1
|
Sánchez-Roncancio C, García B, Gallardo-Hidalgo J, Yáñez JM. GWAS on Imputed Whole-Genome Sequence Variants Reveal Genes Associated with Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). Genes (Basel) 2022; 14:114. [PMID: 36672855 PMCID: PMC9859203 DOI: 10.3390/genes14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) allow the identification of associations between genetic variants and important phenotypes in domestic animals, including disease-resistance traits. Whole Genome Sequencing (WGS) data can help increase the resolution and statistical power of association mapping. Here, we conduced GWAS to asses he facultative intracellular bacterium Piscirickettsia salmonis, which affects farmed rainbow trout, Oncorhynchus mykiss, in Chile using imputed genotypes at the sequence level and searched for candidate genes located in genomic regions associated with the trait. A total of 2130 rainbow trout were intraperitoneally challenged with P. salmonis under controlled conditions and genotyped using a 57K single nucleotide polymorphism (SNP) panel. Genotype imputation was performed in all the genotyped animals using WGS data from 102 individuals. A total of 488,979 imputed WGS variants were available in the 2130 individuals after quality control. GWAS revealed genome-wide significant quantitative trait loci (QTL) in Omy02, Omy03, Omy25, Omy26 and Omy27 for time to death and in Omy26 for binary survival. Twenty-four (24) candidate genes associated with P. salmonis resistance were identified, which were mainly related to phagocytosis, innate immune response, inflammation, oxidative response, lipid metabolism and apoptotic process. Our results provide further knowledge on the genetic variants and genes associated with resistance to intracellular bacterial infection in rainbow trout.
Collapse
Affiliation(s)
- Charles Sánchez-Roncancio
- Doctorado en Acuicultura, Programa Cooperativo: Universidad de Chile. Universidad Católica del Norte. Pontificia Universidad Católica de Valparaíso, Chile
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
| | - Baltasar García
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | - Jousepth Gallardo-Hidalgo
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | - José M. Yáñez
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820808, Chile
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Núcleo Milenio de Salmonidos Invasores Australes (INVASAL), Concepcion 4030000, Chile
| |
Collapse
|
2
|
Mechanisms regulating the sorting of soluble lysosomal proteins. Biosci Rep 2022; 42:231123. [PMID: 35394021 PMCID: PMC9109462 DOI: 10.1042/bsr20211856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer’s disease, Parkinson’s disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.
Collapse
|
3
|
Chandhini S, Trumboo B, Jose S, Varghese T, Rajesh M, Kumar VJR. Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1011-1031. [PMID: 33987811 DOI: 10.1007/s10695-021-00961-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The insulin-like growth factor signalling system comprises insulin-like growth factors, insulin-like growth factor receptors and insulin-like growth factor-binding proteins. Along with the growth hormones, insulin-like growth factor signalling is very pivotal in the growth and development of all vertebrates. In fishes, insulin-like growth factors play an important role in osmoregulation, besides the neuroendocrine regulation of growth. Insulin-like growth factor concentration in plasma can assess the growth in fishes and shellfishes and therefore widely applied in nutritional research as an indicator to evaluate the performance of selected nutrients. The present review summarizes the role of insulin-like growth factor signalling in fishes and shellfishes, its significance in aquaculture and in evaluating growth, reproduction and development, and discusses the utility of this system as biomarkers for early indication of growth in aquaculture.
Collapse
Affiliation(s)
- S Chandhini
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Bushra Trumboo
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Seena Jose
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, 682016, Kerala, India
| | - Tincy Varghese
- Fish Physiology and Biochemistry Division, ICAR-Central Institute of Fisheries Education, Off-Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - M Rajesh
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| | - V J Rejish Kumar
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India.
| |
Collapse
|
4
|
Takifugu rubripes cation independent mannose 6-phosphate receptor: Cloning, expression and functional characterization of the IGF-II binding domain. Int J Biol Macromol 2018; 113:59-65. [DOI: 10.1016/j.ijbiomac.2018.01.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022]
|
5
|
Leksa V, Ilková A, Vičíková K, Stockinger H. Unravelling novel functions of the endosomal transporter mannose 6-phosphate/insulin-like growth factor receptor (CD222) in health and disease: An emerging regulator of the immune system. Immunol Lett 2017; 190:194-200. [PMID: 28823520 DOI: 10.1016/j.imlet.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 02/02/2023]
Abstract
Properly balanced cellular responses require both the mutual interactions of soluble factors with cell surface receptors and the crosstalk of intracellular molecules. In particular, immune cells exposed unceasingly to an array of positive and negative stimuli must distinguish between what has to be tolerated and attacked. Protein trafficking is one of crucial pathways involved in this labour. The approximately >270-kDa protein transporter called mannose 6- phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R, CD222) is a type I transmembrane glycoprotein present largely intracellularly in the Golgi apparatus and endosomal compartments, but also at the cell surface. It is expressed ubiquitously in a vast majority of higher eukaryotic cell types. Through binding and trafficking multiple unrelated extracellular and intracellular ligands, CD222 is involved in the regulation of a plethora of functions, and thus implicated in many physiological but also pathophysiological conditions. This review describes, first, general features of CD222, such as its evolution, genomic structure and regulation, protein structure and ligands; and second, its specific functions with a special focus on the immune system.
Collapse
Affiliation(s)
- Vladimir Leksa
- Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Lazarettgasse 19, A-1090 Vienna, Austria; Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Antónia Ilková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Kristína Vičíková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Hannes Stockinger
- Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Lazarettgasse 19, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Saldivar Lemus Y, Vielle-Calzada JP, Ritchie MG, Macías Garcia C. Asymmetric paternal effect on offspring size linked to parent-of-origin expression of an insulin-like growth factor. Ecol Evol 2017. [PMID: 28649356 PMCID: PMC5478053 DOI: 10.1002/ece3.3025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sexual reproduction brings together reproductive partners whose long‐term interests often differ, raising the possibility of conflict over their reproductive investment. Males that enhance maternal investment in their offspring gain fitness benefits, even if this compromises future reproductive investment by iteroparous females. When the conflict occurs at a genomic level, it may be uncovered by crossing divergent populations, as a mismatch in the coevolved patterns of paternal manipulation and maternal resistance may generate asymmetric embryonic growth. We report such an asymmetry in reciprocal crosses between populations of the fish Girardinichthys multiradiatus. We also show that a fragment of a gene which can influence embryonic growth (Insulin‐Like Growth Factor 2; igf2) exhibits a parent‐of‐origin methylation pattern, where the maternally inherited igf2 allele has much more 5′ cytosine methylation than the paternally inherited allele. Our findings suggest that male manipulation of maternal investment may have evolved in fish, while the parent‐of‐origin methylation pattern appears to be a potential candidate mechanism modulating this antagonistic coevolution process. However, disruption of other coadaptive processes cannot be ruled out, as these can lead to similar effects as conflict.
Collapse
|
7
|
Wang Y, MacDonald RG, Thinakaran G, Kar S. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Mol Neurobiol 2017; 54:2636-2658. [PMID: 26993302 PMCID: PMC5901910 DOI: 10.1007/s12035-016-9849-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein. Recent studies have advanced our understanding of the structure, ligand-binding properties, and trafficking of the IGF-II/M6P receptor. This receptor has been implicated in a variety of important cellular processes including growth and development, clearance of IGF-II, proteolytic activation of enzymes, and growth factor precursors, in addition to its well-known role in the delivery of lysosomal enzymes. The IGF-II/M6P receptor, distributed widely in the central nervous system, has additional roles in mediating neurotransmitter release and memory enhancement/consolidation, possibly through activating IGF-II-related intracellular signaling pathways. Recent studies suggest that overexpression of the IGF-II/M6P receptor may have an important role in regulating the levels of transcripts and proteins involved in the development of Alzheimer's disease (AD)-the prevalent cause of dementia affecting the elderly population in our society. It is reported that IGF-II/M6P receptor overexpression can increase the levels/processing of amyloid precursor protein leading to the generation of β-amyloid peptide, which is associated with degeneration of neurons and subsequent development of AD pathology. Given the significance of the receptor in mediating the transport and functioning of the lysosomal enzymes, it is being considered for therapeutic delivery of enzymes to the lysosomes to treat lysosomal storage disorders. Notwithstanding these results, additional studies are required to validate and fully characterize the function of the IGF-II/M6P receptor in the normal brain and its involvement in various neurodegenerative disorders including AD. It is also critical to understand the interaction between the IGF-II/M6P receptor and lysosomal enzymes in neurodegenerative processes, which may shed some light on developing approaches to detect and prevent neurodegeneration through the dysfunction of the receptor and the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - R G MacDonald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - G Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
8
|
Similarities and differences in the biogenesis, processing and lysosomal targeting between zebrafish and human pro-Cathepsin D: functional implications. Int J Biochem Cell Biol 2012; 45:273-82. [PMID: 23107604 DOI: 10.1016/j.biocel.2012.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 10/20/2012] [Indexed: 12/11/2022]
Abstract
The lysosomal protease Cathepsin D (CD) plays a role in neurodegenerative diseases, cancer, and embryo-fetus abnormalities. It is therefore of interest to know how this protein is synthesized in animal species used for modeling human diseases. Zebrafish (Danio rerio) is emerging as a valuable 'in vivo' vertebrate model for several human diseases. We have characterized the biogenetic pathways of zebrafish and human CD transgenically expressed in both human SH-SY5Y cells and zebrafish PAC2 cells. Differently from human CD, zebrafish CD was synthesized as a mono-glycosylated precursor (pro-CD) that was eventually processed into a single-chain mature polypeptide. In PAC2 cells, ammonium chloride and chloroquine impaired the N-glycosylation, and greatly stimulated the secretion, of pro-CD; still, a portion of un-glycosylated pro-CD reached the lysosomes and was processed to mature CD. The treatment with tunicamycin, which abrogates N-glycosylation, resulted in a similar effect. Zebrafish pro-CD was correctly processed when expressed in human cells, and its glycosylation, transport and maturation were not impaired by ammonium chloride. On the contrary, the transport and processing of human pro-CD expressed in zebrafish cells were profoundly altered: while the intermediate single-chain was not detectable, a small amount of double-chain mature CD still formed. This fact indicates that the enzyme machinery for single- to double-chain processing of mammal CD is present in zebrafish. Our data highlight the respective impact of the information imparted by the primary sequence and of the cellular transport and processing machineries in the biogenesis of lysosomal CD.
Collapse
|
9
|
Gupta GS. P-Type Lectins: Cation-Dependent Mannose-6-Phosphate Receptor. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121444 DOI: 10.1007/978-3-7091-1065-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In eukaryotic cells, post-translational modification of secreted proteins and intracellular protein transport between organelles are ubiquitous features. One of the most studied systems is the N-linked glycosylation pathway in the synthesis of secreted glycoproteins (Schrag et al. 2003). The N-linked glycoproteins are subjected to diverse modifications and are transported through ER and Golgi apparatus to their final destinations in- and outside the cell. Incorporation of cargo glycoproteins into transport vesicles is mediated by transmembrane cargo receptors, which have been identified as intracellular lectins. For example, mannose 6-phosphate receptors (Ghosh et al. 2003) function as a cargo receptor for lysosomal proteins in the trans-Golgi network, whereas ERGIC-53 (Zhang et al. 2003) and its yeast orthologs Emp46/47p (Sato and Nakano 2002) are transport lectins for glycoproteins that are transported out of ER.
Collapse
Affiliation(s)
- G. S. Gupta
- Department of Biophysics, Punjab University, Chandigarh, India
| |
Collapse
|
10
|
Castonguay AC, Lasanajak Y, Song X, Olson LJ, Cummings RD, Smith DF, Dahms NM. The glycan-binding properties of the cation-independent mannose 6-phosphate receptor are evolutionary conserved in vertebrates. Glycobiology 2012; 22:983-96. [PMID: 22369936 DOI: 10.1093/glycob/cws058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in the biogenesis of lysosomes by delivering newly synthesized lysosomal enzymes from the trans Golgi network to the endosomal system. The CI-MPR is expressed in most eukaryotes, with Saccharomyces cerevisiae and Caenorhabditis elegans being notable exceptions. Although the repertoire of glycans recognized by the bovine receptor has been studied extensively, little is known concerning the ligand-binding properties of the CI-MPR from non-mammalian species. To assess the evolutionary conservation of the CI-MPR, surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were carried out to probe the glycan-binding specificity of the Danio rerio CI-MPR. The results demonstrate that the D. rerio CI-MPR harbors three glycan-binding sites that, like the bovine CI-MPR, map to domains 3, 5 and 9 of its 15-domain-containing extracytoplasmic region. Analyses on a phosphorylated glycan microarray further demonstrated the unique binding properties of each of the three sites and showed that, similar to the bovine CI-MPR, only domain 5 of the D. rerio CI-MPR is capable of recognizing Man-P-GlcNAc-containing glycans.
Collapse
Affiliation(s)
- Alicia C Castonguay
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Castonguay AC, Olson LJ, Dahms NM. Mannose 6-phosphate receptor homology (MRH) domain-containing lectins in the secretory pathway. Biochim Biophys Acta Gen Subj 2011; 1810:815-26. [PMID: 21723917 DOI: 10.1016/j.bbagen.2011.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mannose 6-phosphate receptor homology (MRH) domain-containing family of proteins, which include recycling receptors (mannose 6-phosphate receptors, MPRs), resident endoplasmic reticulum (ER) proteins (glucosidase II β-subunit, XTP3-B, OS-9), and a Golgi glycosyltransferase (GlcNAc-phosphotransferase γ-subunit), are characterized by the presence of one or more MRH domains. Many MRH domains act as lectins and bind specific phosphorylated (MPRs) or non-phosphorylated (glucosidase II β-subunit, XTP3-B and OS-9) high mannose-type N-glycans. The MPRs are the only proteins known to bind mannose 6-phosphate (Man-6-P) residues via their MRH domains. SCOPE OF REVIEW Recent biochemical and structural studies that have provided valuable insight into the glycan specificity and mechanisms of carbohydrate recognition by this diverse group of MRH domain-containing proteins are highlighted. MAJOR CONCLUSIONS Currently, three-dimensional structures are known for ten MRH domains, revealing the conservation of a similar fold. OS-9 and the MPRs use the same four residues (Gln, Arg, Glu, and Tyr) to bind mannose. GENERAL SIGNIFICANCE The MRH domain-containing proteins play key roles in the secretory pathway: glucosidase II, XTP3-B, and OS-9 are involved in the recognition of nascent glycoproteins, whereas the MPRs play an essential role in lysosome biogenesis by targeting Man-6-P-containing lysosomal enzymes to the lysosome.
Collapse
Affiliation(s)
- Alicia C Castonguay
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
12
|
Zeng J, Racicott J, Morales CR. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes. Exp Cell Res 2009; 315:3112-24. [PMID: 19732768 DOI: 10.1016/j.yexcr.2009.08.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 12/23/2022]
Abstract
Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM(2)AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin-deficient mice.
Collapse
Affiliation(s)
- Jibin Zeng
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | | | |
Collapse
|
13
|
Tsalavouta M, Astudillo O, Byrnes L, Nolan CM. Regulation of expression of zebrafish(Danio rerio) insulin-like growth factor 2 receptor: implications for evolution at theIGF2Rlocus. Evol Dev 2009; 11:546-58. [DOI: 10.1111/j.1525-142x.2009.00361.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Zebrafish kidney phagocytes utilize macropinocytosis and Ca+-dependent endocytic mechanisms. PLoS One 2009; 4:e4314. [PMID: 19183805 PMCID: PMC2629567 DOI: 10.1371/journal.pone.0004314] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/17/2008] [Indexed: 01/20/2023] Open
Abstract
Background The innate immune response constitutes the first line of defense against invading pathogens and consists of a variety of immune defense mechanisms including active endocytosis by macrophages and granulocytes. Endocytosis can be used as a reliable measure of selective and non-selective mechanisms of antigen uptake in the early phase of an immune response. Numerous assays have been developed to measure this response in a variety of mammalian and fish species. The small size of the zebrafish has prevented the large-scale collection of monocytes/macrophages and granulocytes for these endocytic assays. Methodology/Principal Findings Pooled zebrafish kidney hematopoietic tissues were used as a source of phagocytic cells for flow-cytometry based endocytic assays. FITC-Dextran, Lucifer Yellow and FITC-Edwardsiella ictaluri were used to evaluate selective and non-selective mechanisms of uptake in zebrafish phagocytes. Conclusions/Significance Zebrafish kidney phagocytes characterized as monocytes/macrophages, neutrophils and lymphocytes utilize macropinocytosis and Ca2+-dependant endocytosis mechanisms of antigen uptake. These cells do not appear to utilize a mannose receptor. Heat-killed Edwardsiella ictaluri induces cytoskeletal interactions for internalization in zebrafish kidney monocytes/macrophages and granulocytes. The proposed method is easy to implement and should prove especially useful in immunological, toxicological and epidemiological research.
Collapse
|
15
|
Dahms NM, Olson LJ, Kim JJP. Strategies for carbohydrate recognition by the mannose 6-phosphate receptors. Glycobiology 2008; 18:664-78. [PMID: 18621992 DOI: 10.1093/glycob/cwn061] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.
Collapse
Affiliation(s)
- Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
16
|
Mannose-6-phosphate receptors (MPR 300 and 46) from the highly evolved invertebrate Asterias rubens (Echinodermate): biochemical and functional characterization of MPR 46 protein. Glycoconj J 2008; 25:889-901. [PMID: 18604641 DOI: 10.1007/s10719-008-9153-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) mediate transport of lysosomal enzymes to lysosomes. Recent studies established that the receptors are conserved throughout vertebrates. Although we purified the mollusc receptors and identified only a lysosomal enzyme receptor protein (LERP) in the Drosophila melanogaster, little is known about their structure and functional roles in the invertebrates. In the present study, we purified the putative receptors from the highly evolved invertebrate, starfish, cloned the cDNA for the MPR 46, and expressed it in mpr((-/-)) mouse embryonic fibroblast cells. Structural comparison of starfish receptor sequences with other vertebrate receptors gave valuable information on its extensive structural homology with the vertebrate MPR 46 proteins. The expressed protein efficiently sorts lysosomal enzymes within the cells establishing a functional role for this protein. This first report on the invertebrate MPR 46 further confirms the structural and functional conservation of the receptor not only in the vertebrates but also in the invertebrates.
Collapse
|
17
|
Ponce M, Infante C, Funes V, Manchado M. Molecular characterization and gene expression analysis of insulin-like growth factors I and II in the redbanded seabream, Pagrus auriga: transcriptional regulation by growth hormone. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:418-26. [PMID: 18539063 DOI: 10.1016/j.cbpb.2008.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/25/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
Insulin-like growth factors (IGFs) I and II (IGF-I and IGF-II) play important roles in fish growth and development. The present study was aimed at isolating cDNAs encoding both IGF-I and IGF-II in the redbanded seabream (Pagrus auriga), and at measuring relative gene expression levels in different organs and during larval development. A fragment of 1321 nucleotides coding for IGF-I was cloned from liver using 3' and 5' RACE techniques. It included an open reading frame of 558 nucleotides, encoding a 185-amino acid preproIGF-I. With respect to IGF-II, a fragment of 1544 nucleotides was cloned as well. The open reading frame spanned 648 nucleotides, rendering a 215-amino acid preproIGF-II. The deduced mature 67-amino acid IGF-I and 70-amino acid IGF-II exhibited high sequence identities with their corresponding fish counterparts, ranging between 88.6-100% and 79.1-98.5%, respectively. Real-time PCR showed the highest IGF-I transcripts in liver ( approximately 200-fold higher than head-kidney). In contrast, the highest IGF-II mRNAs were detected in gills and heart ( approximately 16-fold higher than head-kidney). In addition, both IGFs exhibited different gene expression patterns during larval development suggesting that their expression is developmentally regulated. IGF-I reached the highest expression levels at 18 days after hatching (11.6-fold higher than 1 day after hatching), whereas IGF-II expression did not change significantly. Both hepatic IGF-I and IGF-II mRNA levels increased sharply (3.1- and 19-fold higher than control, respectively) 3 h after injection of porcine growth hormone, but remained unchanged from 6 to 24 h after treatment. Our results are discussed in relation to those previously reported for other bony fish.
Collapse
Affiliation(s)
- Marian Ponce
- IFAPA Centro El Toruño, Camino Tiro de Pichón s/n, 11500 El Puerto de Santa María (Cádiz), Spain
| | | | | | | |
Collapse
|
18
|
Qian M, Sleat DE, Zheng H, Moore D, Lobel P. Proteomics Analysis of Serum from Mutant Mice Reveals Lysosomal Proteins Selectively Transported by Each of the Two Mannose 6-Phosphate Receptors. Mol Cell Proteomics 2008; 7:58-70. [PMID: 17848585 DOI: 10.1074/mcp.m700217-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most mammalian cells contain two types of mannose 6-phosphate (Man-6-P) receptors (MPRs): the 300 kDa cation-independent (CI) MPR and 46 kDa cation-dependent (CD) MPR. The two MPRs have overlapping function in intracellular targeting of newly synthesized lysosomal proteins, but both are required for efficient targeting. Despite extensive investigation, the relative roles and specialized functions of each MPR in targeting of specific proteins remain questions of fundamental interest. One possibility is that most Man-6-P glycoproteins are transported by both MPRs, but there may be subsets that are preferentially transported by each. To investigate this, we have conducted a proteomics analysis of serum from mice lacking either MPR with the reasoning that lysosomal proteins that are selectively transported by a given MPR should be preferentially secreted into the bloodstream in its absence. We purified and identified Man-6-P glycoproteins and glycopeptides from wild-type, CDMPR-deficient, and CIMPR-deficient mouse serum and found both lysosomal proteins and proteins not currently thought to have lysosomal function. Different mass spectrometric approaches (spectral count analysis of nanospray LC-MS/MS experiments on unlabeled samples and LC-MALDI/TOF/TOF experiments on iTRAQ-labeled samples) revealed a number of proteins that appear specifically elevated in serum from each MPR-deficient mouse. Man-6-P glycoforms of cellular repressor of E1A-stimulated genes 1, tripeptidyl peptidase I, and heparanase were elevated in absence of the CDMPR and Man-6-P glycoforms of alpha-mannosidase B1, cathepsin D, and prosaposin were elevated in the absence of the CIMPR. Results were confirmed by Western blot analyses for select proteins. This study provides a comparison of different quantitative mass spectrometric approaches and provides the first report of proteins whose cellular targeting appears to be MPR-selective under physiological conditions.
Collapse
Affiliation(s)
- Meiqian Qian
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|