1
|
Feng L, Hu L, Bo J, Ji M, Ze S, Ding Y, Yang B, Zhao N. Identification and Biological Characteristics of Alternaria gossypina as a Promising Biocontrol Agent for the Control of Mikania micrantha. J Fungi (Basel) 2024; 10:691. [PMID: 39452643 PMCID: PMC11508739 DOI: 10.3390/jof10100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Mikania micrantha is one of the most threatening invasive plant species in the world. Its invasion has greatly reduced the species diversity of the invaded areas. The development of fungal herbicides using phytopathogenic fungi has attracted considerable attention in recent years. In this study, a tissue isolation method was used to isolate and screen the strain SWFU-MM002 with strong pathogenicity to M. micrantha leaves from naturally occurring M. micrantha. Through morphological observation, ITS, GAPDH, and Alta-1 gene sequence homology, we compare and construct a phylogenetic tree to determine their taxonomic status. In addition, the biological characteristics of strain SWFU-MM002 were studied. The results showed that, combined with morphological and molecular biology identification, the strain was identified as Alternaria gossypina; biological characteristic research showed that the optimal medium for the growth of mycelium of this strain is PDA medium. At the optimal temperature of 27 °C and pH between 6 and 10, the mycelium can grow well. The best carbon and nitrogen sources are maltose and peptone, respectively. Analysing the infection process under a light microscope showed that SWFU-MM002 mycelia invaded the leaf tissue through stomata and colonized, eventually causing damage to the host. This is the first report of leaf spot of M. micrantha caused by A. gossypina. This study can lay a solid foundation for the development of A. gossypina as a control agent for M. micrantha.
Collapse
Affiliation(s)
- Lichen Feng
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (L.F.); (J.B.); (Y.D.)
| | - Lianrong Hu
- Yunnan Academy of Forestry and Grassland, Kunming 650224, China; (L.H.); (M.J.)
| | - Jingyi Bo
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (L.F.); (J.B.); (Y.D.)
| | - Mei Ji
- Yunnan Academy of Forestry and Grassland, Kunming 650224, China; (L.H.); (M.J.)
| | - Sangzi Ze
- Yunnan Forestry and Grassland Pest Control and Quarantine Bureau, Kunming 650051, China;
| | - Yan’e Ding
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (L.F.); (J.B.); (Y.D.)
| | - Bin Yang
- School of Biological and Chemical Science, Pu’er University, Pu’er 665000, China
| | - Ning Zhao
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China; (L.F.); (J.B.); (Y.D.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
2
|
Ratnadass A, Llandres AL, Goebel FR, Husson O, Jean J, Napoli A, Sester M, Joseph S. Potential of silicon-rich biochar (Sichar) amendment to control crop pests and pathogens in agroecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168545. [PMID: 37984651 DOI: 10.1016/j.scitotenv.2023.168545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
We reviewed the potential of silicon (Si)-rich biochars (sichars) as crop amendments for pest and pathogen control. The main pathosystems that emerged from our systematic literature search were bacterial wilt on solanaceous crops (mainly tomato, pepper, tobacco and eggplant), piercing-sucking hemipteran pests and soil-borne fungi on gramineous crops (mainly rice and wheat), and parasitic nematodes on other crops. The major pest and pathogen mitigation pathways identified were: i) Si-based physical barriers; ii) Induction of plant defenses; iii) Enhancement of plant-beneficial/pathogen-antagonistic soil microflora in the case of root nematodes; iv) Alteration of soil physical-chemical properties resulting in Eh-pH conditions unfavorable to root nematodes; v) Alteration of soil physical-chemical properties resulting in Eh-pH, bulk density and/or water holding capacity favorable to plant growth and resulting tolerance to necrotrophic pathogens; vi) Increased Si uptake resulting in reduced plant quality, owing to reduced nitrogen intake towards some hemi-biotrophic pests or pathogens. Our review highlighted synergies between pathways and tradeoffs between others, depending, inter alia, on: i) crop type (notably whether Si-accumulating or not); ii) pest/pathogen type (e.g. below-ground/root-damaging vs above-ground/aerial part-damaging; "biotrophic" vs "necrotrophic" sensu lato, and corresponding systemic resistance pathways; thriving Eh-pH spectrum; etc.); iii) soil type. Our review also stressed the need for further research on: i) the contribution of Si and other physical-chemical characteristics of biochars (including potential antagonistic effects); ii) the pyrolysis process to a) optimize Si availability in the soil and its uptake by the crop and b) to minimize formation of harmful compounds e.g. cristobalite; iii) on the optimal form of biochar, e.g. Si-nano particles on the surface of the biochar, micron-sized biochar-based compound fertilizer vs larger biochar porous matrices.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR AIDA, 97410 Saint-Pierre, Réunion, France; AIDA, Univ Montpellier, CIRAD, Montpellier, France.
| | - Ana L Llandres
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, Institut de Recherche Coton (IRC), Cotonou, Benin; CIRAD, UPR AIDA, International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| | - François-Régis Goebel
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Olivier Husson
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Janine Jean
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Alfredo Napoli
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Mathilde Sester
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR Aïda, Phnom Penh, Cambodia; Institut Technologique du Cambodge, Phnom Penh, Cambodia
| | - Stephen Joseph
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; School of Materials Science and Engineering, University of NSW, Sydney, NSW 2052, Australia; Institute for Superconducting and Electronic Materials, School of Physics, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
3
|
Zhang Y, Fan Y, Dai Y, Jia Q, Guo Y, Wang P, Shen T, Wang Y, Liu F, Guo W, Wu A, Jiao Z, Wang C. Crude Lipopeptides Produced by Bacillus amyloliquefaciens Could Control the Growth of Alternaria alternata and Production of Alternaria Toxins in Processing Tomato. Toxins (Basel) 2024; 16:65. [PMID: 38393143 PMCID: PMC10892701 DOI: 10.3390/toxins16020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Alternaria spp. and its toxins are the main contaminants in processing tomato. Based on our earlier research, the current study looked into the anti-fungal capacity of crude lipopeptides from B. amyloliquefaciens XJ-BV2007 against A. alternata. We found that the crude lipopeptides significantly inhibited A. alternata growth and reduced tomato black spot disease incidence. SEM analysis found that the crude lipopeptides could change the morphology of mycelium and spores of A. alternata. Four main Alternaria toxins were detected using UPLC-MS/MS, and the findings demonstrated that the crude lipopeptides could lessen the accumulation of Alternaria toxins in vivo and in vitro. Meanwhile, under the stress of crude lipopeptides, the expression of critical biosynthetic genes responsible for TeA, AOH, and AME was substantially down-regulated. The inhibitory mechanism of the crude lipopeptides was demonstrated to be the disruption of the mycelial structure of A. alternata, as well as the integrity and permeability of the membrane of A. alternata sporocytes. Taken together, crude lipopeptides extracted from B. amyloliquefaciens XJ-BV2007 are an effective biological agent for controlling tomato black spot disease and Alternaria toxins contamination.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Yingying Fan
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Yingying Dai
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830049, China
| | - Qinlan Jia
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Ying Guo
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
| | - Peicheng Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (P.W.); (T.S.)
| | - Tingting Shen
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (P.W.); (T.S.)
| | - Yan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Fengjuan Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Wanhui Guo
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Ziwei Jiao
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
| | - Cheng Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| |
Collapse
|
4
|
Haghighi TM, Saharkhiz MJ, Ramezanian A, Zarei M. The use of silicon and mycorrhizal fungi to mitigate changes in licorice leaf micromorphology, chlorophyll fluorescence, and rutin content under water-deficit conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107662. [PMID: 36989994 DOI: 10.1016/j.plaphy.2023.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
In this study, the effects of water-deficit conditions, silicon (Si) fertilizer (300 ppm), and arbuscular mycorrhizal (AM) inoculation by Claroiedoglomus etunicatum were evaluated on several features of licorice (Glycyrrhiza glabra L.). The measurable features were photosynthetic parameters, rutin content in aerial parts, and leaf micromorphology. Drought was administered at five levels determined by the percentage of field capacity (FC), i.e. 100, 80, 60, 40, and 20% of FC. Leaf extracts were utilized for measuring rutin content (via HPLC), and photosynthetic pigments; measurement of stomatal density, and trichome analysis were performed by scanning electron microscopy (SEM). Under severe drought stress, leaf area decreased by 50.84%, compared to well-irrigated plants. A significant decrease in leaf numbers (32.52%) was observed because of deficit irrigation. AM and Si improved chlorophyll fluorescence, which corresponded to the maximum efficiency of photosystem II. Rutin content decreased significantly under deficit irrigation. Also, the integration of AM and Si treatments positively affected rutin quantity under various irrigation regimes. Under moderate stress (60% FC), using AM and/or Si treatments reduced the stomatal length by 61.22 and 52.98%, respectively. Interestingly, a significant reduction in stomatal density towards control was observed as a result of the integrated treatments of Si and AM (58.28% at W20 and 59.82% at W100), which helped plants reduce water loss when facing drought stress. Principal component analysis (PCA) showed that photosynthetic pigments, chlorophyll fluorescence, and rutin changed quantitatively under moderate drought stress, while more variations were observed in leaf epidermal micromorphology under severe drought stress. These findings revealed that Si and AM, by exogenous application, synergistically mitigated the effects of drought stress on licorice.
Collapse
Affiliation(s)
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz, Iran; Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, 73819-43885, Eghlid, Iran
| |
Collapse
|