1
|
Zhang TT, Yan CL, Qiao JX, Yang AS, Liu ML, Kou YX, Li ZH. Demographic dynamics and molecular evolution of the rare and endangered subsect. Gerardianae of Pinus: insights from chloroplast genomes and mitochondrial DNA markers. PLANTA 2024; 259:45. [PMID: 38281265 DOI: 10.1007/s00425-023-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION The divergence of subsect. Gerardianae was likely triggered by the uplift of the Qinghai-Tibetan Plateau and adjacent mountains. Pinus bungeana might have probably experienced expansion since Last Interglacial period. Historical geological and climatic oscillations have profoundly affected patterns of nucleotide variability, evolutionary history, and species divergence in numerous plants of the Northern Hemisphere. However, how long-lived conifers responded to geological and climatic fluctuations in East Asia remain poorly understood. Here, based on paternally inherited chloroplast genomes and maternally inherited mitochondrial DNA markers, we investigated the population demographic history and molecular evolution of subsect. Gerardianae (only including three species, Pinus bungeana, P. gerardiana, and P. squamata) of Pinus. A low level of nucleotide diversity was found in P. bungeana (π was 0.00016 in chloroplast DNA sequences, and 0.00304 in mitochondrial DNAs). The haplotype-based phylogenetic topology and unimodal distributions of demographic analysis suggested that P. bungeana probably originated in the southern Qinling Mountains and experienced rapid population expansion since Last Interglacial period. Phylogenetic analysis revealed that P. gerardiana and P. squamata had closer genetic relationship. The species divergence of subsect. Gerardianae occurred about 27.18 million years ago (Mya) during the middle to late Oligocene, which was significantly associated with the uplift of the Qinghai-Tibetan Plateau and adjacent mountains from the Eocene to the mid-Pliocene. The molecular evolutionary analysis showed that two chloroplast genes (psaI and ycf1) were under positive selection, the genetic lineages of P. bungeana exhibited higher transition and nonsynonymous mutations, which were involved with the strongly environmental adaptation. These findings shed light on the population evolutionary history of white pine species and provide striking insights for comprehension of their species divergence and molecular evolution.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chun-Li Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jin-Xia Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ao-Shuang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yi-Xuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Han S, Ding H, Bi D, Zhang S, Yi R, Gao J, Yang J, Ye Y, Wu L, Kan X. Structural Diversities and Phylogenetic Signals in Plastomes of the Early-Divergent Angiosperms: A Case Study in Saxifragales. PLANTS (BASEL, SWITZERLAND) 2022; 11:3544. [PMID: 36559654 PMCID: PMC9787361 DOI: 10.3390/plants11243544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
As representative of the early-divergent groups of angiosperms, Saxifragales is extremely divergent in morphology, comprising 15 families. Within this order, our previous case studies observed significant structural diversities among the plastomes of several lineages, suggesting a possible role in elucidating their deep phylogenetic relationships. Here, we collected 208 available plastomes from 11 constituent families to explore the evolutionary patterns among Saxifragales. With thorough comparisons, the losses of two genes and three introns were found in several groups. Notably, 432 indel events have been observed from the introns of all 17 plastomic intron-containing genes, which could well play an important role in family barcoding. Moreover, numerous heterogeneities and strong intrafamilial phylogenetic implications were revealed in pttRNA (plastomic tRNA) structures, and the unique structural patterns were also determined for five families. Most importantly, based on the well-supported phylogenetic trees, evident phylogenetic signals were detected in combinations with the identified pttRNAs features and intron indels, demonstrating abundant lineage-specific characteristics for Saxifragales. Collectively, the results reported here could not only provide a deeper understanding into the evolutionary patterns of Saxifragales, but also provide a case study for exploring the plastome evolution at a high taxonomic level of angiosperms.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
Du Q, Li J, Wang L, Chen H, Jiang M, Chen Z, Jiang C, Gao H, Wang B, Liu C. Complete chloroplast genomes of two medicinal Swertia species: the comparative evolutionary analysis of Swertia genus in the Gentianaceae family. PLANTA 2022; 256:73. [PMID: 36083348 DOI: 10.1007/s00425-022-03987-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The complete chloroplast genome of Swertia kouitchensis has been sequenced and assembled, compared with that of S. bimaculata to determine the evolutionary relationships among species of the Swertia in the Gentianaceae family. Swertia kouitchensis and S. bimaculata are from the Gentianaceae family. The complete chloroplast genome of S. kouitchensis was newly assembled, annotated, and analyzed by Illumina Hiseq 2500 platform. The chloroplast genomes of the two species encoded a total of 133, 134 genes, which included 88-89 protein-coding genes, 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA genes. One intron was contained in each of the eight protein-coding genes and eight tRNA-coding genes, whereas two introns were found in two genes (ycf3 and clpP). The most abundant codon of the two species was for isoleucine, and the least abundant codon was for cysteine. The number of microsatellite repeat sequences was twenty-eight and thirty-two identified in the chloroplast genomes of S. kouitchensis and S. bimaculata, respectively. A total of 1127 repeat sequences were identified in all the 23 Swertia chloroplast genomes, and they fell into four categories. Furthermore, five divergence hotspot regions can be applied to discriminate these 23 Swertia species through genomes comparison. One pair of genus-specific DNA barcodes primer has been accurately identified. Therefore, the diverse regions cloned by a specific primer may become an effective and powerful molecular marker for the identification of Swertia genus. Moreover, four genes (ccsA, ndhK, rpoC1, and rps12) were positive selective pressure. The phylogenetic tree showed that the 23 Swertia species were clustered into a large clade including four evident subbranches, whereas the two species of S. kouitchensis and S. bimaculata were separately clustered into the diverse but correlated species group.
Collapse
Affiliation(s)
- Qing Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China.
- College of Pharmacy, Key Laboratory of Medicinal Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Minzu University, No.3, Bayi Mid-road, Chengdong District, Xining City, Qinghai Province, 810007, People's Republic of China.
- Fresh Sky-Right (Beijing) International Science and Technology Co., Ltd, No.59, Banjing Road, Haidian District, Beijing, 100097, People's Republic of China.
| | - Jing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China
- Xiangnan University, No. 889, Chenzhou dadao, Chenzhou City, Hunan Province, 423000, People's Republic of China
| | - Liqiang Wang
- College of Pharmacy, Heze University, No.2269, University Road, Mudan District, Heze City, Shandong Province, 274015, People's Republic of China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, University Road, Changqing District, Jinan City, Shandong Province, 250399, People's Republic of China
| | - Zhuoer Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China
- Xiangnan University, No. 889, Chenzhou dadao, Chenzhou City, Hunan Province, 423000, People's Republic of China
| | - Chuanbei Jiang
- Genepioneer Biotechnologies Inc, No. 9, Weidi Road, Qixia District, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Haidong Gao
- Genepioneer Biotechnologies Inc, No. 9, Weidi Road, Qixia District, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Bin Wang
- Xiangnan University, No. 889, Chenzhou dadao, Chenzhou City, Hunan Province, 423000, People's Republic of China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Hai Dian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
4
|
Han S, Wang R, Hong X, Wu C, Zhang S, Kan X. Plastomes of Bletilla (Orchidaceae) and Phylogenetic Implications. Int J Mol Sci 2022; 23:ijms231710151. [PMID: 36077549 PMCID: PMC9456473 DOI: 10.3390/ijms231710151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Bletilla is a small genus of only five species distributed across Asia, including B. chartacea, B. foliosa, B. formosana, B. ochracea and B. striata, which is of great medicinal importance. Furthermore, this genus is a member of the key tribe Arethuseae (Orchidaceae), harboring an extremely complicated taxonomic history. Recently, the monophyletic status of Bletilla has been challenged, and the phylogenetic relationships within this genus are still unclear. The plastome, which is rich in both sequence and structural variation, has emerged as a powerful tool for understanding plant evolution. Along with four new plastomes, this work is committed to exploring plastomic markers to elucidate the phylogeny of Bletilla. Our results reveal considerable plastomic differences between B. sinensis and the other three taxa in many aspects. Most importantly, the specific features of the IR junction patterns, novel pttRNA structures and codon aversion motifs can serve as useful molecular markers for Bletilla phylogeny. Moreover, based on maximum likelihood and Bayesian inference methods, our phylogenetic analyses based on two datasets of Arethuseae strongly imply that Bletilla is non-monophyletic. Accordingly, our findings from this study provide novel potential markers for species identification, and shed light on the evolution of Bletilla and Arethuseae.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
| | - Rongbin Wang
- Institute of Chinese Medicine Resources, Anhui College of Traditional Chinese Medicine, Wuhu 241002, China
- Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xin Hong
- Anhui Provincial Engineering Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Cuilian Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
- Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
- Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
- Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Correspondence: ; Tel.: +86-139-5537-2268
| |
Collapse
|
5
|
Han S, Bi D, Yi R, Ding H, Wu L, Kan X. Plastome evolution of Aeonium and Monanthes (Crassulaceae): insights into the variation of plastomic tRNAs, and the patterns of codon usage and aversion. PLANTA 2022; 256:35. [PMID: 35809200 DOI: 10.1007/s00425-022-03950-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
This study reported 13 new plastomes from Aeonium and Monanthes, and observed new markers for phylogeny and DNA barcoding, such as novel tRNA structures and codon usage bias and aversion. The Macaronesian clade of Crassulaceae consists of three genera: Aichryson, with about 15 species; Monanthes, with about 10 species; Aeonium, with about 40 species. Within this clade, Aeonium, known as "the botanical equivalent of Darwin's finches", is regarded as an excellent model plant for researching adaptive evolution. Differing from the well-resolved relationships among three genera of the Macaronesian clade, the internal branching patterns within the genus Aeonium are largely unclear. In this study, we first reported 13 new plastomes from genus Aeonium and the closely related genus Monanthes. We further performed comprehensive analyses of the plastomes, with focuses on the secondary structures of pttRNAs and the patterns of codon usage and aversion. With a typical circular and quadripartite structure, the 13 plastomes ranged from 149,900 to 151,030 bp in size, and the unique pattern in IR junctions might become a family-specific marker for Crassulaceae species. Surprisingly, the π values of plastomes from Monanthes were almost twice those from Aeonium. Most importantly, we strongly recommend that highly polymorphic regions, novel putative pttRNA structures, patterns of codon usage bias and aversion derived from plastomes might have phylogenetic implications, and could act as new markers for DNA barcoding of plants. The results of phylogenetic analyses strongly supported a clear internal branching pattern in Macaronesian clade (represented by Aeonium and Monanthes), with higher nodal support values. The findings reported here will provide new insights into the variation of pttRNAs, and the patterns of codon usage and aversion of the family Crassulaceae.
Collapse
Affiliation(s)
- Shiyun Han
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou, 215000, Jiangsu, China
| | - Ran Yi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, 241000, Anhui, China.
| |
Collapse
|