1
|
Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, Ali A, Ahmad IA, Mehran M, Xu F, Yang C, Yang J, Ding G. Drought-induced adaptive and ameliorative strategies in plants. CHEMOSPHERE 2024; 364:143134. [PMID: 39168385 DOI: 10.1016/j.chemosphere.2024.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Sharjeel Haider
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Khadija Bibi
- Department of Botany, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ayaz Ali
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Iftikhar Ali Ahmad
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resource and Environment, Huazhong Agricultural University, China
| | - Muhammad Mehran
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunlei Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China.
| | - Jinpeng Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
2
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
3
|
Jan R, Asif S, Asaf S, Lubna, Khan Z, Kim KM. Unveiling the protective role of anthocyanin in rice: insights into drought-induced oxidative stress and metabolic regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1397817. [PMID: 38863532 PMCID: PMC11165195 DOI: 10.3389/fpls.2024.1397817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
This study investigates the impact of anthocyanin treatment on rice plants under drought stress, focusing on phenotypic, molecular, and biochemical responses. Anthocyanin were treated to one month old plants one week before the droughtexposure. Drought stress was imposed by using 10% polyethylene glycol (PEG 6000). Anthocyanin-treated plants exhibited significant enhancements in various traits, including growth parameters and reproductive characteristics, under normal conditions. When subjected to drought stress, these plants displayed resilience, maintaining or improving essential morphological and physiological features compared to non-treated counterparts. Notably, anthocyanin application mitigated drought-induced oxidative stress, as evidenced by reduced levels of reactive oxygen species (ROS) and lipid membrane peroxidation. The study also elucidates the regulatory role of anthocyanins in the expression of flavonoid biosynthetic genes, leading to increased levels of key secondary metabolites. Furthermore, anthocyanin treatment influenced the levels of stress-related signaling molecules, including melatonin, proline, abscisic acid (ABA), and salicylic acid (SA), contributing to enhanced stress tolerance. The enzymatic activity of antioxidants and the expression of drought-responsive genes were modulated by anthocyanins, emphasizing their role in antioxidant defense and stress response. Additionally, anthocyanin treatment positively influenced macronutrient concentrations, particularly calcium ion (Ca+), potassium ion (K+), and sodium ion (Na+), essential for cell wall and membrane stability. The findings collectively highlight the multifaceted protective effects of anthocyanins, positioning them as potential key players in conferring resilience to drought stress in rice plants. The study provides valuable insights into the molecular and physiological mechanisms underlying anthocyanin-mediated enhancement of drought stress tolerance, suggesting promising applications in agricultural practices for sustainable crop production.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Mohammed N, El-Hendawy S, Alsamin B, Mubushar M, Dewir YH. Integrating Application Methods and Concentrations of Salicylic Acid as an Avenue to Enhance Growth, Production, and Water Use Efficiency of Wheat under Full and Deficit Irrigation in Arid Countries. PLANTS (BASEL, SWITZERLAND) 2023; 12:1019. [PMID: 36903881 PMCID: PMC10005395 DOI: 10.3390/plants12051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
As water deficit in arid countries has already become the norm rather than the exception, water conservation in crop production processes has become very critical. Therefore, it is urgent to develop feasible strategies to achieve this goal. Exogenous application of salicylic acid (SA) has been proposed as one of the effective and economical strategies for mitigating water deficit in plants. However, the recommendations concerning the proper application methods (AMs) and the optimal concentrations (Cons) of SA under field conditions seem contradictory. Here, a two-year field study was conducted to compare the effects of twelve combinations of AMs and Cons on the vegetative growth, physiological parameters, yield, and irrigation water use efficiency (IWUE) of wheat under full (FL) and limited (LM) irrigation regimes. These combinations included seed soaking in purified water (S0), 0.5 mM SA (S1), and 1.0 mM SA (S2); foliar spray of SA at concentrations of 1.0 mM (F1), 2.0 mM (F2), and 3.0 mM (F3); and combinations of S1 and S2 with F1 (S1F1 and S2F1), F2 (S1F2 and S2F2), and F3 (S1F3 and S2F3). The results showed that the LM regime caused a significant reduction in all vegetative growth, physiological, and yield parameters, while it led to an increase in IWUE. The application of SA through seed soaking, foliar application, and a combination of both methods increased all of the studied parameters in all the evaluated times, resulting in higher values for all parameters than the treatment without SA (S0). The multivariate analyses, including principal component analysis and heatmapping, identified the foliar application method with 1-3 mM SA alone or in combination with seed soaking with 0.5 mM SA as the best treatments for the optimal performance of wheat under both irrigation regimes. Overall, our results indicated that exogenous application of SA has the potential to greatly improve growth, yield, and IWUE under limited water application, while optimal coupling combinations of AMs and Cons were required for positive effects in field conditions.
Collapse
Affiliation(s)
- Nabil Mohammed
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural, Faculty of Agriculture and Veterinary Medicine, Thamar University, Thamar 87246, Yemen
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Bazel Alsamin
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Mubushar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yaser Hassan Dewir
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| |
Collapse
|
5
|
Wu M, Liu H, Zhang Y, Li B, Zhu T, Sun M. Physiology and transcriptome analysis of the response mechanism of Solidago canadensis to the nitrogen addition environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1005023. [PMID: 36866368 PMCID: PMC9971938 DOI: 10.3389/fpls.2023.1005023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Solidago canadensis is an invasive plant that can adapt to variable environmental conditions. To explore the molecular mechanism of the response to nitrogen (N) addition conditions in S. canadensis, physiology and transcriptome analysis were performed with samples that cultured by natural and three N level conditions. Comparative analysis detected many differentially expressed genes (DEGs), including the function of plant growth and development, photosynthesis, antioxidant, sugar metabolism and secondary metabolism pathways. Most genes encoding proteins involved in plant growth, circadian rhythm and photosynthesis were upregulated. Furthermore, secondary metabolism-related genes were specifically expressed among the different groups; for example, most DEGs related to phenol and flavonoid synthesis were downregulated in the N-level environment. Most DEGs related to diterpenoid and monoterpenoid biosynthesis were upregulated. In addition, many physiological responses, such as antioxidant enzyme activities and chlorophyll and soluble sugar contents, were elevated by the N environment, which was consistent with the gene expression levels in each group. Collectively, our observations indicated that S. canadensis may be promoted by N deposition conditions with the alteration of plant growth, secondary metabolism and physiological accumulation.
Collapse
|
6
|
Wu C, Wang Y, Sun H. Targeted and untargeted metabolomics reveals deep analysis of drought stress responses in needles and roots of Pinus taeda seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1031466. [PMID: 36798806 PMCID: PMC9927248 DOI: 10.3389/fpls.2022.1031466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is one of major environmental stresses affecting plant growth and yield. Although Pinus taeda trees are planted in rainy southern China, local drought sometime occurs and can last several months, further affecting their growth and resin production. In this study, P. taeda seedlings were treated with long-term drought (42 d), and then targeted and untargeted metabolomics analysis were carried out to evaluate drought tolerance of P. taeda. Targeted metabolomics analysis showed that levels of some sugars, phytohormones, and amino acids significantly increased in the roots and needles of water-stressed (WS) P. taeda seedlings, compared with well-watered (WW) pine seedlings. These metabolites included sucrose in pine roots, the phytohormones abscisic acid and sacylic acid in pine needles, the phytohormone gibberellin (GA4) and the two amino acids, glycine and asparagine, in WS pine roots. Compared with WW pine seedlings, the neurotransmitter acetylcholine significantly increased in needles of WS pine seedlings, but significantly reduced in their roots. The neurotransmitters L-glutamine and hydroxytyramine significantly increased in roots and needles of WS pine seedlings, respectively, compared with WW pine seedlings, but the neurotransmitter noradrenaline significantly reduced in needles of WS pine seedlings. Levels of some unsaturated fatty acids significantly reduced in roots or needles of WS pine seedlings, compared with WW pine seedlings, such as linoleic acid, oleic acid, myristelaidic acid, myristoleic acid in WS pine roots, and palmitelaidic acid, erucic acid, and alpha-linolenic acid in WS pine needles. However, three saturated fatty acids significantly increased in WS pine seedlings, i.e., dodecanoic acid in WS pine needles, tricosanoic acid and heptadecanoic acid in WS pine roots. Untargeted metabolomics analysis showed that levels of some metabolites increased in WS pine seedlings, especially sugars, long-chain lipids, flavonoids, and terpenoids. A few of specific metabolites increased greatly, such as androsin, piceatanol, and panaxatriol in roots and needles of WS pine seedlings. Comparing with WW pine seedlings, it was found that the most enriched pathways in WS pine needles included flavone and flavonol biosynthesis, ABC transporters, diterpenoid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis; in WS pine roots, the most enriched pathways included tryptophan metabolism, caffeine metabolism, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, biosynthesis of phenylalanine, tyrosine, and tryptophan. Under long-term drought stress, P. taeda seedlings showed their own metabolomics characteristics, and some new metabolites and biosynthesis pathways were found, providing a guideline for breeding drought-tolerant cultivars of P. taeda.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Institute of Subtropic Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| |
Collapse
|
7
|
Feng X, Zhou B, Wu X, Wu H, Zhang S, Jiang Y, Wang Y, Zhang Y, Cao M, Guo B, Su S, Hou Z. Molecular characterization of SPL gene family during flower morphogenesis and regulation in blueberry. BMC PLANT BIOLOGY 2023; 23:40. [PMID: 36650432 PMCID: PMC9847132 DOI: 10.1186/s12870-023-04044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The SPL gene is a plant-specific transcription factor involved in the regulation of plant growth and development, which have been identified in woody plants. The process of floral bud differentiation affects the timing of flowering and fruit set and regulates plant growth, however, the mechanism of regulation of flower development by SPL genes is less studied. In this study, 56 VcSPL genes were identified in the tetraploid blueberry. The VcSPL gene family was classified into six subfamilies, and analysis of cis-elements showed that VcSPL genes were regulated by light, phytohormones (abscisic acid, MeJA), and low temperature. In the evolutionary analysis, segmental replication may play an important role in VcSPL gene amplification. Interestingly, we also studied diploid blueberry (Bilberry), in which 24 SPL genes were identified, and 36 homologous pairs were found, suggesting a high degree of convergence in the syntenic relationship between blueberry (Vaccinium corymbosum L) and bilberry (Vaccinium darrowii). Based on the expression profile, VcSPL genes were expressed at high levels in flowers, shoots, and roots, indicating a diversity of gene functions. Then we selected 20 differentially-expressed SPL genes to further investigate the role of VcSPL in floral induction and initiation. It showed that the genes VcSPL40, VcSPL35, VcSPL45, and VcSPL53 may play a crucial role in the blueberry floral transition phase (from vegetative growth to flower initiation). These results provided important information for understanding and exploring the role of VcSPLs in flower morphogenesis and plant growth.
Collapse
Affiliation(s)
- Xin Feng
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Bingjie Zhou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Xinliang Wu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Huiling Wu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Suilin Zhang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Ying Jiang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Yaping Wang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Yaqian Zhang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Man Cao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Baoshi Guo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Shuchai Su
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Wang J, Gao X, Wang X, Song W, Wang Q, Wang X, Li S, Fu B. Exogenous melatonin ameliorates drought stress in Agropyron mongolicum by regulating flavonoid biosynthesis and carbohydrate metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:1051165. [PMID: 36600908 PMCID: PMC9806343 DOI: 10.3389/fpls.2022.1051165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Drought is one of the most common abiotic stressors in plants. Melatonin (MT) is a high-efficiency and low-toxicity growth regulator that plays an important role in plant responses to drought stress. As a wild relative of wheat, Agropyron mongolicum has become an important species for the improvement of degraded grasslands and the replanting of sandy grasslands. However, the physiological and molecular mechanisms by which exogenous MT regulates drought stress in A. mongolicum remain unclear. To assess the effectiveness of MT intervention (100 mg·L-1), polyethylene glycol 6000 was used to simulate drought stress, and its ameliorating effects on drought stress in A. mongolicum seedlings were investigated through physiology, transcriptomics, and metabolomics. Physiological analysis indicated that MT treatment increased the relative water content and chlorophyll content and decreased the relative conductivity of A. mongolicum seedlings. Additionally, MT decreased malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation by enhancing antioxidant enzyme activities. The transcriptome and metabolite profiling analysis of A. mongolicum seedlings treated with and without MT under drought stress identified the presence of 13,466 differentially expressed genes (DEGs) and 271 differentially expressed metabolites (DEMs). The integrated analysis of transcriptomics and metabolomics showed that DEGs and DEMs participated in diverse biological processes, such as flavonoid biosynthesis and carbohydrate metabolism. Moreover, MT may be involved in regulating the correlation of DEGs and DEMs in flavonoid biosynthesis and carbohydrate metabolism during drought stress. In summary, this study revealed the physiological and molecular regulatory mechanisms of exogenous MT in alleviating drought stress in A. mongolicum seedlings, and it provides a reference for the development and utilization of MT and the genetic improvement of drought tolerance in plants from arid habitats.
Collapse
Affiliation(s)
- Jing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueqin Gao
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Xing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Wenxue Song
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Qin Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xucheng Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shuxia Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Khan FS, Goher F, Zhang D, Shi P, Li Z, Htwe YM, Wang Y. Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits. FRONTIERS IN PLANT SCIENCE 2022; 13:1042828. [PMID: 36578341 PMCID: PMC9791139 DOI: 10.3389/fpls.2022.1042828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Commercially important palms (oil palm, coconut, and date palm) are widely grown perennial trees with tremendous commercial significance due to food, edible oil, and industrial applications. The mounting pressure on the human population further reinforces palms' importance, as they are essential crops to meet vegetable oil needs around the globe. Various conventional breeding methods are used for the genetic improvement of palms. However, adopting new technologies is crucial to accelerate breeding and satisfy the expanding population's demands. CRISPR/Cas9 is an efficient genome editing tool that can incorporate desired traits into the existing DNA of the plant without losing common traits. Recent progress in genome editing in oil palm, coconut and date palm are preliminarily introduced to potential readers. Furthermore, detailed information on available CRISPR-based genome editing and genetic transformation methods are summarized for researchers. We shed light on the possibilities of genome editing in palm crops, especially on the modification of fatty acid biosynthesis in oil palm. Moreover, the limitations in genome editing, including inadequate target gene screening due to genome complexities and low efficiency of genetic transformation, are also highlighted. The prospects of CRISPR/Cas9-based gene editing in commercial palms to improve sustainable production are also addressed in this review paper.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dapeng Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Peng Shi
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Zhiying Li
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yin Min Htwe
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yong Wang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| |
Collapse
|
10
|
Transcriptome and Physiological Analyses of a Navel Orange Mutant with Improved Drought Tolerance and Water Use Efficiency Caused by Increases of Cuticular Wax Accumulation and ROS Scavenging Capacity. Int J Mol Sci 2022; 23:ijms23105660. [PMID: 35628469 PMCID: PMC9145189 DOI: 10.3390/ijms23105660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Drought is one of the main abiotic stresses limiting the quality and yield of citrus. Cuticular waxes play an important role in regulating plant drought tolerance and water use efficiency (WUE). However, the contribution of cuticular waxes to drought tolerance, WUE and the underlying molecular mechanism is still largely unknown in citrus. 'Longhuihong' (MT) is a bud mutant of 'Newhall' navel orange with curly and bright leaves. In this study, significant increases in the amounts of total waxes and aliphatic wax compounds, including n-alkanes, n-primary alcohols and n-aldehydes, were overserved in MT leaves, which led to the decrease in cuticular permeability and finally resulted in the improvements in drought tolerance and WUE. Compared to WT leaves, MT leaves possessed much lower contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), significantly higher levels of proline and soluble sugar, and enhanced superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress, which might reduce reactive oxygen species (ROS) damage, improve osmotic regulation and cell membrane stability, and finally, enhance MT tolerance to drought stress. Transcriptome sequencing results showed that seven structural genes were involved in wax biosynthesis and export, MAPK cascade, and ROS scavenging, and seven genes encoding transcription factors might play an important role in promoting cuticular wax accumulation, improving drought tolerance and WUE in MT plants. Our results not only confirmed the important role of cuticular waxes in regulating citrus drought resistance and WUE but also provided various candidate genes for improving citrus drought tolerance and WUE.
Collapse
|
11
|
González-Villagra J, Reyes-Díaz MM, Tighe-Neira R, Inostroza-Blancheteau C, Escobar AL, Bravo LA. Salicylic Acid Improves Antioxidant Defense System and Photosynthetic Performance in Aristotelia chilensis Plants Subjected to Moderate Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050639. [PMID: 35270109 PMCID: PMC8912461 DOI: 10.3390/plants11050639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) has been shown to ameliorate drought stress. However, physiological and biochemical mechanisms involved in drought stress tolerance induced by SA in plants have not been well understood. Thus, this study aimed to study the role of SA application on enzymatic and non-enzymatic antioxidants, photosynthetic performance, and plant growth in A. chilensis plants subjected to moderate drought stress. One-year-old A. chilensis plants were subjected to 100% and 60% of field capacity. When plants reached moderate drought stress (average of stem water potential of -1.0 MPa, considered as moderate drought stress), a single SA application was performed on plants. Then, physiological and biochemical features were determined at different times during 14 days. Our study showed that SA application increased 13.5% plant growth and recovered 41.9% AN and 40.7% gs in drought-stressed plants on day 3 compared to drought-stressed plants without SA application. Interestingly, SOD and APX activities were increased 85% and 60%, respectively, in drought-stressed SA-treated plants on day 3. Likewise, SA improved 30% total phenolic content and 60% antioxidant capacity in drought-stressed A. chilensis plants. Our study provides insight into the SA mechanism to tolerate moderate drought stress in A. chilensis plants.
Collapse
Affiliation(s)
- Jorge González-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile; (J.G.-V.); (R.T.-N.); (C.I.-B.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile
| | - Marjorie M. Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile;
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Ricardo Tighe-Neira
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile; (J.G.-V.); (R.T.-N.); (C.I.-B.)
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile; (J.G.-V.); (R.T.-N.); (C.I.-B.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile
| | - Ana Luengo Escobar
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| | - León A. Bravo
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|