1
|
Boyan GS, Williams L, Müller T, Bacon JP. Ontogeny and development of the tritocerebral commissure giant (TCG): an identified neuron in the brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:149-162. [PMID: 29666910 DOI: 10.1007/s00427-018-0612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
Abstract
The tritocerebral commissure giant (TCG) of the grasshopper Schistocerca gregaria is one of the best anatomically and physiologically described arthropod brain neurons. A member of the so-called Ventral Giant cluster of cells, it integrates sensory information from visual, antennal and hair receptors, and synapses with thoracic motor neurons in order to initiate and regulate flight behavior. Its ontogeny, however, remains unclear. In this study, we use bromodeoxyuridine incorporation and cyclin labeling to reveal proliferative neuroblasts in the region of the embryonic brain where the ventral giant cluster is located. Engrailed labeling confirms the deutocerebral identity of this cluster. Comparison of soma locations and initial neurite projections into tracts of the striate deutocerebrum help identify the cells of the ventral cluster in both the embryonic and adult brain. Reconstructions of embryonic cell lineages suggest deutocerebral NB1 as being the putative neuroblast of origin. Intracellular dye injection coupled with immunolabeling against neuron-specific horseradish peroxidase is used to identify the VG1 (TCG) and VG3 neurons from the ventral cluster in embryonic brain slices. Dye injection and backfilling are used to document axogenesis and the progressive expansion of the dendritic arbor of the TCG from mid-embryogenesis up to hatching. Comparative maps of embryonic neuroblasts from several orthopteroid insects suggest equivalent deutocerebral neuroblasts from which the homologous TCG neurons already identified in the adult brain could originate. Our data offer the prospect of identifying further lineage-related neurons from the cluster and so understand a brain connectome from both a developmental and evolutionary perspective.
Collapse
Affiliation(s)
- George Stephen Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany.
| | - Leslie Williams
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany
| | - Tobias Müller
- Faculty of Biology, University of Konstanz, 78457, Constance, Germany
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Jonathan P Bacon
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
2
|
Shah AK, Kreibich CD, Amdam GV, Münch D. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response. PLoS One 2018; 13:e0198322. [PMID: 29927967 PMCID: PMC6013123 DOI: 10.1371/journal.pone.0198322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/17/2018] [Indexed: 12/03/2022] Open
Abstract
The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.
Collapse
Affiliation(s)
- Ashish K. Shah
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Claus D. Kreibich
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Gro V. Amdam
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Daniel Münch
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- * E-mail:
| |
Collapse
|
3
|
Hasegawa DK, Turnbull MW. Recent findings in evolution and function of insect innexins. FEBS Lett 2014; 588:1403-10. [DOI: 10.1016/j.febslet.2014.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
4
|
Dye coupling and immunostaining of astrocyte-like glia following intracellular injection of fluorochromes in brain slices of the grasshopper, Schistocerca gregaria. Methods Mol Biol 2014; 1082:99-113. [PMID: 24048929 DOI: 10.1007/978-1-62703-655-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Injection of fluorochromes such as Alexa Fluor(®) 568 into single cells in brain slices reveals a network of dye-coupled cells to be associated with the central complex. Subsequent immunolabeling shows these cells to be repo positive/glutamine synthetase positive/horseradish peroxidase negative, thus identifying them as astrocyte-like glia. Dye coupling fails in the presence of n-heptanol indicating that dye spreads from cell to cell via gap junctions. A cellular network of dye-coupled, astrocyte-like, glia surrounds and infiltrates developing central complex neuropils. Intracellular dye injection techniques complement current molecular approaches in analyzing the functional properties of such networks.
Collapse
|
5
|
Gliogenesis in the embryonic brain of the grasshopper Schistocerca gregaria with particular focus on the protocerebrum prior to mid-embryogenesis. Cell Tissue Res 2013; 354:697-705. [PMID: 23917388 DOI: 10.1007/s00441-013-1682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
I investigate the pattern of gliogenesis in the brain of the grasshopper Schistocerca gregaria prior to mid-embryogenesis, with particular focus on the protocerebrum. Using the glia-specific marker Repo and the neuron-specific marker HRP, I identify three types of glia with respect to their respective positions in the brain: surface glia form the outmost cell layer ensheathing the brain; cortex glia are intermingled with neuronal somata forming the brain cortex; and neuropil glia are associated with brain neuropils. The ontogeny of each glial type has also been studied. At 24% of embryogenesis, a few glia are observed in each hemisphere of the proto-, deuto- and tritocerebrum. In each protocerebral hemisphere, such glia form a cluster that expands rapidly during later development. Closer examination reveals proliferative glia in such clusters at ages spanning from 24 to 36% of embryogenesis, indicating that glial proliferation may account for the expansion of the clusters. Data derived from 33-39% of embryogenesis suggest that, in the protocerebrum, each type of glia is likely to be generated by its respective progenitor-forming clusters. Moreover, the glial cluster located at the anterior end of the brain can give rise to both surface glia and cortex glia that populate the protocerebrum via subsequent migration. Proliferation is observed for all three glial types, indicating a possible source for the glia.
Collapse
|
6
|
Liu Y, Boyan G. Glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2013; 223:213-23. [PMID: 23494665 DOI: 10.1007/s00427-013-0439-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
We have investigated the pattern of glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Using the glia-specific marker Repo, we identified glia associated externally with such lineages, termed lineage-extrinsic glia, and glia located internally within the lineages, termed lineage-intrinsic glia. Populations of both glial types increase up to 60 % of embryogenesis, and thereafter decrease. Extrinsic glia change their locations over time, while intrinsic ones are consistently found in the more apical part of a lineage. Apoptosis is not observed for either glial type, suggesting migration is a likely mechanism accounting for changes in glial number. Proliferative glia are present both within and without individual lineages and two glial clusters associated with the lineages, one apically and the other basally, may represent sources of glia.
Collapse
Affiliation(s)
- Yu Liu
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstr. 2, 82152, Martinsried, Germany.
| | | |
Collapse
|
7
|
Bailly X, Reichert H, Hartenstein V. The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Dev Genes Evol 2013; 223:149-57. [PMID: 23143292 PMCID: PMC3873165 DOI: 10.1007/s00427-012-0423-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022]
Abstract
Flatworms are classically considered to represent the simplest organizational form of all living bilaterians with a true central nervous system. Based on their simple body plans, all flatworms have been traditionally grouped together in a single phylum at the base of the bilaterians. Current molecular phylogenomic studies now split the flatworms into two widely separated clades, the acoelomorph flatworms and the platyhelminth flatworms, such that the last common ancestor of both clades corresponds to the urbilaterian ancestor of all bilaterian animals. Remarkably, recent comparative neuroanatomical analyses of acoelomorphs and platyhelminths show that both of these flatworm groups have complex anterior brains with surprisingly similar basic neuroarchitectures. Taken together, these findings imply that fundamental neuroanatomical features of the brain in the two separate flatworm groups are likely to be primitive and derived from the urbilaterian brain.
Collapse
Affiliation(s)
- Xavier Bailly
- UPMC-CNRS. FR2424. Station Biologique de Roscoff. 29680 Roscoff. France
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-Basel, Switzerland
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
8
|
Boyan G, Williams L, Götz S. Postembryonic development of astrocyte-like glia of the central complex in the grasshopper Schistocerca gregaria. Cell Tissue Res 2012; 351:361-72. [PMID: 23250573 DOI: 10.1007/s00441-012-1535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/06/2012] [Indexed: 12/25/2022]
Abstract
Central complex modules in the postembryonic brain of the grasshopper Schistocerca gregaria are enveloped by Repo-positive/glutamine-synthetase-positive astrocyte-like glia. Such cells constitute Rind-Neuropil Interface glia. We have investigated the postembryonic development of these glia and their anatomical relationship to axons originating from the w, x, y, z tract system of the pars intercerebralis. Based on glutamine synthetase immunolabeling, we have identified four morphological types of cells: bipolar type 1 glia delimit the central body but only innervate its neuropil superficially; monopolar type 2 glia have a more columnar morphology and direct numerous gliopodia into the neuropil where they arborize extensively; monopolar type 3 glia are found predominantly in the region between the noduli and the central body and have a dendritic morphology and their gliopodia project deeply into the central body neuropil where they arborize extensively; multipolar type 4 glia link the central body neuropil with neighboring neuropils of the protocerebrum. These glia occupy type-specific distributions around the central body. Their gliopodia develop late in embryogenesis, elongate and generally become denser during subsequent postembryonic development. Gliopodia from putatively type 3 glia within the central body have been shown to lie closely apposed to individual axons of identified columnar fiber bundles from the w, x, y, z tract system of the central complex. This anatomical association might offer a substrate for neuron/glia interactions mediating postembryonic maturation of the central complex.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
9
|
Ritzmann RE, Harley CM, Daltorio KA, Tietz BR, Pollack AJ, Bender JA, Guo P, Horomanski AL, Kathman ND, Nieuwoudt C, Brown AE, Quinn RD. Deciding which way to go: how do insects alter movements to negotiate barriers? Front Neurosci 2012; 6:97. [PMID: 22783160 PMCID: PMC3390555 DOI: 10.3389/fnins.2012.00097] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/13/2012] [Indexed: 11/13/2022] Open
Abstract
Animals must routinely deal with barriers as they move through their natural environment. These challenges require directed changes in leg movements and posture performed in the context of ever changing internal and external conditions. In particular, cockroaches use a combination of tactile and visual information to evaluate objects in their path in order to effectively guide their movements in complex terrain. When encountering a large block, the insect uses its antennae to evaluate the object’s height then rears upward accordingly before climbing. A shelf presents a choice between climbing and tunneling that depends on how the antennae strike the shelf; tapping from above yields climbing, while tapping from below causes tunneling. However, ambient light conditions detected by the ocelli can bias that decision. Similarly, in a T-maze turning is determined by antennal contact but influenced by visual cues. These multi-sensory behaviors led us to look at the central complex as a center for sensori-motor integration within the insect brain. Visual and antennal tactile cues are processed within the central complex and, in tethered preparations, several central complex units changed firing rates in tandem with or prior to altered step frequency or turning, while stimulation through the implanted electrodes evoked these same behavioral changes. To further test for a central complex role in these decisions, we examined behavioral effects of brain lesions. Electrolytic lesions in restricted regions of the central complex generated site specific behavioral deficits. Similar changes were also found in reversible effects of procaine injections in the brain. Finally, we are examining these kinds of decisions made in a large arena that more closely matches the conditions under which cockroaches forage. Overall, our studies suggest that CC circuits may indeed influence the descending commands associated with navigational decisions, thereby making them more context dependent.
Collapse
Affiliation(s)
- Roy E Ritzmann
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|