1
|
Jacques C, Quiquempoix M, Sauvet F, Le Van Quyen M, Gomez-Merino D, Chennaoui M. Interest of neurofeedback training for cognitive performance and risk of brain disorders in the military context. Front Psychol 2024; 15:1412289. [PMID: 39734770 PMCID: PMC11672796 DOI: 10.3389/fpsyg.2024.1412289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024] Open
Abstract
Operational environments are characterized by a range of psycho-physiological constraints that can degrade combatants' performance and impact on their long-term health. Neurofeedback training (NFT), a non-invasive, safe and effective means of regulating brain activity, has been shown to be effective for mental disorders, as well as for cognitive and motor capacities and aiding sports performance in healthy individuals. Its value in helping soldiers in operational condition or suffering from post-traumatic stress (PTSD) is undeniable, but relatively unexplored. The aim of this narrative review is to show the applicability of NFT to enhance cognitive performance and to treat (or manage) PTSD symptoms in the military context. It provides an overview of NFT use cases before, during or after military operations, and in the treatment of soldiers suffering from PTSD. The position of NFT within the broad spectrum of performance enhancement techniques, as well as several key factors influencing the effectiveness of NFT are discussed. Finally, suggestions for the use of NFT in the military context (pre-training environments, and during and post-deployments to combat zones or field operations), future research directions, recommendations and caveats (e.g., on transfer to operational situations, inter-individual variability in responsiveness) are offered. This review is thus expected to draw clear perspectives for both researchers and armed forces regarding NFT for cognitive performance enhancement and PTSD treatment related to the military context.
Collapse
Affiliation(s)
- Clémentine Jacques
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
- Inserm U1145, Université Sorbonne UMRCR2/UMR7371 CNRS, Paris, France
- ThereSIS, THALES SIX GTS, Palaiseau, France
| | - Michael Quiquempoix
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| | - Fabien Sauvet
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| | | | - Danielle Gomez-Merino
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| | - Mounir Chennaoui
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| |
Collapse
|
2
|
Park JH. Is virtual reality-based cognitive training in parallel with functional near-infrared spectroscopy-derived neurofeedback beneficial to improve cognitive function in older adults with mild cognitive impairment? Disabil Rehabil 2024:1-8. [PMID: 39033386 DOI: 10.1080/09638288.2024.2380483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Cognitive training in parallel with functional near-infrared spectroscopy (fNIRS)-derived neurofeedback has been identified to be beneficial in enhancing cognitive function in patients with mild cognitive impairment (MCI). However, effects of virtual reality (VR)-based cognitive training ensuring ecological validity in parallel with fNIRS-derived neurofeedback on neural efficiency has received little attention. This study investigated effects of VR-based cognitive training in parallel with fNIRS-derived neurofeedback on cognitive function and neural efficiency in patients with MCI. METHOD Ninety participants were randomly assigned into the active group (AG) receiving VR-based cognitive training in parallel with fNIRS-derived neurofeedback, the sham group (SG), or wait-list group (CG). The AG and SG group performed each intervention for fifteen minutes a session, for eight sessions. The Trail Making Test Part B and Backward Digit Span Test were used for outcomes. In addition, activity in the dorsolateral prefrontal cortex (DLPFC) during cognitive testing using fNIRS was measured. RESULTS After the eight sessions, the AG achieved greater improvements in all outcomes than the other groups. In addition, the AG showed a lower DLPFC activity during cognitive testing than the other groups. CONCLUSIONS VR-based cognitive training in parallel with fNIRS-derived neurofeedback is superior to enhancing cognitive function and neural efficiency.
Collapse
Affiliation(s)
- Jin-Hyuck Park
- Department of Occupational Therapy, College of Medical Science, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
3
|
Diotaiuti P, Valente G, Corrado S, Tosti B, Carissimo C, Di Libero T, Cerro G, Rodio A, Mancone S. Enhancing Working Memory and Reducing Anxiety in University Students: A Neurofeedback Approach. Brain Sci 2024; 14:578. [PMID: 38928578 PMCID: PMC11202122 DOI: 10.3390/brainsci14060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Neurofeedback training (NFT) has emerged as a promising approach for enhancing cognitive functions and reducing anxiety, yet its specific impact on university student populations requires further investigation. This study aims to examine the effects of NFT on working memory improvement and anxiety reduction within this demographic. (2) Methods: A total of forty healthy university student volunteers were randomized into two groups: an experimental group that received NFT and a control group. The NFT protocol was administered using a 14-channel Emotiv Epoc X headset (EMOTIV, Inc., San Francisco, CA 94102, USA) and BrainViz software version Brain Visualizer 1.1 (EMOTIV, Inc., San Francisco, CA 94102, USA), focusing on the alpha frequency band to target improvements in working memory and reductions in anxiety. Assessment tools, including the Corsi Block and Memory Span tests for working memory and the State-Trait Anxiety Inventory-2 (STAI-2) for anxiety, were applied pre- and post-intervention. (3) Results: The findings indicated an increase in alpha wave amplitude in the experimental group from the second day of NFT, with statistically significant differences observed on days 2 (p < 0.05) and 8 (p < 0.01). Contrary to expectations based on the previous literature, the study did not observe a concurrent positive impact on working memory. Nonetheless, a significant reduction in state anxiety levels was recorded in the experimental group (p < 0.001), corroborating NFT's potential for anxiety management. (4) Conclusions: While these results suggest some potential of the technique in enhancing neural efficiency, the variability across different days highlights the need for further investigation to fully ascertain its effectiveness. The study confirms the beneficial impact of NFT on reducing state anxiety among university students, underscoring its value in psychological and cognitive performance enhancement. Despite the lack of observed improvements in working memory, these results highlight the need for continued exploration of NFT applications across different populations and settings, emphasizing its potential utility in educational and therapeutic contexts.
Collapse
Affiliation(s)
- Pierluigi Diotaiuti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (G.V.); (S.C.); (B.T.); (T.D.L.); (A.R.); (S.M.)
| | - Giuseppe Valente
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (G.V.); (S.C.); (B.T.); (T.D.L.); (A.R.); (S.M.)
| | - Stefano Corrado
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (G.V.); (S.C.); (B.T.); (T.D.L.); (A.R.); (S.M.)
| | - Beatrice Tosti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (G.V.); (S.C.); (B.T.); (T.D.L.); (A.R.); (S.M.)
| | - Chiara Carissimo
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (C.C.); (G.C.)
| | - Tommaso Di Libero
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (G.V.); (S.C.); (B.T.); (T.D.L.); (A.R.); (S.M.)
| | - Gianni Cerro
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (C.C.); (G.C.)
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (G.V.); (S.C.); (B.T.); (T.D.L.); (A.R.); (S.M.)
| | - Stefania Mancone
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (G.V.); (S.C.); (B.T.); (T.D.L.); (A.R.); (S.M.)
| |
Collapse
|
4
|
Lee SA, Kim JY, Park JH. Feasibility of Virtual Shopping Budget-Management Training on Executive Functions in Healthy Young Adults: A Pilot Study. Brain Sci 2023; 13:1573. [PMID: 38002533 PMCID: PMC10669887 DOI: 10.3390/brainsci13111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
To date, budget management in virtual shopping training has not been given much importance. The main objective of this study was to investigate the effects of virtual shopping budget-management training on executive functions and brain activation. Sixteen participants were randomly assigned to the experimental group that received virtual shopping budget-management training or the waitlist control group for a total of 16 sessions. To examine the effects of virtual shopping budget-management training on brain activation, HbO2 was measured in the prefrontal cortex via functional near-infrared spectroscopy (fNIRS) during the Trail Making Test Part B (TMT-B) and Stroop test. Mann-Whitney and Wilcoxon signed-rank tests were used to compare outcomes between and within the two groups. The virtual shopping budget-management training showed no significant difference in all outcomes between both groups (p > 0.05). No significant differences were observed in HbO2 levels during both TMT-B (p > 0.05) and the Stroop test (p > 0.05). However, in the pre-post comparisons, there was a significant difference in the TMT-B (p < 0.05) and Stroop test (p < 0.05) in the experimental group. In this study, although we did not find a distinct advantage in training, it confirmed its potential for clinical benefits in healthy young adults through training.
Collapse
Affiliation(s)
- Si-An Lee
- Department of ICT Convergence, The Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (S.-A.L.); (J.-Y.K.)
| | - Ji-Yea Kim
- Department of ICT Convergence, The Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (S.-A.L.); (J.-Y.K.)
| | - Jin-Hyuck Park
- Department of Occupational Therapy, College of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
5
|
Shen L, Jiang Y, Wan F, Ku Y, Nan W. Successful alpha neurofeedback training enhances working memory updating and event-related potential activity. Neurobiol Learn Mem 2023; 205:107834. [PMID: 37757954 DOI: 10.1016/j.nlm.2023.107834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/19/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Neurofeedback (NF) is a promising method to self-regulate human brain activity for cognition enhancement. Due to the unclear results of alpha NF training on working memory updating as well as the impact of feedback modality on NF learning, this study aimed to understand further the underlying neural mechanism of alpha NF training effects on working memory updating, where the NF learning was also compared between visual and auditory feedback modalities. A total of 30 participants were assigned to Visual NF, Auditory NF, and Control groups. Working memory updating was evaluated by n-back (n =2,3) tasks before and after five alpha upregulation NF sessions. The result showed no significant difference in NF learning performance between the Visual and Auditory groups, indicating that the difference in feedback modality did not affect NF learning. In addition, compared to the control group, the participants who achieved successful NF learning showed a significant increase in n-back behavioral performance and P3a amplitude in 2-back and a significant decrease in P3a latency in 3-back. Our results in n-back further suggested that successful alpha NF training might improve updating performance in terms of the behavioral and related event-related potential (ERP) measures. These findings contribute to the understanding of the effect of alpha training on memory updating and the design of NF experimental protocol in terms of feedback modality selection.
Collapse
Affiliation(s)
- Lu Shen
- Department of Psychology, Shanghai Normal University, Shanghai, China; Department of Electrical and Computer Engineering, University of Macau, Macau; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau
| | - Yali Jiang
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, University of Macau, Macau; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau
| | - Yixuan Ku
- Department of Psychology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenya Nan
- Department of Psychology, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
6
|
Matsuzaki Y, Nouchi R, Sakaki K, Dinet J, Kawashima R. The Effect of Cognitive Training with Neurofeedback on Cognitive Function in Healthy Adults: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2023; 11:healthcare11060843. [PMID: 36981504 PMCID: PMC10048721 DOI: 10.3390/healthcare11060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Background: Cognitive training aims to improve cognitive function through cognitive tasks or training games. Neurofeedback is a technique to monitor brain signals with either visual or auditory feedback. Previous studies suggest that a combination of cognitive training and neurofeedback has a superior effect on cognitive functions compared with cognitive training alone. However, no systematic reviews and meta-analyses of the benefits of cognitive training with neurofeedback (CTNF) exist. The purpose of this study was to examine the beneficial effects of CTNF in healthy adults using a systematic review and multilevel meta-analysis. Methods: PubMed, Scopus, PsychoINFO, and MEDLINE were searched for research papers reporting the results of interventions using CTNF. Results: After an initial screening of 234 records, three studies using near-infrared spectroscopy (NIRS) and one study using electroencephalography were extracted from the database. We performed a multi-level meta-analysis with three NIRS studies including 166 participants (mean ages ranged from 21.43 to 65.96 years). A multi-level meta-analysis revealed that CTNF has a beneficial effect on the episodic, long-term, and working memory domains. Conclusions: Although three studies were included in the systematic review and meta-analysis, our results indicate that CTNF using NIRS would lead to improvements in memory functioning.
Collapse
Affiliation(s)
- Yutaka Matsuzaki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
- Correspondence: (Y.M.); (R.N.); Tel.: +81-22-717-7988 (Y.M.); +81-22-717-8952 (R.N.)
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Sendai 980-8575, Japan
- Correspondence: (Y.M.); (R.N.); Tel.: +81-22-717-7988 (Y.M.); +81-22-717-8952 (R.N.)
| | - Kohei Sakaki
- Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| | - Jérôme Dinet
- Laboratoire Lorrain de Psychologie et Neurosciences de la Dynamique des Comportements (2LPN), Université de Lorraine, F-54000 Nancy, France
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
- Department of Cognitive Health Science, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Sendai 980-8575, Japan
- Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Chikhi S, Matton N, Sanna M, Blanchet S. Mental strategies and resting state EEG: Effect on high alpha amplitude modulation by neurofeedback in healthy young adults. Biol Psychol 2023; 178:108521. [PMID: 36801435 DOI: 10.1016/j.biopsycho.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Neurofeedback (NFB) is a brain-computer interface which allows individuals to modulate their brain activity. Despite the self-regulatory nature of NFB, the effectiveness of strategies used during NFB training has been little investigated. In a single session of NFB training (6*3 min training blocks) with healthy young participants, we experimentally tested if providing a list of mental strategies (list group, N = 46), compared with a group receiving no strategies (no list group, N = 39), affected participants' neuromodulation ability of high alpha (10-12 Hz) amplitude. We additionally asked participants to verbally report the mental strategies used to enhance high alpha amplitude. The verbatim was then classified in pre-established categories in order to examine the effect of type of mental strategy on high alpha amplitude. First, we found that giving a list to the participants did not promote the ability to neuromodulate high alpha activity. However, our analysis of the specific strategies reported by learners during training blocks revealed that cognitive effort and recalling memories were associated with higher high alpha amplitude. Furthermore, the resting amplitude of trained high alpha frequency predicted an amplitude increase during training, a factor that may optimize inclusion in NFB protocols. The present results also corroborate the interrelation with other frequency bands during NFB training. Although these findings are based on a single NFB session, our study represents a further step towards developing effective protocols for high alpha neuromodulation by NFB.
Collapse
Affiliation(s)
- Samy Chikhi
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France
| | - Nadine Matton
- CLLE, Université de Toulouse, CNRS (UMR 5263), Toulouse, France; ENAC, École Nationale d'Aviation Civile, Université de Toulouse, France
| | - Marie Sanna
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France
| | - Sophie Blanchet
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France.
| |
Collapse
|
8
|
Chen X, Sui L. Alpha band neurofeedback training based on a portable device improves working memory performance of young people. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Cognitive Training with Neurofeedback Using fNIRS Improves Cognitive Function in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095531. [PMID: 35564926 PMCID: PMC9104766 DOI: 10.3390/ijerph19095531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022]
Abstract
This study examined the effects of a 4-week cognitive training program with neurofeedback (CT-NF) among 86 healthy adults (M = 66.34 years, range 54-84) randomized to either a treatment (app-based ABC games) or control (Tetris) group. Participants completed seven cognitive assessments, pre- and post-intervention, and measured their cortical brain activity using a XB-01 functional near-infrared spectroscopy (fNIRS) brain sensor, while engaging in CT-NF. The treatment (ABC) group showed significant (pre/post-intervention) improvements in memory (MEM), verbal memory (VBM), and composite cognitive function, while the control group did not. However, both groups showed significant improvements in processing speed (PS) and executive function (EF). In line with other studies, we found that strength of cortical brain activity (measured during CT-NF) was associated with both cognitive (pre and post) and game performance. In sum, our findings suggest that CT-NF and specifically ABC exercises, confer improved cognition in the domains of MEM, VBM, PS, and EF.
Collapse
|
10
|
Jiang Y, Jessee W, Hoyng S, Borhani S, Liu Z, Zhao X, Price LK, High W, Suhl J, Cerel-Suhl S. Sharpening Working Memory With Real-Time Electrophysiological Brain Signals: Which Neurofeedback Paradigms Work? Front Aging Neurosci 2022; 14:780817. [PMID: 35418848 PMCID: PMC8995767 DOI: 10.3389/fnagi.2022.780817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/08/2022] [Indexed: 09/19/2023] Open
Abstract
Growing evidence supports the idea that the ultimate biofeedback is to reward sensory pleasure (e.g., enhanced visual clarity) in real-time to neural circuits that are associated with a desired performance, such as excellent memory retrieval. Neurofeedback is biofeedback that uses real-time sensory reward to brain activity associated with a certain performance (e.g., accurate and fast recall). Working memory is a key component of human intelligence. The challenges are in our current limited understanding of neurocognitive dysfunctions as well as in technical difficulties for closed-loop feedback in true real-time. Here we review recent advancements of real time neurofeedback to improve memory training in healthy young and older adults. With new advancements in neuromarkers of specific neurophysiological functions, neurofeedback training should be better targeted beyond a single frequency approach to include frequency interactions and event-related potentials. Our review confirms the positive trend that neurofeedback training mostly works to improve memory and cognition to some extent in most studies. Yet, the training typically takes multiple weeks with 2-3 sessions per week. We review various neurofeedback reward strategies and outcome measures. A well-known issue in such training is that some people simply do not respond to neurofeedback. Thus, we also review the literature of individual differences in psychological factors e.g., placebo effects and so-called "BCI illiteracy" (Brain Computer Interface illiteracy). We recommend the use of Neural modulation sensitivity or BCI insensitivity in the neurofeedback literature. Future directions include much needed research in mild cognitive impairment, in non-Alzheimer's dementia populations, and neurofeedback using EEG features during resting and sleep for memory enhancement and as sensitive outcome measures.
Collapse
Affiliation(s)
- Yang Jiang
- Lexington Veteran Affairs Medical Center, Lexington, KY, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William Jessee
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Stevie Hoyng
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Soheil Borhani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Ziming Liu
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Xiaopeng Zhao
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lacey K. Price
- Lexington Veteran Affairs Medical Center, Lexington, KY, United States
| | - Walter High
- New Mexico Veteran Affairs Medical Center, Albuquerque, NM, United States
| | - Jeremiah Suhl
- Lexington Veteran Affairs Medical Center, Lexington, KY, United States
| | - Sylvia Cerel-Suhl
- Lexington Veteran Affairs Medical Center, Lexington, KY, United States
| |
Collapse
|
11
|
Nouchi R, Nouchi H, Dinet J, Kawashima R. Cognitive Training with Neurofeedback Using NIRS Improved Cognitive Functions in Young Adults: Evidence from a Randomized Controlled Trial. Brain Sci 2021; 12:brainsci12010005. [PMID: 35053748 PMCID: PMC8774006 DOI: 10.3390/brainsci12010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: A previous study has shown that cognitive training with neurofeedback (CT-NF) using down-regulation improves cognitive functions in young adults. Neurofeedback has two strategies for manipulating brain activity (down-regulation and upregulation). However, the benefit of CT-NF with the upregulation of cognitive functions is still unknown. In this study, we investigated whether the upregulation of CT-NF improves a wide range of cognitive functions compared to cognitive training alone. (2) Methods: In this double-blinded randomized control trial (RCT), 60 young adults were randomly assigned to one of three groups: CT-NF group, CT alone group, and an active control (ACT) group who played a puzzle game. Participants in the three groups used the same device (tablet PC and 2ch NIRS (near-infrared spectroscopy)) and performed the training game for 20 min every day for four weeks. We measured brain activity during training in all groups, but only CT-NFs received NF. We also measured a wide range of cognitive functions before and after the intervention period. (3) Results: The CT-NF groups showed superior beneficial effects on episodic memory, working memory, and attention compared to the CT alone and ACT groups. In addition, the CT-NF group showed an increase in brain activity during CT, which was associated with improvements in cognitive function. (4) Discussion: This study first demonstrated that the CT-NF using the upregulation strategy has beneficial effects on cognitive functions compared to the CT alone. Our results suggest that greater brain activities during CT would enhance a benefit from CT.
Collapse
Affiliation(s)
- Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryo-Machi 4-1, Sendai 980-8575, Japan;
- Correspondence:
| | - Haruka Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
| | - Jerome Dinet
- Department of Psychology, Université de Lorraine, F-54000 Nancy, France;
- Lorraine Research Laboratory in Computer Science and Its Applications (LORIA), Université de Lorraine, CNRS, INRIA, F-54000 Nancy, France
| | - Ryuta Kawashima
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Seiryo-Machi 4-1, Sendai 980-8575, Japan;
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
12
|
Viviani G, Vallesi A. EEG-neurofeedback and executive function enhancement in healthy adults: A systematic review. Psychophysiology 2021; 58:e13874. [PMID: 34117795 PMCID: PMC8459257 DOI: 10.1111/psyp.13874] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023]
Abstract
Electroencephalographic (EEG)-neurofeedback training (NFT) is a promising technique that supports individuals in learning to modulate their brain activity to obtain cognitive and behavioral improvements. EEG-NFT is gaining increasing attention for its potential "peak performance" applications on healthy individuals. However, evidence for clear cognitive performance enhancements with healthy adults is still lacking. In particular, whether EEG-NFT represents an effective technique for enhancing healthy adults' executive functions is still controversial. Therefore, the main objective of this systematic review is to assess whether the existing EEG-NFT studies targeting executive functions have provided reliable evidence for NFT effectiveness. To this end, we conducted a qualitative analysis of the literature since the limited number of retrieved studies did not allow us meta-analytical comparisons. Moreover, a second aim was to identify optimal frequencies as NFT targets for specifically improving executive functions. Overall, our systematic review provides promising evidence for NFT effectiveness in boosting healthy adults' executive functions. However, more rigorous NFT studies are required in order to overcome the methodological weaknesses that we encountered in our qualitative analysis.
Collapse
Affiliation(s)
- Giada Viviani
- Department of Neuroscience and Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| | - Antonino Vallesi
- Department of Neuroscience and Padova Neuroscience CenterUniversity of PadovaPadovaItaly
- IRCCS San Camillo HospitalVeniceItaly
| |
Collapse
|
13
|
Bakun Emesh T, Garbi D, Kaplan A, Zelicha H, Yaskolka Meir A, Tsaban G, Rinott E, Meiran N. Retest Reliability of Integrated Speed-Accuracy Measures. Assessment 2021; 29:717-730. [PMID: 33522278 DOI: 10.1177/1073191120985609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cognitive tasks borrowed from experimental psychology are often used to assess individual differences. A cardinal issue of this transition from experimental to correlational designs is reduced retest reliability of some well-established cognitive effects as well as speed-accuracy trade-off. The present study aimed to address these issues by examining the retest reliability of various methods for speed-accuracy integration and by comparing between two types of task modeling: difference scores and residual scores. Results from three studies on executive functions show that (a) integrated speed-accuracy scoring is generally more reliable as compared with nonintegrated methods: mean response time and accuracy; and (b) task modeling, especially residual scores, reduced reliability. We thus recommend integrating speed and accuracy, at least for measuring executive functions.
Collapse
Affiliation(s)
| | - Dror Garbi
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alon Kaplan
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hila Zelicha
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Gal Tsaban
- Ben-Gurion University of the Negev, Beer Sheva, Israel.,Soroka University Medical Center, Beer Sheva, Israel
| | - Ehud Rinott
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
14
|
Yeh WH, Hsueh JJ, Shaw FZ. Neurofeedback of Alpha Activity on Memory in Healthy Participants: A Systematic Review and Meta-Analysis. Front Hum Neurosci 2021; 14:562360. [PMID: 33469422 PMCID: PMC7813983 DOI: 10.3389/fnhum.2020.562360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Neurofeedback training (NFT) has recently been proposed as a valuable technique for cognitive enhancement and psychiatric amelioration. However, effect of NFT of alpha activity on memory is controversial. The current study analyzed previous works in terms of randomized and blinded analyses, training paradigms, and participant characteristics to validate the efficacy of alpha NFT on memory in a healthy population. Objectives: A systematic meta-analysis of studies with randomized controlled trials was performed to explore the effect of alpha NFT on working memory (WM) and episodic memory (EM) in a healthy population. Methods: We searched PubMed, Embase, and Cochrane Library from January 1, 1999, to November 30, 2019. Previous studies were evaluated with the Cochrane risk of bias (RoB). A meta-analysis calculating absolute weighted standardized mean difference (SMD) using random-effects models was employed. Heterogeneity was estimated using I 2 statistics. Funnel plots and Egger's test were performed to evaluate the quality of evidence. Results: Sixteen studies with 217 healthy participants in the control group and 210 participants in the alpha group met the eligibility criteria. Alpha NFT studies with WM measures presented little publication bias (P = 0.116), and 5 of 7 domains in the Cochrane RoB exhibited a low risk of bias. The overall effect size from 14 WM studies was 0.56 (95% CI 0.31-0.81, P < 0.0001; I 2 = 28%). Six EM studies exhibited an effect size of 0.77 (95% CI 0.06-1.49, P = 0.03; I 2 = 77%). Conclusion: Meta-analysis results suggest that alpha NFT seems to have a positive effect on the WM and EM of healthy participants. Future efforts should focus on the neurophysiological mechanisms of alpha NFT in memory.
Collapse
Affiliation(s)
- Wen-Hsiu Yeh
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Jui Hsueh
- Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan
| | - Fu-Zen Shaw
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
- Mind Research and Imaging Center, National Cheng Kung University, Tainan, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Is Training with the N-Back Task More Effective Than with Other Tasks? N-Back vs. Dichotic Listening vs. Simple Listening. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00202-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractCognitive training most commonly uses computerized tasks that stimulate simultaneous cognitive processing in two modalities, such as a dual n-back task with visual and auditive stimuli, or on two receptive channels, such as a listening task with dichotically presented stimuli. The present study was designed to compare a dual n-back task and a dichotic listening (DL) task with an active control condition (a simple listening task) and a no-training control condition for their impact on cognitive performance, daily life memory, and mindfulness. One hundred thirty healthy adults aged 18–55 years were randomly assigned to one of the four conditions. The training consisted of twenty 15-min sessions spread across 4 weeks. The results indicated some improvement on episodic memory tasks and a trend for enhanced performance in an untrained working memory (WM) span task following cognitive training relative to the no-training control group. However, the only differential training effects were found for the DL training in increasing choice reaction performance and a trend for self-reported mindfulness. Transfer to measures of fluid intelligence and memory in daily life did not emerge. Additionally, we found links between self-efficacy and n-back training performance and between emotion regulation and training motivation. Our results contribute to the field of WM training by demonstrating that our listening tasks are comparable in effect to a dual n-back task in slightly improving memory. The possibility of improving attentional control and mindfulness through dichotic listening training is promising and deserves further consideration.
Collapse
|