1
|
Liu X, Gilbert RG. Normal and abnormal glycogen structure - A review. Carbohydr Polym 2024; 338:122195. [PMID: 38763710 DOI: 10.1016/j.carbpol.2024.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Glycogen, a complex branched glucose polymer, is found in animals and bacteria, where it serves as an energy storage molecule. It has linear (1 → 4)-α glycosidic bonds between anhydroglucose monomer units, with branch points connected by (1 → 6)-α bonds. Individual glycogen molecules are referred to as β particles. In organs like the liver and heart, these β particles can bind into larger aggregate α particles, which exhibit a rosette-like morphology. The mechanisms and bonding underlying the aggregation process are not fully understood. For example, mammalian liver glycogen has been observed to be molecularly fragile under certain conditions, such as glycogen from diabetic livers fragmenting when exposed to dimethyl sulfoxide (DMSO), while glycogen from healthy livers is much less fragile; this indicates some difference, as yet unknown, in the bonding between β particles in healthy and diabetic glycogen. This fragility may have implications for blood sugar regulation, especially in pathological conditions such as diabetes.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory, and Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory, and Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
2
|
Liu H, Zou Y, Xuan Q, Tian R, Zhu J, Qu X, Sun M, Liu Y, Tang H, Deng M, Jiang Q, Xu Q, Peng Y, Chen G, Li W, Pu Z, Jiang Y, Wang J, Qi P, Zhang Y, Zheng Y, Wei Y, Ma J. Loss of ADP-glucose transporter in barley sex1 mutant caused shrunken endosperm but with elevated protein and β-glucan content in whole meal. Int J Biol Macromol 2023; 251:126365. [PMID: 37591421 DOI: 10.1016/j.ijbiomac.2023.126365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Grain shape and plumpness affect barley yield. Despite numerous studies on shrunken endosperm mutants in barley, their molecular mechanism and application potential in the food industry are largely unknown. Here, map-based cloning, co-segregation analyses, and allelic variant validation revealed that the loss of HORVU6Hr1G037950 encoding an ADP-glucose transporter caused the shrunken endosperm in sex1. Haplotype analysis suggested that hap4 in the promoter sequence was positively related to the hundred-grain weight showing a breeding potential. A pair of near-isogenic lines targeting HORVU6Hr1G037950 was produced and characterized to investigate molecular mechanisms that SEX1 regulates endosperm development. Results presented that the absence of the SEX1 gene led to the decrease of starch content and A-type granules size, the increase of β-glucan, protein, gelatinization temperature, soluble sugar content, amylopectin A chains, and B1 chains. Enzymatic activity, transcriptome and metabolome analyses revealed the loss of SEX1 results in an impaired ADP-glucose-to-starch conversion process, consequently leading to higher soluble sugar contents and lower starch accumulation, thereby inducing a shrunken-endosperm phenotype in sex1. Taken together, this study provides new insights into barley grain development, and the elevated protein and β-glucan contents of the whole meal in sex1 imply its promising application in the food industry.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaya Zou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; Yan'an Academy of Agricultural Sciences, Yan'an, China
| | - Qijing Xuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Rong Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Min Sun
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfi Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Shi Y, Ye F, Zhu Y, Miao M. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chem 2022; 385:132626. [PMID: 35305435 DOI: 10.1016/j.foodchem.2022.132626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023]
Abstract
The impact of sugary maize dendrimer-like glucan octenyl succinate (OSA-SMDG) on the storage stability and antioxidant activity of β-carotene (BC)-loaded emulsions as well as bioaccessibility were investigated. The encapsulation efficiency of β-carotene in emulsions containing 3% OSA-SMDG (3OSA-SMDG-BC) or 5% OSA-SMDG (5OSA-SMDG-BC) was 89.6% and 94.9%, respectively. The antioxidant activity of both emulsions was higher than that of pure β-carotene. During simulated digestion, the particle size of emulsions was immediately reduced, whereas zeta-potential was continuously increased in intestinal digestion. After 2 h digestion, the free fatty acids (FFA) release rate of 3OSA-SMDG-BC and 5OSA-SMDG-BC was significantly higher than that of blank emulsion. Bioaccessibility of β-carotene encapsulated in 3OSA-SMDG-BC and 5OSA-SMDG-BC was also significantly higher than that of blank emulsion. FFA release rate and β-carotene bioaccessibility of 5OSA-SMDG-BC were higher than that of 3OSA-SMDG-BC. These results demonstrated that OSA-SMDG could be used to fabricate food-grade O/W Pickering emulsion as a delivery system for bioactive compounds.
Collapse
Affiliation(s)
- Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yingjie Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
5
|
Igarashi H, Ito H, Shimada T, Kang DJ, Hamada S. A novel rice dull gene, LowAC1, encodes an RNA recognition motif protein affecting Waxy b pre-mRNA splicing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:100-109. [PMID: 33667963 DOI: 10.1016/j.plaphy.2021.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 05/18/2023]
Abstract
A new dull grain rice mutant with low amylose content, designated lowac1, has been isolated and characterized. To identify the causal mutation site, resequencing of the whole genome and analysis of a cleaved amplified polymorphic sequence (CAPS) marker were performed. Genotypes using the CAPS marker of the identified LowAC1 gene encoding an RNA recognition motif (RRM) protein were entirely consistent with low amylose phenotypes in BC1F2 progeny. Moreover, the segregation of BC1F2 population indicated that the low amylose phenotype was controlled by a single recessive gene. lowac1 involves a single-nucleotide polymorphism from G to A within the gene, resulting in the stop codon generation. The RRM protein deletion in the mutant seed specifically affected the splicing efficiency of Waxyb (Wxb) in the 5' splice site of intron 1, resulting in decreased protein levels of granule-bound starch synthase I (GBSSI) encoded by Wxb. Whereas, the RRM protein did not affect amylose content in Wxa of indica variety. Also, the mutation induced a little variation in the expression levels of some genes involved in starch biosynthesis. Particularly, expression levels of SBEIIb, PUL, and AGPL2 mRNAs in lowac1 mutant were approximately two times higher compared to the corresponding wild type (WT) genes. Aside from low amylose content, lowac1 seeds included an amylopectin structure reducing short chains compared to that of WT seeds. Overall, our data suggest that LowAC1 is a novel regulatory factor for starch synthesis in rice.
Collapse
Affiliation(s)
- Hidenari Igarashi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hiroyuki Ito
- Department of Chemical and Biological Engineering, National Institute of Technology, Akita College, 1-1 Iijima-Bunkyo-cho, Akita, 011-8511, Japan
| | - Toru Shimada
- Faculty of Education, Hirosaki University, 1 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Dong-Jin Kang
- Teaching and Research Center for Bio-coexistence, Faculty of Agriculture and Life Science, Hirosaki University, Gosyogawara, Aomori, 037-0202, Japan
| | - Shigeki Hamada
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|