1
|
Li Q, Zhou S. Effect of Paenibacillus favisporus CHP14 inoculation on selenium accumulation and tolerance of Pakchoi ( Brassica chinensis L.) under exogenous selenite treatments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-16. [PMID: 39394951 DOI: 10.1080/15226514.2024.2414212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The effects of Paenibacillus favisporus CHP14 inoculation on selenium (Se) accumulation and Se tolerance of Pakchoi were studied by a pot experiment conducted in greenhouse. The results revealed that the growth traits such as plant height, root length, and biomass were significantly elevated during CHP14 treatment at 0 ∼ 8.0 mg·kg-1 Se(IV) levels. CHP14-inoculated plants accumulated more Se in root and shoot, which were 24.1%∼57.3% and 7.5%∼50.9% higher than those of non-inoculated plants. The contents of leaf nitrogen (N), phosphorus (P), magnesium (Mg), and iron (Fe), as well as the ratio of indoleacetic acid and abscisic acid contents (IAA/ABA) were increased by CHP14 inoculation, and positively associated with photosynthetic pigment contents (p < 0.05). At ≥ 4.0 mg·kg-1 Se(IV) levels, superoxide dismutase, peroxidase, and glutathione peroxidase activities of Pakchoi roots were increased with CHP14 inoculation, by 9.9%∼17.1%, 28.4%∼40.7%, and 7.4%∼15.3%, respectively. Moreover, CHP14 inoculation enhanced ascorbate-glutathione (AsA-GSH) metabolism in roots by upregulating the related enzymes activities and antioxidant contents under excess Se(IV) stress. These findings suggest that CHP14 is beneficial to improve plant growth and enhance Se(IV) resistance of Pakchoi, and can be exploited as potential inoculants for phytoremediation process in Se contaminated soil.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Anhui Normal University, Wuhu, China
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, China
| | - Shoubiao Zhou
- College of Ecology and Environment, Anhui Normal University, Wuhu, China
| |
Collapse
|
2
|
Zhan JP, Qi M, Wang C, Wang XF, Wang HZ, Dun XL. Precise Determination of Selenium Forms and Contents in Selenium-Enriched Rapeseed Seedlings and Flowering Stalks by HPLC-ICP-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38602484 DOI: 10.1021/acs.jafc.3c08416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rapeseed (Brassica napus L.) has the ability of selenium (Se) enrichment. Identification of selenides in Se-rich rapeseed products will promote the development and utilization of high value. By optimizing the Se species extraction process (protease type, extraction reagent, enzyme sample ratio, extraction time, etc.) and chromatographic column, an efficient, stable, and accurate method was established for the identification of Se species and content in rapeseed seedlings and flowering stalks, which were cultured by inorganic Se hydroponics. Five Se compounds, including selenocystine (SeCys2), methylselenocysteine (MeSeCys), selenomethionine (SeMet), selenite (SeIV), and selenate (SeVI) were qualitatively and quantitatively identified. Organoselenium was absolutely dominant in both seedlings and flowering stalks among the detected rapeseed varieties, with 64.18-90.20% and 94.38-98.47%, respectively. Further, MeSeCys, a highly active selenide, predominated in rapeseed flowering stalks with a proportion of 56.36-72.93% and a content of 1707.3-5030.3 μg/kg. This study provides a new source of MeSeCys supplementation for human Se fortification.
Collapse
Affiliation(s)
- Jie-Peng Zhan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Meng Qi
- AnKang Research and Development Center for Selenium-enriched Products/Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Xian 710000, China
| | - Chao Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xin-Fa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Han-Zhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao-Ling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
3
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024; 10:e26023. [PMID: 38390045 PMCID: PMC10881343 DOI: 10.1016/j.heliyon.2024.e26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
5
|
Cheng C, Coldea TE, Yang H, Zhao H. Selenium Uptake, Translocation, and Metabolization Pattern during Barley Malting: A Comparison of Selenate, Selenite, and Selenomethionine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5240-5249. [PMID: 36961403 DOI: 10.1021/acs.jafc.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Selenium (Se) is an essential trace element for human and animal health. Understanding the uptake and translocation of Se in crops is critical from the perspective of Se biofortification. In this study, barley was malted to investigate the uptake, translocation, and metabolism of exogenous Se including Na2SeO4, Na2SeO3, and selenomethionine (Se-Met). The results showed that the uptake rates of different forms of Se in barley decreased in the following order: Se-Met > Na2SeO3 > Na2SeO4, with the peak uptake occurring at the end of the steeping stages. In the early stages of germination, Se was mainly distributed in the husk and endosperm. Exogenous Se upregulated the transcription levels of Se transport and metabolic enzyme genes in the barley to varying degrees, which promoted Se transformation in various tissues, and improved Se bioeffectiveness. Compared to the Na2SeO3 and Se-Met groups, more Se was transferred from husk and endosperm to acrospire and rootlets in the Na2SeO4 group during the germination stage. Na2SeO4 and Se-Met stimulated the development of rootlets, and accelerated Se metabolism, resulting in a higher Se loss rate. Thus, these comparative findings provide new insights into Se uptake, transformation, and metabolization in barley.
Collapse
Affiliation(s)
- Chao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Floreşti, Cluj-Napoca 400509, Romania
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Antoshkina M, Golubkina N, Poluboyarinov P, Skrypnik L, Sekara A, Tallarita A, Caruso G. Effect of Sodium Selenate and Selenocystine on Savoy Cabbage Yield, Morphological and Biochemical Characteristics under Chlorella Supply. PLANTS (BASEL, SWITZERLAND) 2023; 12:1020. [PMID: 36903880 PMCID: PMC10005640 DOI: 10.3390/plants12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Biofortification of Brassica oleracea with selenium (Se) is highly valuable both for human Se status optimization and functional food production with direct anti-carcinogenic activity. To assess the effects of organic and inorganic Se supply for biofortifying Brassica representatives, foliar applications of sodium selenate and selenocystine (SeCys2) were performed on Savoy cabbage treated with the growth stimulator microalgae Chlorella. Compared to sodium selenate, SeCys2 exerted a stronger growth stimulation of heads (1.3 against 1.14 times) and an increase of leaf concentration of chlorophyll (1.56 against 1.2 times) and ascorbic acid (1.37 against 1.27 times). Head density was reduced by 1.22 times by foliar application of sodium selenate and by 1.58 times by SeCys2. Despite the greater growth stimulation effect of SeCys2, its application resulted in lower biofortification levels (2.9 times) compared to sodium selenate (11.6 times). Se concentration decreased according to the following sequence: leaves > roots > head. The antioxidant activity (AOA) was higher in water extracts compared to the ethanol ones in the heads, but the opposite trend was recorded in the leaves. Chlorella supply significantly increased the efficiency of biofortification with sodium selenate (by 1.57 times) but had no effect in the case of SeCys2 application. Positive correlations were found between leaf and head weight (r = 0.621); head weight and Se content under selenate supply (r = 0.897-0.954); leaf ascorbic acid and total yield (r = 0.559), and chlorophyll (r = +0.83-0.89). Significant varietal differences were recorded for all the parameters examined. The broad comparison performed between the effects of selenate and SeCys2 showed significant genetic differences as well as important peculiarities connected with the Se chemical form and its complex interaction with Chlorella treatment.
Collapse
Affiliation(s)
- Marina Antoshkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Nadezhda Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Pavel Poluboyarinov
- Medical Faculty, Department of General and Clinical Pharmacology, Penza State University, 440026 Penza, Russia
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|