1
|
Casanovas M, Claveria E, Dolcet-Sanjuan R. Development of a Feasible and Efficient In Vitro Rescue Protocol for Immature Prunus spp. Embryos. PLANTS (BASEL, SWITZERLAND) 2024; 13:2953. [PMID: 39519872 PMCID: PMC11547775 DOI: 10.3390/plants13212953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The major factors affecting the in vitro immature embryo rescue efficiencies from Prunus persica or P. armeniaca accessions have been identified, along with improving the feasibility. Variations in the woody plant medium (WPM) were used depending on the embryo size. Embryos less than 5 mm long were cultured in WPM supplemented with 1 μM BAP and 1 μM GA3, while embryos bigger than 5 mm long were cultured in hormone-free medium, with or without vermiculite. The environmental in vitro culture conditions consisted of three phases: a (I) stratification at 4 °C during a 3- to 5-month-long period in the dark, followed by (II) growth of germinated embryos at 14 °C for a 4-week-long period, with 12 h light a day, which favors plantlet development, and finally, (III) growth at 24 °C, with 16 h light a day, until the plantlets were acclimatized in the greenhouse. The germination of smaller embryos, at the end of phase I, ranged from 82.2% to 22.1% for apricots and flat peaches, respectively, whereas for bigger embryos, the germination varied from 97.3% to 53.2% for the same species. The embryo germination for peaches and nectarines ranged from 40.1% to 30.3% for smaller embryos, and from 91.9% to 63.0% for bigger embryos. Endo- and epiphytic contamination, affecting from 7.4% to 52.9% of cultured embryos, depending on the fruit type and conservation conditions, and the capacity to acclimate to soil conditions, ranging from 50.4% to 93.2%, were the two most important factors influencing the protocol's efficiency and feasibility. Considering the overall efficiencies, expressed as hardened plants transferred to field plots over clean uncontaminated embryo, the values ranged from 55.8% for nectarines, 54.0% for peaches, 45.6% for apricots, and 23.3% for flat fruits. The addition of vermiculite to the culture medium significantly improved the plantlet development, avoiding subculture to fresh medium when an extension of phase III was required before acclimatization. Compared to laboratory glassware, the use of food glass containers with air-permeable sealing film, along with vermiculite-containing medium, significantly reduced the costs when handling the large number of embryos required for breeding programs.
Collapse
Affiliation(s)
- Maria Casanovas
- IRTA, Fruitcentre, Plant In Vitro Culture Laboratory, Fruticulture Program, Parc AgroBiotech, 25003 Lleida, Spain
| | - Elisabet Claveria
- IRTA, Torre Marimon, Serveis Corporatius de Proximitat, Caldes de Montbui, 08140 Barcelona, Spain
| | - Ramon Dolcet-Sanjuan
- IRTA, Fruitcentre, Plant In Vitro Culture Laboratory, Fruticulture Program, Parc AgroBiotech, 25003 Lleida, Spain
| |
Collapse
|
2
|
Rivera-Hernández G, Tijerina-Castro GD, Cortés-Pérez S, Ferrera-Cerrato R, Alarcón A. Evaluation of functional plant growth-promoting activities of culturable rhizobacteria associated to tunicate maize ( Zea mays var. tunicata A. St. Hil), a Mexican exotic landrace grown in traditional agroecosystems. Front Microbiol 2024; 15:1478807. [PMID: 39417083 PMCID: PMC11480017 DOI: 10.3389/fmicb.2024.1478807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Tunicate maize (Zea mays var. tunicata A. St. Hil) is a landrace that constitutes a fundamental aspect of the socio-cultural identity of Ixtenco, Tlaxcala (Mexico) and represents an exotic phenotype whose kernels are enclosed in leaflike glumes. Despite multiple studies conducted worldwide on plant growth-promoting-rhizobacteria (PGPR) in commercial maize varieties grown under monoculture systems, very little is known about bacteria inhabiting native maize landraces in agroecosystems, but for tunicate maize such knowledge is non-existent. This research described and profiled functional groups of culturable rhizobacteria from tunicate maize at two phenological stages (tasseling and maturity/senescence) in a polyculture system, highlighting potential PGPR for biotechnological purposes. Ninety-five rhizobacteria were isolated and molecularly identified, and their physiological activities such as plant growth promotion, production of exogenous lytic enzymes, and antagonism against fungal pathogens were determined. The culturable rhizobacterial community associated to tunicate maize comprised 42 genera, dominated by Bacillaceae, Comamonadaceae, Microbacteriaceae, Micrococcaceae, Oxalobacteraceae, Pseudomonadaceae, and Rhizobaceae families. At tasseling stage, the identified bacteria corresponded to Arthrobacter, Priestia, Herbaspirillum, Pseudomonas, and Rhizobium, and exhibited redundant capabilities for stimulating plant growth and nutrition, and inhibiting fungal phytopathogens. At maturity/senescence stage, the main genera Arthrobacter and Microbacterium displayed lytic capabilities to support mineralization process. We recorded potential novel rhizosphere functional bacteria such as Rhizobium, Sphingobium, and Arthrobacter which are not previously described associated to maize landraces, as well as their bioprospection as PGPR detected at plant phenological stages poorly explored (like maturity/senescence). This taxonomic and functional diversity was attributed to the application of agricultural practices as well as the rhizosphere effect during specific phenological stages. Results described the diversity and functionality of culturable rhizosphere bacteria from tunicate maize in polyculture systems that allowed us the detection of potential rhizobacteria for further developing of biofertilizers and biocontrollers directed as biotechnology for sustainable agriculture, and for generating strategies for conservation of native plants and their microbial genetic resources.
Collapse
|
3
|
López A, van Kan JAL, Beenen HG, Dolcet-Sanjuan R, Teixidó N, Torres R, Vilanova L. Evaluation of cell death-inducing activity of Monilinia spp. effectors in several plants using a modified TRV expression system. FRONTIERS IN PLANT SCIENCE 2024; 15:1428613. [PMID: 39220017 PMCID: PMC11362074 DOI: 10.3389/fpls.2024.1428613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Introduction Brown rot is the most important fungal disease affecting stone fruit and it is mainly caused by Monilinia fructicola, M. laxa and M. fructigena. Monilinia spp. are necrotrophic plant pathogens with the ability to induce plant cell death by the secretion of different phytotoxic molecules, including proteins or metabolites that are collectively referred to as necrotrophic effectors (NEs). Methods We exploited the genomes of M. fructicola, M. laxa and M. fructigena to identify their common group of secreted effector proteins and tested the ability of a selected set of effectors to induce cell death in Nicotiana benthamiana, Solanum lycopersicum and Prunus spp. leaves. Results Fourteen candidate effector genes of M. fructicola, which displayed high expression during infection, were transiently expressed in plants by agroinfiltration using a modified Tobacco Rattle Virus (TRV)-based expression system. Some, but not all, effectors triggered leaf discoloration or cell death in N. benthamiana and S. lycopersicum, which are non-hosts for Monilinia and in Prunus spp., which are the natural hosts. The effector MFRU_030g00190 induced cell death in almost all Prunus genotypes tested, but not in the Solanaceous plants, while MFRU_014g02060, which is an ortholog to BcNep1, caused necrosis in all plant species tested. Conclusion This method provides opportunities for screening Prunus germplasm with Monilinia effector proteins, to serve as a tool for identifying genetic loci that confer susceptibility to brown rot disease.
Collapse
Affiliation(s)
- Anselmo López
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Henriek G. Beenen
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Ramon Dolcet-Sanjuan
- IRTA, Plant In Vitro Culture Laboratory, Fruticulture Program, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - Laura Vilanova
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
Tang J, Han Y, Pei L, Gu W, Qiu R, Wang S, Ma Q, Gan Y, Tang M. Comparative analysis of the rhizosphere microbiome and medicinally active ingredients of Atractylodes lancea from different geographical origins. Open Life Sci 2023; 18:20220769. [PMID: 38027226 PMCID: PMC10668115 DOI: 10.1515/biol-2022-0769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to explore the important role of the rhizosphere microbiome in the quality of Atractylodes lancea (Thunb.) DC. (A. lancea). The rhizosphere microbial community of A. lancea at two sampling sites was studied using metagenomic technology. The results of α-diversity analysis showed that the rhizosphere microbial richness and diversity were higher in the Maoshan area. The higher abundance of core microorganisms of the rhizosphere, especially Penicillium and Streptomyces, in the Maoshan area compared with those in the Yingshan area might be an important factor affecting the yield of A. lancea. Redundancy analysis illustrated that the available phosphorus had a significant effect on the rhizosphere microbial community structure of A. lancea. We also showed that the plant-microbe and microbe-microbe interactions were closer in the Maoshan area than in the Yingshan area, and Streptomyces were the main contributors to the potential functional difference between the two regions. A. lancea in the Maoshan area had a high content of atractylodin and atractylon, which might be related to the enhanced abundance of Streptomyces, Candidatus-Solibacter, and Frankia. Taken together, this study provided theoretical insights into the interaction between medicinal plants and the rhizosphere microbiome and provides a valuable reference for studying beneficial microbes of A. lancea.
Collapse
Affiliation(s)
- Junjie Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Yun Han
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215002, China
| | - Lingfeng Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,
Nanjing, 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs, Beijng, 100700, China
| | - Qihan Ma
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215002, China
| | - Yifu Gan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Min Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| |
Collapse
|
5
|
Cantabella D, Karpinska B, Teixidó N, Dolcet-Sanjuan R, Foyer CH. Non-volatile signals and redox mechanisms are required for the responses of Arabidopsis roots to Pseudomonas oryzihabitans. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6971-6982. [PMID: 36001048 DOI: 10.1093/jxb/erac346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Soil bacteria promote plant growth and protect against environmental stresses, but the mechanisms involved remain poorly characterized, particularly when there is no direct contact between the roots and bacteria. Here, we explored the effects of Pseudomonas oryzihabitans PGP01 on the root system architecture (RSA) in Arabidopsis thaliana seedlings. Significant increases in lateral root (LR) density were observed when seedlings were grown in the presence of P. oryzihabitans, as well as an increased abundance of transcripts associated with altered nutrient transport and phytohormone responses. However, no bacterial transcripts were detected on the root samples by RNAseq analysis, demonstrating that the bacteria do not colonize the roots. Separating the agar containing bacteria from the seedlings prevented the bacteria-induced changes in RSA. Bacteria-induced changes in RSA were absent from mutants defective in ethylene response factor (ERF109), glutathione synthesis (pad2-1, cad2-1, and rax1-1) and in strigolactone synthesis (max3-9 and max4-1) or signalling (max2-3). However, the P. oryzihabitans-induced changes in RSA were similar in the low ascorbate mutants (vtc2-1and vtc2-2) to the wild-type controls. Taken together, these results demonstrate the importance of non-volatile signals and redox mechanisms in the root architecture regulation that occurs following long-distance perception of P. oryzihabitans.
Collapse
Affiliation(s)
- Daniel Cantabella
- Institute of Research and Agrofood technology (IRTA) Postharvest Program, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
- IRTA, Plant In Vitro Culture Laboratory, Fruticulture Program, Barcelona, Spain
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Barbara Karpinska
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Neus Teixidó
- Institute of Research and Agrofood technology (IRTA) Postharvest Program, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | | | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Borzęcka J, Suchodolski J, Dudek B, Matyaszczyk L, Spychała K, Ogórek R. The First Comprehensive Biodiversity Study of Culturable Fungal Communities Inhabiting Cryoconite Holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic). BIOLOGY 2022; 11:1224. [PMID: 36009851 PMCID: PMC9405543 DOI: 10.3390/biology11081224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Cryoconite holes on glacier surfaces are a source of cold-adapted microorganisms, but little is known about their fungal inhabitants. Here, we provide the first report of distinctive fungal communities in cryoconite holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic). Due to a combination of two incubation temperatures (7 °C and 24 ± 0.5 °C) and two media during isolation (PDA, YPG), as well as classical and molecular identification approaches, we were able to identify 23 different fungi (21 species and 2 unassigned species). Most of the fungi cultured from cryoconite sediment were ascomycetous filamentous micromycetes. However, four representatives of macromycetes were also identified (Bjerkandera adusta, Holwaya mucida, Orbiliaceae sp., and Trametes versicolor). Some of the described fungi possess biotechnological potential (Aspergillus pseudoglaucus, A. sydowii, Penicillium expansum, P. velutinum, B. adusta, and T. versicolor), thus, we propose the Arctic region as a source of new strains for industrial applications. In addition, two phytopathogenic representatives were present (P. sumatraense, Botrytis cinerea), as well as one potentially harmful to humans (Cladosporium cladosporioides). To the best of our knowledge, we are the first to report the occurrence of A. pseudoglaucus, C. allicinum, C. ramotenellum, P. sumatraense, P. velutinum, P. cumulodentata, B. adusta, and T. versicolor in polar regions. In all likelihood, two unassigned fungus species (Orbiliaceae and Dothideomycetes spp.) might also be newly described in such environments. Additionally, due to experimenting with 10 sampling sites located at different latitudes, we were able to conclude that the number of fungal spores decreases as one moves down the glacier. Considering the prevalence and endangerment of glacial environments worldwide, such findings suggest their potential as reservoirs of fungal diversity, which should not be overlooked.
Collapse
Affiliation(s)
- Justyna Borzęcka
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Jakub Suchodolski
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Lena Matyaszczyk
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Klaudyna Spychała
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| |
Collapse
|
7
|
Wei C, Gu W, Tian R, Xu F, Han Y, Ji Y, Li T, Zhu Y, Lang P, Wu W. Comparative analysis of the structure and function of rhizosphere microbiome of the Chinese medicinal herb Alisma in different regions. Arch Microbiol 2022; 204:448. [PMID: 35778624 DOI: 10.1007/s00203-022-03084-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Rhizoma Alismatis, a commonly used traditional Chinese medicine, is the dried tuber of Alisma orientale and Alisma A. plantago-aquatica, mainly cultivated in Fujian and Sichuan provinces (China), respectively. Studies have shown that the rhizosphere microbiome is a key factor determining quality of Chinese medicinal plants. Here we applied metagenomics to investigate the rhizosphere microbiome of Alisma in Fujian and Sichuan, focusing on its structure and function and those genes involved in protostane triterpenes biosynthesis. The dominant phyla were Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes. Compared with Fujian, the rhizosphere of Sichuan has a greater α diversity and stronger microbial interactions but significantly lower relative abundance of archaea. Microbes with disease-suppressing functions were more abundant in Sichuan than Fujian, but vice versa for those with IAA-producing functions. Gemmatimonas, Anaeromyxobacter, and Pseudolabrys were the main contributors to the potential functional difference in two regions. Genes related to protostane triterpenes biosynthesis were enriched in Fujian. Steroidobacter, Pseudolabrys, Nevskia, and Nitrospira may contribute to the accumulation of protostane triterpenes in Alisma. This work fills a knowledge gap of Alisma's rhizosphere microbiome, providing a valuable reference for studying its beneficial microorganisms.
Collapse
Affiliation(s)
- Chenbin Wei
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Wei Gu
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rong Tian
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Fei Xu
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Yun Han
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine: Suzhou Hospital of Traditional Chinese Medicine, Suzhou, 215007, China
| | - Yuanyuan Ji
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Tao Li
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Yu Zhu
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Peilei Lang
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Wenqing Wu
- Nanjing University of Chinese Medicine School of Pharmacy, 138 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
8
|
Cantabella D, Dolcet-Sanjuan R, Teixidó N. Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions. PLANTA 2022; 255:117. [PMID: 35513731 DOI: 10.1007/s00425-022-03897-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The use of beneficial microorganisms improves the performance of in vitro - cultured plants through the improvement of plant nutrition, the biological control of microbial pathogens or the production of phytohormones that promote plant growth and development. Plant in vitro culture techniques are highly useful to obtain significant amounts of true-to-type and disease-free plant materials. One of these techniques is clonal micropropagation which consists on the establishment of shoot tip cultures, shoot multiplication, in vitro rooting and acclimatization to ex vitro conditions. However, in some cases, the existence of recalcitrant genotypes, with a compromised multiplication and rooting ability, or the difficulties to overcome the overgrowth of endophytic contaminations might seriously limit its efficiency. In this sense, the establishment of beneficial interactions between plants and plant growth-promoting microorganisms (PGPMs) under in vitro culture conditions might represent a valuable approach to efficiently solve those restrictions. During the last years, significant evidence reporting the use of beneficial microorganisms to improve the yield of in vitro multiplication or rooting as well as their acclimatization to greenhouse or soil conditions have been provided. Most of these positive effects are strongly linked to the ability of these microorganisms to provide in vitro plants with nutrients such as nitrogen or phosphorous, to produce plant growth regulators, to control the growth of pathogens or to mitigate stress conditions. The culture of A. thaliana under aseptic conditions has provided high-quality knowledge on the root development signaling pathways, involving hormones, triggered in the presence of PGPMs. Overall, the present article offers a brief overview of the use of microorganisms to improve in vitro plant performance during the in vitro micropropagation stages, as well as the main mechanisms of plant growth promotion associated with these microorganisms.
Collapse
Affiliation(s)
- Daniel Cantabella
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Lleida, Catalonia, Spain
- Postharvest Programme, IRTA Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
| | - Ramon Dolcet-Sanjuan
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Lleida, Catalonia, Spain
| | - Neus Teixidó
- Postharvest Programme, IRTA Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain.
| |
Collapse
|
9
|
Justamante MS, Mhimdi M, Molina-Pérez M, Albacete A, Moreno MÁ, Mataix I, Pérez-Pérez JM. Effects of Auxin (Indole-3-butyric Acid) on Adventitious Root Formation in Peach-Based Prunus Rootstocks. PLANTS 2022; 11:plants11070913. [PMID: 35406893 PMCID: PMC9002465 DOI: 10.3390/plants11070913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Several Prunus species are among the most important cultivated stone fruits in the Mediterranean region, and there is an urgent need to obtain rootstocks with specific adaptations to challenging environmental conditions. The development of adventitious roots (ARs) is an evolutionary mechanism of high relevance for stress tolerance, which has led to the development of environmentally resilient plants. As a first step towards understanding the genetic determinants involved in AR formation in Prunus sp., we evaluated the rooting of hardwood cuttings from five Prunus rootstocks (Adafuel, Adarcias, Cadaman, Garnem, and GF 677) grown in hydroponics. We found that auxin-induced callus and rooting responses were strongly genotype-dependent. To investigate the molecular mechanisms involved in these differential responses, we performed a time-series study of AR formation in two rootstocks with contrasting rooting performance, Garnem and GF 677, by culturing in vitro microcuttings with and without auxin treatment (0.9 mg/L of indole-3-butyric acid [IBA]). Despite showing a similar histological structure, Garnem and GF677 rootstocks displayed dynamic changes in endogenous hormone homeostasis involving metabolites such as indole-3-acetic acid (IAA) conjugated to aspartic acid (IAA-Asp), and these changes could explain the differences observed during rooting.
Collapse
Affiliation(s)
- María Salud Justamante
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (M.M.); (M.M.-P.)
| | - Mariem Mhimdi
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (M.M.); (M.M.-P.)
| | - Marta Molina-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (M.M.); (M.M.-P.)
| | - Alfonso Albacete
- Departmento de Nutrición Vegetal, CEBAS-CSIC, 30100 Murcia, Spain;
| | - María Ángeles Moreno
- Department of Pomology, Estación Experimental de Aula Dei-CSIC, 50059 Zaragoza, Spain;
| | - Inés Mataix
- Invisa Biotecnología Vegetal S.L., 30410 Caravaca de la Cruz, Spain;
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (M.M.); (M.M.-P.)
- Correspondence: ; Tel.: +34-966-658-958
| |
Collapse
|
10
|
Jiang L, Lee MH, Kim CY, Kim SW, Kim PI, Min SR, Lee J. Plant Growth Promotion by Two Volatile Organic Compounds Emitted From the Fungus Cladosporium halotolerans NGPF1. FRONTIERS IN PLANT SCIENCE 2021; 12:794349. [PMID: 34925431 PMCID: PMC8678569 DOI: 10.3389/fpls.2021.794349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Microbial volatiles have beneficial roles in the agricultural ecological system, enhancing plant growth and inducing systemic resistance against plant pathogens without being hazardous to the environment. The interactions of plant and fungal volatiles have been extensively studied, but there is limited research specifically elucidating the effects of distinct volatile organic compounds (VOCs) on plant growth promotion. The current study was conducted to investigate the impact of VOCs from Cladosporium halotolerans NGPF1 on plant growth, and to elucidate the mechanisms for the plant growth-promoting (PGP) activity of these VOCs. The VOCs from C. halotolerans NGPF1 significantly promoted plant growth compared with the control, and this PGP activity of the VOCs was culture medium-dependent. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) identified two VOC structures with profiles that differed depending on the culture medium. The two compounds that were only produced in potato dextrose (PD) medium were identified as 2-methyl-butanal and 3-methyl-butanal, and both modulated plant growth promotion and root system development. The PGP effects of the identified synthetic compounds were analyzed individually and in blends using N. benthamiana plants. A blend of the two VOCs enhanced growth promotion and root system development compared with the individual compounds. Furthermore, real-time PCR revealed markedly increased expression of genes involved in auxin, expansin, and gibberellin biosynthesis and metabolism in plant leaves exposed to the two volatile blends, while cytokinin and ethylene expression levels were decreased or similar in comparison with the control. These findings demonstrate that naturally occurring fungal VOCs can induce plant growth promotion and provide new insights into the mechanism of PGP activity. The application of stimulatory volatiles for growth enhancement could be used in the agricultural industry to increase crop yield.
Collapse
Affiliation(s)
- Lingmin Jiang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Myoung Hui Lee
- Wheat Research team, National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Pyoung Il Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms (CIALM), Jeongeup, South Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| |
Collapse
|
11
|
Cantabella D, Dolcet-Sanjuan R, Solsona C, Vilanova L, Torres R, Teixidó N. Optimization of a food industry-waste-based medium for the production of the plant growth promoting microorganism Pseudomonas oryzihabitans PGP01 based on agro-food industries by-products. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00675. [PMID: 34603978 PMCID: PMC8473457 DOI: 10.1016/j.btre.2021.e00675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023]
Abstract
Several agro-food industry wastes based on potato peels and pulp (FPP), tomato seeds (TS) and cereals (WB) industries were tested for their feasibility in producing P. oryzihabitans PGP01. The production of P. oryzihabitans PGP01 in a medium based on FPP supplemented with 10 g L−1 of tryptone, 10 g L−1 of sugar cane molasses, 5 g L−1 nacl and 2.5 g L−1 of K2HPO4 allowed to reach similar growth than the commercial medium. In 2 L bioreactors, a maximum of 4.4 × 109 CFU mL−1 of P. oryzihabitans PGP01 was obtained after 24 h of growth in the optimized medium, similar than laboratory medium. P. oryzihabitans PGP01 grown on the optimized medium preserved its biological activity, maintaining the same effect on roots of in vitro cultured plantlets than when it was grown in the commercial medium. This study shows how to re-use food-industry wastes for microbial production, reducing the amount of generated wastes.
In this study, three wastes based on potato peels and pulps, tomato seeds and wheat bran were used as basis for the preparation of a cheap medium to produce the bacterium P. oryzihabitans PGP01. In flasks experiments, P. oryzihabitans PGP01 growth at 25 °C in a medium based on frozen potato peels and pulp (FPP) with tryptone as a nitrogen source resulted in the maximum production compared to the commercial TSB medium. In the scale-up to 2 L bioreactors, FPP supplemented with tryptone, molasses, NaCl and K2HPO4 allowed to reach similar biomass production than in the TSB medium. A maximum growth of 4.4 × 109 CFU mL−1 after setting the agitation and the air flux conditions at 400 rpm and 0.75 vvm. Finally, P. oryzihabitans PGP01 growing in this optimized medium conserved its biological activity showing the expected effect in root development previously reported for this microorganism.
Collapse
Affiliation(s)
- Daniel Cantabella
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain.,IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Ramon Dolcet-Sanjuan
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Cristina Solsona
- IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Laura Vilanova
- IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| |
Collapse
|