waqas Ahmad
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; PhD School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Krisztina Kovács
- Laboratory of Nuclear Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Zoltán May
- Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | | | - Zoltán Homonnay
- Laboratory of Nuclear Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Zoltán Klencsár
- Centre for Energy Research, Eötvös Loránd Research Network, Konkoly-Thege Miklós út. 29-33, Budapest H-1121, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary.
| |
Collapse
|
8
|
Hua YP, Wang Y, Zhou T, Huang JY, Yue CP. Combined morpho-physiological, ionomic and transcriptomic analyses reveal adaptive responses of allohexaploid wheat (Triticum aestivum L.) to iron deficiency. BMC PLANT BIOLOGY 2022; 22:234. [PMID: 35534803 PMCID: PMC9088122 DOI: 10.1186/s12870-022-03627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plants worldwide are often stressed by low Fe availability around the world, especially in aerobic soils. Therefore, the plant growth, seed yield, and quality of crop species are severely inhibited under Fe deficiency. Fe metabolism in plants is controlled by a series of complex transport, storage, and regulatory mechanisms in cells. Allohexaploid wheat (Triticum aestivum L.) is a staple upland crop species that is highly sensitive to low Fe stresses. Although some studies have been previously conducted on the responses of wheat plants to Fe deficiency, the key mechanisms underlying adaptive responses are still unclear in wheat due to its large and complex genome. RESULTS Transmission electron microscopy showed that the chloroplast structure was severely damaged under Fe deficiency. Paraffin sectioning revealed that the division rates of meristematic cells were reduced, and the sizes of elongated cells were diminished. ICP-MS-assisted ionmics analysis showed that low-Fe stress significantly limited the absorption of nutrients, including N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B nutrients. High-throughput transcriptome sequencing identified 378 and 2,619 genome-wide differentially expressed genes (DEGs) were identified in the shoots and roots between high-Fe and low-Fe conditions, respectively. These DEGs were mainly involved in the Fe chelator biosynthesis, ion transport, photosynthesis, amino acid metabolism, and protein synthesis. Gene coexpression network diagrams indicated that TaIRT1b-4A, TaNAS2-6D, TaNAS1a-6A, TaNAS1-6B, and TaNAAT1b-1D might function as key regulators in the adaptive responses of wheat plants to Fe deficiency. CONCLUSIONS These results might help us fully understand the morpho-physiological and molecular responses of wheat plants to low-Fe stress, and provide elite genetic resources for the genetic modification of efficient Fe use.
Collapse
Affiliation(s)
- Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Yue Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
9
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
10
|
Sárvári É, Gellén G, Sági-Kazár M, Schlosser G, Solymosi K, Solti Á. Qualitative and quantitative evaluation of thylakoid complexes separated by Blue Native PAGE. PLANT METHODS 2022; 18:23. [PMID: 35241118 PMCID: PMC8895881 DOI: 10.1186/s13007-022-00858-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/12/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Blue Native polyacrylamide gel electrophoresis (BN PAGE) followed by denaturing PAGE is a widely used, convenient and time efficient method to separate thylakoid complexes and study their composition, abundance, and interactions. Previous analyses unravelled multiple monomeric and dimeric/oligomeric thylakoid complexes but, in certain cases, the separation of complexes was not proper. Particularly, the resolution of super- and megacomplexes, which provides important information on functional interactions, still remained challenging. RESULTS Using a detergent mixture of 1% (w/V) n-dodecyl-β-D-maltoside plus 1% (w/V) digitonin for solubilisation and 4.3-8% gel gradients for separation as methodological improvements in BN PAGE, several large photosystem (PS) I containing bands were detected. According to BN(/BN)/SDS PAGE and mass spectrometry analyses, these PSI bands proved to be PSI-NADH dehydrogenase-like megacomplexes more discernible in maize bundle sheath thylakoids, and PSI complexes with different light-harvesting complex (LHC) complements (PSI-LHCII, PSI-LHCII*) more abundant in mesophyll thylakoids of lincomycin treated maize. For quantitative determination of the complexes and their comparison across taxa and physiological conditions, sample volumes applicable to the gel, correct baseline determination of the densitograms, evaluation methods to resolve complexes running together, calculation of their absolute/relative amounts and distribution among their different forms are proposed. CONCLUSIONS Here we report our experience in Blue/Clear-Native polyacrylamide gel electrophoretic separation of thylakoid complexes, their identification, quantitative determination and comparison in different samples. The applied conditions represent a powerful methodology for the analysis of thylakoid mega- and supercomplexes.
Collapse
Affiliation(s)
- Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
11
|
Gracheva M, Homonnay Z, Singh A, Fodor F, Marosi VB, Solti Á, Kovács K. New aspects of the photodegradation of iron(III) citrate: spectroscopic studies and plant-related factors. Photochem Photobiol Sci 2022; 21:983-996. [PMID: 35199321 DOI: 10.1007/s43630-022-00188-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
Iron (Fe) is an essential cofactor for all livings. Although Fe membrane transport mechanisms often utilize FeII, uncoordinated or deliberated ferrous ions can initiate Fenton reactions. FeIII citrate complexes are among the most important complexed forms of FeIII especially in plants that, indeed, can undergo photoreduction. Since leaves as photosynthetic organs of higher plants are generally exposed to illumination in daytime, photoreaction of ferric species may have biological relevance in iron metabolism, the relevance of which is poorly understood. In present work FeIII citrate transformation during the photodegradation in solution and after foliar application on leaves was studied by Mössbauer analysis directly. To obtain irradiation time dependence of the speciation of iron in solutions, four model solutions of different pH values (1.5, 3.3, 5.5, and 7.0) with Fe to citrate molar ratio 1:1.1 were exposed to light. Highly acidic conditions led to a complete reduction of Fe together with the formation of FeII citrate and hexaaqua complexes in equal concentration. At higher pH, the only product of the photodegradation was FeII citrate, which was later reoxidized and polymerized, resulting in the formation of polynuclear stable ferric compound. To test biological relevance, leaves of cabbage were treated with FeIII citrate solution. X-ray fluorescence imaging indicated the accumulation of Fe in the treated leaf parts. Mössbauer analysis revealed the presence of several ferric species incorporated into the biological structure. The Fe speciation observed should be considered in biological systems where FeIII citrate has a ubiquitous role in Fe acquisition and homeostasis.
Collapse
Affiliation(s)
- Maria Gracheva
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary.
- Hevesy György Doctoral School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary.
| | - Zoltán Homonnay
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary
| | - Amarjeet Singh
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/C, Budapest, 1117, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/C, Budapest, 1117, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/C, Budapest, 1117, Hungary
| | - Vanda B Marosi
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/C, Budapest, 1117, Hungary
| | - Krisztina Kovács
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary
| |
Collapse
|
12
|
Kamnev AA, Tugarova AV. Bioanalytical applications of Mössbauer spectroscopy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Data on the applications of Mössbauer spectroscopy in the transmission (mainly on 57Fe nuclei) and emission (on 57Co nuclei) variants for analytical studies at the molecular level of metal-containing components in a wide range of biological objects (from biocomplexes and biomacromolecules to supramolecular structures, cells, tissues and organisms) and of objects that are participants or products of biological processes, published in the last 15 years are discussed and systematized. The prospects of the technique in its biological applications, including the developing fields (emission variant, use of synchrotron radiation), are formulated.
The bibliography includes 248 references.
Collapse
|
13
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
14
|
Sági-Kazár M, Zelenyánszki H, Müller B, Cseh B, Gyuris B, Farkas SZ, Fodor F, Tóth B, Kovács B, Koncz A, Visnovitz T, Buzás EI, Bánkúti B, Bánáti F, Szenthe K, Solti Á. Supraoptimal Iron Nutrition of Brassica napus Plants Suppresses the Iron Uptake of Chloroplasts by Down-Regulating Chloroplast Ferric Chelate Reductase. FRONTIERS IN PLANT SCIENCE 2021; 12:658987. [PMID: 34093616 PMCID: PMC8172622 DOI: 10.3389/fpls.2021.658987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 05/31/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Helga Zelenyánszki
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Gyuris
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sophie Z. Farkas
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Tóth
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Anna Koncz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I. Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Barbara Bánkúti
- RT-Europe Non-profit Research Ltd., Mosonmagyaróvár, Hungary
| | - Ferenc Bánáti
- RT-Europe Non-profit Research Ltd., Mosonmagyaróvár, Hungary
| | - Kálmán Szenthe
- Carlsbad Research Organization Center Ltd., Újrónafõ, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
15
|
Schmidt SB, Eisenhut M, Schneider A. Chloroplast Transition Metal Regulation for Efficient Photosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:817-828. [PMID: 32673582 DOI: 10.1016/j.tplants.2020.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 05/24/2023]
Abstract
Plants require sunlight, water, CO2, and essential nutrients to drive photosynthesis and fulfill their life cycle. The photosynthetic apparatus resides in chloroplasts and fundamentally relies on transition metals as catalysts and cofactors. Accordingly, chloroplasts are particularly rich in iron (Fe), manganese (Mn), and copper (Cu). Owing to their redox properties, those metals need to be carefully balanced within the cell. However, the regulation of transition metal homeostasis in chloroplasts is poorly understood. With the availability of the arabidopsis genome information and membrane protein databases, a wider catalogue for searching chloroplast metal transporters has considerably advanced the study of transition metal regulation. This review provides an updated overview of the chloroplast transition metal requirements and the transporters involved for efficient photosynthesis in higher plants.
Collapse
Affiliation(s)
- Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Marion Eisenhut
- Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
16
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
17
|
Pham HD, Pólya S, Müller B, Szenthe K, Sági-Kazár M, Bánkúti B, Bánáti F, Sárvári É, Fodor F, Tamás L, Philippar K, Solti Á. The developmental and iron nutritional pattern of PIC1 and NiCo does not support their interdependent and exclusive collaboration in chloroplast iron transport in Brassica napus. PLANTA 2020; 251:96. [PMID: 32297017 PMCID: PMC7214486 DOI: 10.1007/s00425-020-03388-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/04/2020] [Indexed: 05/05/2023]
Abstract
The accumulation of NiCo following the termination of the accumulation of iron in chloroplast suggests that NiCo is not solely involved in iron uptake processes of chloroplasts. Chloroplast iron (Fe) uptake is thought to be operated by a complex containing permease in chloroplast 1 (PIC1) and nickel-cobalt transporter (NiCo) proteins, whereas the role of other Fe homeostasis-related transporters such as multiple antibiotic resistance protein 1 (MAR1) is less characterized. Although pieces of information exist on the regulation of chloroplast Fe uptake, including the effect of plant Fe homeostasis, the whole system has not been revealed in detail yet. Thus, we aimed to follow leaf development-scale changes in the chloroplast Fe uptake components PIC1, NiCo and MAR1 under deficient, optimal and supraoptimal Fe nutrition using Brassica napus as model. Fe deficiency decreased both the photosynthetic activity and the Fe content of plastids. Supraoptimal Fe nutrition caused neither Fe accumulation in chloroplasts nor any toxic effects, thus only fully saturated the need for Fe in the leaves. In parallel with the increasing Fe supply of plants and ageing of the leaves, the expression of BnPIC1 was tendentiously repressed. Though transcript and protein amount of BnNiCo tendentiously increased during leaf development, it was even markedly upregulated in ageing leaves. The relative transcript amount of BnMAR1 increased mainly in ageing leaves facing Fe deficiency. Taken together chloroplast physiology, Fe content and transcript amount data, the exclusive participation of NiCo in the chloroplast Fe uptake is not supported. Saturation of the Fe requirement of chloroplasts seems to be linked to the delay of decomposing the photosynthetic apparatus and keeping chloroplast Fe homeostasis in a rather constant status together with a supressed Fe uptake machinery.
Collapse
Affiliation(s)
- Hong Diep Pham
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sára Pólya
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kálmán Szenthe
- RT-Europe Nonprofit Research Ltd., Mosonmagyaróvár, Hungary
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Ferenc Bánáti
- RT-Europe Nonprofit Research Ltd., Mosonmagyaróvár, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - László Tamás
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katrin Philippar
- Center for Human - and Molecular Biology, Plant Biology, Saarland University, Saarbrücken, Germany
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
18
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|