1
|
Ribeiro JM, Mendes J, Gante I, Figueiredo-Dias M, Almeida V, Gomes A, Regateiro FJ, Regateiro FS, Caramelo F, Silva HC. Two Different Immune Profiles Are Identified in Sentinel Lymph Nodes of Early-Stage Breast Cancer. Cancers (Basel) 2024; 16:2881. [PMID: 39199652 PMCID: PMC11352239 DOI: 10.3390/cancers16162881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
In the management of early-stage breast cancer (BC), lymph nodes (LNs) are typically characterised using the One-Step Nucleic Acid Amplification (OSNA) assay, a standard procedure for assessing subclinical metastasis in sentinel LNs (SLNs). The pivotal role of LNs in coordinating the immune response against BC is often overlooked. Our aim was to improve prognostic information provided by the OSNA assay and explore immune-related gene signatures in SLNs. The expression of an immune gene panel was analysed in SLNs from 32 patients with Luminal A early-stage BC (cT1-T2 N0). Using an unsupervised approach based on these expression values, this study identified two clusters, regardless of the SLN invasion: one evidencing an adaptive anti-tumoral immune response, characterised by an increase in naive B cells, follicular T helper cells, and activated NK cells; and another with a more undifferentiated response, with an increase in the activated-to-resting dendritic cells (DCs) ratio. Through a protein-protein interaction (PPI) network, we identified seven immunoregulatory hub genes: CD80, CD40, TNF, FCGR3A, CD163, FCGR3B, and CCR2. This study shows that, in Luminal A early-stage BC, SLNs gene expression studies enable the identification of distinct immune profiles that may influence prognosis stratification and highlight key genes that could serve as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Joana Martins Ribeiro
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Mendes
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Gante
- Gynecology Department, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Gynecology University Clinic, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Gynecology Department, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Gynecology University Clinic, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Vânia Almeida
- Department of Pathology, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Gomes
- Department of Pathology, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
| | - Fernando Jesus Regateiro
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Frederico Soares Regateiro
- Institute for Clinical and Biomedical Research (iCBR), Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Allergy and Clinical Immunology Unit, Coimbra Hospital and University Center, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Institute for Clinical and Biomedical Research (iCBR), Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Henriqueta Coimbra Silva
- Laboratory of Sequencing and Functional Genomics of UCGenomics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| |
Collapse
|
2
|
Otterlei Fjørtoft M, Huse K, Rye IH. The Tumor Immune Microenvironment in Breast Cancer Progression. Acta Oncol 2024; 63:359-367. [PMID: 38779867 PMCID: PMC11332517 DOI: 10.2340/1651-226x.2024.33008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The tumor microenvironment significantly influences breast cancer development, progression, and metastasis. Various immune cell populations, including T cells, B cells, NK cells, and myeloid cells exhibit diverse functions in different breast cancer subtypes, contributing to both anti-tumor and pro-tumor activities. PURPOSE This review provides an overview of the predominant immune cell populations in breast cancer subtypes, elucidating their suppressive and prognostic effects. We aim to outline the role of the immune microenvironment from normal breast tissue to invasive cancer and distant metastasis. METHODS A comprehensive literature review was conducted to analyze the involvement of immune cells throughout breast cancer progression. RESULTS In breast cancer, tumors exhibit increased immune cell infiltration compared to normal tissue. Variations exist across subtypes, with higher levels observed in triple-negative and HER2+ tumors are linked to better survival. In contrast, ER+ tumors display lower immune infiltration, associated with poorer outcomes. Furthermore, metastatic sites commonly exhibit a more immunosuppressive microenvironment. CONCLUSION Understanding the complex interaction between tumor and immune cells during breast cancer progression is essential for future research and the development of immune-based strategies. This comprehensive understanding may pave the way for more effective treatment approaches and improved patients outcomes.
Collapse
Affiliation(s)
- Marit Otterlei Fjørtoft
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway
| | - Inga Hansine Rye
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
4
|
Tommasi C, Pellegrino B, Diana A, Palafox Sancez M, Orditura M, Scartozzi M, Musolino A, Solinas C. The Innate Immune Microenvironment in Metastatic Breast Cancer. J Clin Med 2022; 11:jcm11205986. [PMID: 36294305 PMCID: PMC9604853 DOI: 10.3390/jcm11205986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
The immune system plays a fundamental role in neoplastic disease. In the era of immunotherapy, the adaptive immune response has been in the spotlight whereas the role of innate immunity in cancer development and progression is less known. The tumor microenvironment influences the terminal differentiation of innate immune cells, which can explicate their pro-tumor or anti-tumor effect. Different cells are able to recognize and eliminate no self and tumor cells: macrophages, natural killer cells, monocytes, dendritic cells, and neutrophils are, together with the elements of the complement system, the principal players of innate immunity in cancer development and evolution. Metastatic breast cancer is a heterogeneous disease from the stromal, immune, and biological point of view and requires deepened exploration to understand different patient outcomes. In this review, we summarize the evidence about the role of innate immunity in breast cancer metastatic sites and the potential targets for optimizing the innate response as a novel treatment opportunity.
Collapse
Affiliation(s)
- Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
- Correspondence:
| | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Marta Palafox Sancez
- Tumor Heterogeneity, Metastasis and Resistance Laboratory, University of Basel, 4001 Basel, Switzerland
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Mario Scartozzi
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- GOIRC (Gruppo Oncologico Italiano di Ricerca Clinica), 43126 Parma, Italy
| | - Cinzia Solinas
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
5
|
Wall I, Boulat V, Shah A, Blenman KRM, Wu Y, Alberts E, Calado DP, Salgado R, Grigoriadis A. Leveraging the Dynamic Immune Environment Triad in Patients with Breast Cancer: Tumour, Lymph Node, and Peripheral Blood. Cancers (Basel) 2022; 14:4505. [PMID: 36139665 PMCID: PMC9496983 DOI: 10.3390/cancers14184505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
During the anti-tumour response to breast cancer, the primary tumour, the peripheral blood, and the lymph nodes each play unique roles. Immunological features at each site reveal evidence of continuous immune cross-talk between them before, during and after treatment. As such, immune responses to breast cancer are found to be highly dynamic and truly systemic, integrating three distinct immune sites, complex cell-migration highways, as well as the temporal dimension of disease progression and treatment. In this review, we provide a connective summary of the dynamic immune environment triad of breast cancer. It is critical that future studies seek to establish dynamic immune profiles, constituting multiple sites, that capture the systemic immune response to breast cancer and define patient-selection parameters resulting in more significant overall responses and survival rates for breast cancer patients.
Collapse
Affiliation(s)
- Isobelle Wall
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Victoire Boulat
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aekta Shah
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai 400012, India
| | - Kim R. M. Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Yin Wu
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Dinis Pedro Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
6
|
Patysheva M, Larionova I, Stakheyeva M, Grigoryeva E, Iamshchikov P, Tarabanovskaya N, Weiss C, Kardashova J, Frolova A, Rakina M, Prostakishina E, Zhuikova L, Cherdyntseva N, Kzhyshkowska J. Effect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Front Oncol 2022; 11:800235. [PMID: 35237501 PMCID: PMC8882686 DOI: 10.3389/fonc.2021.800235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Circulating monocytes are a major source of tumor-associated macrophages (TAMs). TAMs in human breast cancer (BC) support primary tumor growth and metastasis. Neoadjuvant chemotherapy (NAC) is a commonly used treatment for BC patients. The absence of the response to NAC has major negative consequences for the patient: increase of tumor mass, delayed surgery, and unnecessary toxicity. We aimed to identify the effect of BC on the subpopulation content and transcriptome of circulating monocytes. We examined how monocyte phenotypes correlate with the response to NAC. The percentage of CD14-, CD16-, CD163-, and HLA-DR-expressing monocytes was quantified by flow cytometry for patients with T1-4N0-3M0 before NAC. The clinical efficacy of NAC was assessed by RECIST criteria of RECIST 1.1 and by the pathological complete response (pCR). The percentage of CD14+ and СD16+ monocytes did not differ between healthy women and BC patients and did not differ between NAC responders and non-responders. The percentage of CD163-expressing CD14lowCD16+ and CD14+CD16+ monocytes was increased in BC patients compared to healthy women (99.08% vs. 60.00%, p = 0.039, and 98.08% vs. 86.96%, p = 0.046, respectively). Quantitative immunohistology and confocal microscopy demonstrated that increased levels of CD163+ monocytes are recruited in the tumor after NAC. The percentage of CD14lowCD16+ in the total monocyte population positively correlated with the response to NAC assessed by pCR: 8.3% patients with pCR versus 2.5% without pCR (p = 0.018). Search for the specific monocyte surface markers correlating with NAC response evaluated by RECIST 1.1 revealed that patients with no response to NAC had a significantly lower amount of CD14lowCD16+HLA-DR+ cells compared to the patients with clinical response to NAC (55.12% vs. 84.62%, p = 0.005). NGS identified significant changes in the whole transcriptome of monocytes of BC patients. Regulators of inflammation and monocyte migration were upregulated, and genes responsible for the chromatin remodeling were suppressed in monocyte BC patients. In summary, our study demonstrated that presence of BC before distant metastasis is detectable, significantly effects on both monocyte phenotype and transcriptome. The most striking surface markers were CD163 for the presence of BC, and HLA-DR (CD14lowCD16+HLA-DR+) for the response to NAC.
Collapse
Affiliation(s)
- Marina Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Marina Stakheyeva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeniya Grigoryeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Pavel Iamshchikov
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Natalia Tarabanovskaya
- Breast Cancer Unit, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Anastasia Frolova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Elizaveta Prostakishina
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Lilia Zhuikova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- *Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
7
|
López C, Bosch-Príncep R, Orero G, Fontoura Balagueró L, Korzynska A, García-Rojo M, Bueno G, Fernández-Carrobles MDM, Roszkowiak L, Callau Casanova C, Salvadó-Usach MT, Jaén Martínez J, Gibert-Ramos A, Roso-Llorach A, Gras Navarro A, Berenguer-Poblet M, Llobera M, Gil Garcia J, Tomás B, Gestí V, Laine E, Plancoulaine B, Baucells J, Lejeune M. Peritumoral immune infiltrates in primary tumours are not associated with the presence of axillary lymph node metastasis in breast cancer: a retrospective cohort study. PeerJ 2020; 8:e9779. [PMID: 32953267 PMCID: PMC7474517 DOI: 10.7717/peerj.9779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
Background The axillary lymph nodes (ALNs) in breast cancer patients are the body regions to where tumoral cells most often first disseminate. The tumour immune response is important for breast cancer patient outcome, and some studies have evaluated its involvement in ALN metastasis development. Most studies have focused on the intratumoral immune response, but very few have evaluated the peritumoral immune response. The aim of the present article is to evaluate the immune infiltrates of the peritumoral area and their association with the presence of ALN metastases. Methods The concentration of 11 immune markers in the peritumoral areas was studied in 149 patients diagnosed with invasive breast carcinoma of no special type (half of whom had ALN metastasis at diagnosis) using tissue microarrays, immunohistochemistry and digital image analysis procedures. The differences in the concentration of the immune response of peritumoral areas between patients diagnosed with and without metastasis in their ALNs were evaluated. A multivariate logistic regression model was developed to identify the clinical-pathological variables and the peritumoral immune markers independently associated with having or not having ALN metastases at diagnosis. Results No statistically significant differences were found in the concentrations of the 11 immune markers between patients diagnosed with or without ALN metastases. Patients with metastases in their ALNs had a higher histological grade, more lymphovascular and perineural invasion and larger-diameter tumours. The multivariate analysis, after validation by bootstrap simulation, revealed that only tumour diameter (OR = 1.04; 95% CI [1.00–1.07]; p = 0.026), lymphovascular invasion (OR = 25.42; 95% CI [9.57–67.55]; p < 0.001) and histological grades 2 (OR = 3.84; 95% CI [1.11–13.28]; p = 0.033) and 3 (OR = 5.18; 95% CI [1.40–19.17]; p = 0.014) were associated with the presence of ALN metastases at diagnosis. This study is one of the first to study the association of the peritumoral immune response with ALN metastasis. We did not find any association of peritumoral immune infiltrates with the presence of ALN metastasis. Nevertheless, this does not rule out the possibility that other peritumoral immune populations are associated with ALN metastasis. This matter needs to be examined in greater depth, broadening the types of peritumoral immune cells studied, and including new peritumoral areas, such as the germinal centres of the peritumoral tertiary lymphoid structures found in extensively infiltrated neoplastic lesions.
Collapse
Affiliation(s)
- Carlos López
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain.,Campus Terres de l'Ebre, Universitat Rovira Virgili Tarragona, Tortosa, Spain
| | - Ramón Bosch-Príncep
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Guifré Orero
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | | | - Anna Korzynska
- Laboratory of Processing and Analysis of Microscopic Images, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Marcial García-Rojo
- Department of Pathology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Gloria Bueno
- VISILAB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | - Lukasz Roszkowiak
- Laboratory of Processing and Analysis of Microscopic Images, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | | | - M Teresa Salvadó-Usach
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain.,Campus Terres de l'Ebre, Universitat Rovira Virgili Tarragona, Tortosa, Spain
| | | | - Albert Gibert-Ramos
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Albert Roso-Llorach
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Barcelona, Spain
| | - Andrea Gras Navarro
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Marta Berenguer-Poblet
- Campus Terres de l'Ebre, Universitat Rovira Virgili Tarragona, Tortosa, Spain.,Department of Knowledge Management, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Montse Llobera
- Department of Oncology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Júlia Gil Garcia
- Department of Surgery, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Bárbara Tomás
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Vanessa Gestí
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Eeva Laine
- Department of Knowledge Management, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | | | - Jordi Baucells
- Department of Informatics, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Maryléne Lejeune
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain.,Campus Terres de l'Ebre, Universitat Rovira Virgili Tarragona, Tortosa, Spain
| |
Collapse
|
8
|
Lu J, Ma L. The role of tumor-associated macrophages in the development, metastasis and treatment of breast cancer. Pathol Res Pract 2020; 216:153085. [PMID: 32825953 DOI: 10.1016/j.prp.2020.153085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 02/03/2023]
Abstract
Tumor-associated macrophages (TAMs) play an important role in promoting cancer in the breast cancer microenvironment. A large number of preclinical studies have demonstrated that TAMs regulate related signaling pathways by releasing a variety of chemokines, affecting breast cancer growth, metastasis, and drug resistance. In recent years, TAMs have attracted much attention as potential biomarkers for breast cancer. This article reviews the preclinical evidence of the relationship between TAMs and the breast cancer microenvironment, the role of TAMs in prognosis, and the clinical outcomes related to targeted therapy.
Collapse
Affiliation(s)
- Jing Lu
- Hebei Medical University, Fourth Affiliated Hospital, Hebei Province Tumor Hospital, China
| | - Li Ma
- Hebei Medical University, Fourth Affiliated Hospital, Hebei Province Tumor Hospital, China.
| |
Collapse
|
9
|
Gibert-Ramos A, López C, Bosch R, Fontoura L, Bueno G, García-Rojo M, Berenguer M, Lejeune M. Immune response profile of primary tumour, sentinel and non-sentinel axillary lymph nodes related to metastasis in breast cancer: an immunohistochemical point of view. Histochem Cell Biol 2019; 152:177-193. [DOI: 10.1007/s00418-019-01802-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
|
10
|
Pelekanou V, Villarroel-Espindola F, Schalper KA, Pusztai L, Rimm DL. CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers. Breast Cancer Res 2018; 20:154. [PMID: 30558648 PMCID: PMC6298021 DOI: 10.1186/s13058-018-1076-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Background The role of tumor-associated macrophages (TAMs) in the cancer immune landscape and their potential as treatment targets or modulators of response to treatment are gaining increasing interest. TAMs display high molecular and functional complexity. Therefore their objective assessment as breast cancer biomarkers is critical. The aims of this study were to objectively determine the in situ expression and significance of TAM biomarkers (CD68, CD163, and MMP-9) in breast cancer and to identify subclasses of patients who could benefit from TAM-targeting therapies. Methods We measured CD68, CD163, and MMP-9 protein expression in formalin-fixed paraffin-embedded tissues of breast carcinomas represented in tissue microarray format using multiplexed quantitative immunofluorescence (QIF) in two independent Yale cohorts: cohort A—n = 398, estrogen receptor–positive (ER+) and ER− cases—and the triple-negative breast cancer (TNBC)-only cohort B (n = 160). Associations between macrophage markers, ER status, and survival were assessed. Protein expression measured by QIF was compared with mRNA expression data from the METABRIC study. Results All three macrophage markers were co-expressed, displaying higher expression in ER− cancers. High pan-macrophage marker CD68 correlated with poorer overall survival (OS) only in ER− cases of cohort A (P = 0.02). High expression of CD163 protein in TAMs was associated with improved OS in ER− cases (cohort A, P = 0.03 and TNBC cohort B, P = 0.04, respectively) but not in ER+ cancers. MMP-9 protein was not individually associated with OS. High expression of MMP-9 in the CD68+/CD163+ TAMs was associated with worse OS in ER+ tumors (P <0.001) but not in ER− cancers. In the METABRIC dataset, mRNA levels followed the co-expression pattern observed in QIF but did not always show the same trend regarding OS. Conclusions Macrophage activity markers correlate with survival differently in ER+ and ER− cancers. The association between high co-expression and co-localization of MMP-9/CD163/CD68 and poor survival in ER+ cancers suggests that these cancers may be candidates for macrophage-targeted therapies. Electronic supplementary material The online version of this article (10.1186/s13058-018-1076-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT, 06520, USA. .,Sanofi US Services Inc., Bridgewater Township, USA.
| | - Franz Villarroel-Espindola
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT, 06520, USA
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT, 06520, USA
| | - Lajos Pusztai
- Department of Medical Oncology, Yale School of Medicine, 330 Cedar Street, New Haven, 06520, CT, USA
| | - David L Rimm
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT, 06520, USA
| |
Collapse
|
11
|
Frazao A, Messaoudene M, Nunez N, Dulphy N, Roussin F, Sedlik C, Zitvogel L, Piaggio E, Toubert A, Caignard A. CD16 +NKG2A high Natural Killer Cells Infiltrate Breast Cancer-Draining Lymph Nodes. Cancer Immunol Res 2018; 7:208-218. [PMID: 30514793 DOI: 10.1158/2326-6066.cir-18-0085] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/03/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
Tumor-draining lymph nodes (TD-LNs) are the first site of metastasis of breast cancer. Natural killer (NK) cells that infiltrate TD-LNs [including noninvaded (NI) or metastatic (M)-LNs from breast cancer patients] and NK cells from healthy donor (HD)-LNs were characterized, and their phenotype analyzed by flow cytometry. Low percentages of tumor cells invaded M-LNs, and these cells expressed ULBP2 and HLA class I molecules. Although NK cells from paired NI and M-LNs were similar, they expressed different markers compared with HD-LN NK cells. Compared with HD-LNs, TD-LN NK cells expressed activating DNAM-1, NKG2C and inhibitory NKG2A receptors, and exhibited elevated CXCR3 expression. CD16, NKG2A, and NKp46 expression were shown to be increased in stage IIIA breast cancer patients. TD-LNs contained a large proportion of activated CD56brightCD16+ NK cells with high expression of NKG2A. We also showed that a subset of LN NK cells expressed PD-1, expression of which was correlated with NKp30 and NKG2C expression. LN NK cell activation status was evaluated by degranulation potential and lytic capacity toward breast cancer cells. NK cells from TD-LNs degranulated after coculture with breast cancer cell lines. Cytokine-activated TD-LN NK cells exerted greater lysis of breast cancer cell lines than HD-LN NK cells and preferentially lysed the HLA class Ilow MCF-7 breast cancer cell line. TD-LNs from breast cancer patients, thus, contained activated lytic NK cells. The expression of inhibitory receptor NKG2A and checkpoint PD-1 by NK cells infiltrating breast cancer-draining LNs supports their potential as targets for immunotherapies using anti-NKG2A and/or anti-PD-1.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Meriem Messaoudene
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Nicolas Nunez
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - France Roussin
- Service d'Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France.,Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.
| |
Collapse
|
12
|
Kaewkangsadan V, Verma C, Eremin JM, Cowley G, Ilyas M, Eremin O. Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (Th1, Th2) to immune-mediated tumour cell death induced by NAC. BMC Cancer 2018; 18:123. [PMID: 29390966 PMCID: PMC5795830 DOI: 10.1186/s12885-018-4044-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background The tumour microenvironment consists of malignant cells, stroma and immune cells. In women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC), tumour-infiltrating lymphocytes (TILs), various subsets (effector, regulatory) and cytokines in the primary tumour play a key role in the induction of tumour cell death and a pathological complete response (pCR) with NAC. Their contribution to a pCR in nodal metastases, however, is poorly studied and was investigated. Methods Axillary lymph nodes (ALNs) (24 with and 9 without metastases) from women with LLABCs undergoing NAC were immunohistochemically assessed for TILs, T effector and regulatory cell subsets, NK cells and cytokine expression using labelled antibodies, employing established semi-quantitative methods. IBM SPSS statistical package (21v) was used. Non-parametric (paired and unpaired) statistical analyses were performed. Univariate and multivariate regression analyses were carried out to establish the prediction of a pCR and Spearman’s Correlation Coefficient was used to determine the correlation of immune cell infiltrates in ALN metastatic and primary breast tumours. Results In ALN metastases high levels of TILs, CD4+ and CD8+ T and CD56+ NK cells were significantly associated with pCRs.. Significantly higher levels of Tregs (FOXP3+, CTLA-4+) and CD56+ NK cells were documented in ALN metastases than in the corresponding primary breast tumours. CD8+ T and CD56+ NK cells showed a positive correlation between metastatic and primary tumours. A high % CD8+ and low % FOXP3+ T cells and high CD8+: FOXP3+ ratio in metastatic ALNs (tumour-free para-cortex) were associated with pCRs. Metastatic ALNs expressed high IL-10, low IL-2 and IFN-ϒ. Conclusions Our study has provided new data characterising the possible contribution of T effector and regulatory cells and NK cells and T helper1 and 2 cytokines to tumour cell death associated with NAC in ALNs. Trial registration The Trial was retrospectively registered. Study Registration Number is ISRCTN00407556. Electronic supplementary material The online version of this article (10.1186/s12885-018-4044-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viriya Kaewkangsadan
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, Faculty of Medicine and Health Sciences, University of Nottingham, E Floor West Block, Queen's Medical Centre, Derby Rd, Nottingham, NG7 2UH, UK. .,Department of Surgery, Phramongkutklao Hospital and College of Medicine, 315 Rajavithi Road, Bangkok, 10400, Thailand.
| | - Chandan Verma
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, Faculty of Medicine and Health Sciences, University of Nottingham, E Floor West Block, Queen's Medical Centre, Derby Rd, Nottingham, NG7 2UH, UK
| | - Jennifer M Eremin
- Research & Development Department, Lincoln Breast Unit, Lincoln County Hospital, Greetwell Road, Lincoln, LN2 5QY, UK
| | - Gerard Cowley
- Department of Pathology, PathLinks, Lincoln County Hospital, Greetwell Road, Lincoln, LN2 5QY, UK
| | - Mohammad Ilyas
- Academic Department of Pathology, Faculty of Medicine and Health Sciences, University of Nottingham, A Floor West Block, Queens Medical Centre, Derby Road, Nottingham, NG7 2UH, UK
| | - Oleg Eremin
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, Faculty of Medicine and Health Sciences, University of Nottingham, E Floor West Block, Queen's Medical Centre, Derby Rd, Nottingham, NG7 2UH, UK.,Research & Development Department, Lincoln Breast Unit, Lincoln County Hospital, Greetwell Road, Lincoln, LN2 5QY, UK
| |
Collapse
|
13
|
The Differential Contribution of the Innate Immune System to a Good Pathological Response in the Breast and Axillary Lymph Nodes Induced by Neoadjuvant Chemotherapy in Women with Large and Locally Advanced Breast Cancers. J Immunol Res 2017; 2017:1049023. [PMID: 28913366 PMCID: PMC5587972 DOI: 10.1155/2017/1049023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/25/2017] [Indexed: 11/17/2022] Open
Abstract
The tumour microenvironment consists of malignant cells, stroma, and immune cells. The role of adaptive immunity in inducing a pathological complete response (pCR) in breast cancer with neoadjuvant chemotherapy (NAC) is well studied. The contribution of innate immunity, however, is poorly documented. Breast tumours and axillary lymph nodes (ALNs) from 33 women with large and locally advanced breast cancers (LLABCs) undergoing NAC were immunohistochemically assessed for tumour-infiltrating macrophages (TIMs: M1 and M2), neutrophils (TINs), and dendritic cells (TIDCs) using labelled antibodies and semiquantitative methods. Patients' blood neutrophils (n = 108), DCs (mDC1 and pDC), and their costimulatory molecules (n = 30) were also studied. Pathological results were classified as pCR, good (GPR) or poor (PRR). In breast and metastatic ALNs, high levels of CD163+ TIMs were significantly associated with a pCR. In blood, high levels of neutrophils were significantly associated with pCR in metastatic ALNs, whilst the % of mDC1 and pDC and expression of HLA-DR, mDC1 CD40, and CD83 were significantly reduced. NAC significantly reduced tumour DCs but increased blood DCs. PPRs to NAC had significantly reduced HLA-DR, CD40, and CD86 expression. Our study demonstrated novel findings documenting the differential but important contributions of innate immunity to pCRs in patients with LLABCs undergoing NAC.
Collapse
|
14
|
Messaoudene M, Périer A, Fregni G, Neves E, Zitvogel L, Cremer I, Chanal J, Sastre-Garau X, Deschamps L, Marinho E, Larousserie F, Maubec E, Avril MF, Caignard A. Characterization of the Microenvironment in Positive and Negative Sentinel Lymph Nodes from Melanoma Patients. PLoS One 2015. [PMID: 26218530 PMCID: PMC4517810 DOI: 10.1371/journal.pone.0133363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Melanomas are aggressive skin tumors characterized by high metastatic potential. Our previous results indicate that Natural Killer (NK) cells may control growth of melanoma. The main defect of blood NK cells was a decreased expression of activating NCR1/NKp46 receptor and a positive correlation of NKp46 expression with disease outcome in stage IV melanoma patients was found. In addition, in stage III melanoma patients, we identified a new subset of mature NK cells in macro-metastatic Lymph nodes (LN). In the present studies, we evaluated the numbers of NK cells infiltrating primary cutaneous melanoma and analyzed immune cell subsets in a series of sentinel lymph nodes (SLN). First, we show that NKp46+ NK cells infiltrate primary cutaneous melanoma. Their numbers were related to age of patients and not to Breslow thickness. Then, a series of patients with tumor-negative or -positive sentinel lymph nodes matched for Breslow thickness of the cutaneous melanoma was constituted. We investigated the distribution of macrophages (CD68), endothelial cells, NK cells, granzyme B positive (GrzB+) cells and CD8+ T cells in the SLN. Negative SLN (SLN-) were characterized by frequent adipose involution and follicular hyperplasia compared to positive SLN (SLN+). High densities of macrophages and endothelial cells (CD34), prominent in SLN+, infiltrate SLN and may reflect a tumor favorable microenvironment. Few but similar numbers of NK and GrzB+ cells were found in SLN- and SLN+: NK cells and GrzB+ cells were not correlated. Numerous CD8+ T cells infiltrated SLN with a trend for higher numbers in SLN-. Moreover, CD8+ T cells and GrzB+ cells correlated in SLN- not in SLN+. We also observed that the numbers of CD8+ T cells negatively correlated with endothelial cells in SLN-. The numbers of NK, GrzB+ or CD8+ T cells had no significant impact on overall survival. However, we found that the 5 year-relapse rate was higher in SLN with higher numbers of NK cells.
Collapse
Affiliation(s)
- Meriem Messaoudene
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Aurélie Périer
- U1015 INSERM-CIC, Institut Gustave Roussy, Villejuif, France
| | - Giulia Fregni
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Emmanuelle Neves
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | | | - Isabelle Cremer
- Centre de Recherche des Cordeliers, 15, rue de l'école de Médecine, 75006, Paris, France
| | - Johan Chanal
- APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France
| | | | - Lydia Deschamps
- APHP, Department of Dermatology and Department of Pathology, Hospital Bichat, University Paris Diderot, Hospital Bichat, 75018, Paris, France
| | - Eduardo Marinho
- APHP, Department of Dermatology and Department of Pathology, Hospital Bichat, University Paris Diderot, Hospital Bichat, 75018, Paris, France
| | - Frederique Larousserie
- APHP, Department of Pathology, Hospital Cochin, University Paris Descartes, Paris, France
| | - Eve Maubec
- APHP, Department of Dermatology and Department of Pathology, Hospital Bichat, University Paris Diderot, Hospital Bichat, 75018, Paris, France
| | - Marie-Françoise Avril
- APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France
| | - Anne Caignard
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| |
Collapse
|
15
|
LAPUC IZABELA, BOLKUN LUKASZ, ELJASZEWICZ ANDRZEJ, RUSAK MALGORZATA, LUKSZA EWA, SINGH PAULINA, MIKLASZ PAULA, PISZCZ JAROSLAW, PTASZYNSKA-KOPCZYNSKA KATARZYNA, JASIEWICZ MALGORZATA, KAMINSKI KAROL, DABROWSKA MILENA, BODZENTA-LUKASZYK ANNA, KLOCZKO JANUSZ, MONIUSZKO MARCIN. Circulating classical CD14++CD16− monocytes predict shorter time to initial treatment in chronic lymphocytic leukemia patients: Differential effects of immune chemotherapy on monocyte-related membrane and soluble forms of CD163. Oncol Rep 2015; 34:1269-78. [DOI: 10.3892/or.2015.4088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/29/2015] [Indexed: 11/06/2022] Open
|
16
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|