1
|
Razmi M, Tajik F, Hashemi F, Yazdanpanah A, Hashemi-Niasari F, Divsalar A. The Prognostic Importance of Ki-67 in Gastrointestinal Carcinomas: A Meta-analysis and Multi-omics Approach. J Gastrointest Cancer 2024; 55:599-624. [PMID: 38411875 DOI: 10.1007/s12029-024-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE This study aimed to determine if Ki-67, a commonly used marker to measure tumor proliferation, is a reliable prognostic factor in various types of gastrointestinal (GI) cancers based on current high-quality multivariable evidence. METHODS A comprehensive search was conducted in PubMed, Embase, Scopus, and ISI Web of Science databases to investigate the association between Ki-67 positivity and overall survival (OS) and disease/recurrence-free survival (DFS/RFS) in GI cancers. Heterogeneity was assessed using Chi-square-based Q and I2 analyses and publication bias using funnel plots and Egger's analysis. In addition, Ki-67 levels in different GI cancers were examined by different platforms. The prognostic capability of Ki-67, gene ontology (GO), and pathway enrichment analysis were obtained from GEPIA2 and STRING. RESULTS Totally, 61 studies, involving 13,034 patients, were deemed eligible for our evaluation. The combined hazard ratios (HRs) demonstrated the prediction ability of overexpressed Ki-67 for a worse OS (HR: 1.67, P < 0.001; HR: 1.37, P = 0.021) and DFS/RFS (HR: 2.06, P < 0.001) in hepatocellular and pancreatic malignancies, respectively, as confirmed by multi-omics databases. However, similar correlation was not found in esophageal, gastric, and colorectal cancers. Furthermore, most of the associations were identified to be robust based on different subcategories and publication bias assessment. Finally, enriched Ki-67-related genes were found to be involved in various important signaling pathways, such as cell cycle, P53 signaling network, and DNA damage responses. CONCLUSION This study supports that Ki-67 can serve as an independent prognostic biomarker for pancreatic and hepatocellular malignancies in clinical settings.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine, CA, USA
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ayna Yazdanpanah
- Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hashemi-Niasari
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
2
|
Dong F, Liu Y, Yan W, Meng Q, Song X, Cheng B, Yao R. Netrin-4: Focus on Its Role in Axon Guidance, Tissue Stability, Angiogenesis and Tumors. Cell Mol Neurobiol 2022:10.1007/s10571-022-01279-4. [DOI: 10.1007/s10571-022-01279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
|
3
|
Salman S, Meyers DJ, Wicks EE, Lee SN, Datan E, Thomas AM, Anders NM, Hwang Y, Lyu Y, Yang Y, Jackson W, Dordai D, Rudek MA, Semenza GL. HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy. J Clin Invest 2022; 132:156774. [PMID: 35499076 PMCID: PMC9057582 DOI: 10.1172/jci156774] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer mortality worldwide and available therapies, including immunotherapies, are ineffective for many patients. HCC is characterized by intratumoral hypoxia, and increased expression of hypoxia-inducible factor 1α (HIF-1α) in diagnostic biopsies is associated with patient mortality. Here we report the development of 32-134D, a low-molecular-weight compound that effectively inhibits gene expression mediated by HIF-1 and HIF-2 in HCC cells, and blocks human and mouse HCC tumor growth. In immunocompetent mice bearing Hepa1-6 HCC tumors, addition of 32-134D to anti-PD1 therapy increased the rate of tumor eradication from 25% to 67%. Treated mice showed no changes in appearance, behavior, body weight, hemoglobin, or hematocrit. Compound 32-134D altered the expression of a large battery of genes encoding proteins that mediate angiogenesis, glycolytic metabolism, and responses to innate and adaptive immunity. This altered gene expression led to significant changes in the tumor immune microenvironment, including a decreased percentage of tumor-associated macrophages and myeloid-derived suppressor cells, which mediate immune evasion, and an increased percentage of CD8+ T cells and natural killer cells, which mediate antitumor immunity. Taken together, these preclinical findings suggest that combining 32-134D with immune checkpoint blockade may represent a breakthrough therapy for HCC.
Collapse
Affiliation(s)
- Shaima Salman
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | | | | | - Sophia N. Lee
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | - Aline M. Thomas
- Institute for Cell Engineering
- Department of Radiology and Radiological Science
| | - Nicole M. Anders
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center
| | - Yousang Hwang
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- Department of Pharmacology and Molecular Sciences
| | - Yajing Lyu
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | - Dominic Dordai
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | - Michelle A. Rudek
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregg L. Semenza
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center
| |
Collapse
|
4
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
5
|
Wang M, Liu H, Zhang X, Zhao W, Lin X, Zhang F, Li D, Xu C, Xie F, Wu Z, Yang Q, Li X. Lack of MOF Decreases Susceptibility to Hypoxia and Promotes Multidrug Resistance in Hepatocellular Carcinoma via HIF-1α. Front Cell Dev Biol 2021; 9:718707. [PMID: 34540836 PMCID: PMC8440882 DOI: 10.3389/fcell.2021.718707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) promotes oncogenesis in hepatocellular carcinoma and is functionally linked to cell proliferation, chemoresistance, metastasis and angiogenesis. It has been confirmed that the low expression level of Males absent on the first (MOF) in hepatocellular carcinoma leads to poor prognosis of patients. However, potential regulatory mechanisms of MOF in response to hypoxia remain elusive. Our results demonstrate that MOF expression is negatively associated with HIF-1α expression in hepatocellular carcinoma tissues and in response to chloride-mimicked hypoxia in hepatocellular carcinoma cell lines. MOF regulates HIF-1α mRNA expression and also directly binds to HIF-1α to mediate HIF-1α N-terminal lysine acetylation, ubiquitination and degradation, with downstream effects on MDR1 levels. Functional inactivation of MOF enhances HIF-1α stability and causes cell tolerance to hypoxia that is insensitive to histone deacetylase inhibitor treatment. Dysfunction of MOF in hepatocellular carcinoma cells also results in chemoresistance to trichostatin A, sorafenib and 5-fluorouracil via HIF-1α. Our results suggest that MOF regulates hypoxia tolerance and drug resistance in hepatocellular carcinoma cells by modulating both HIF-1α mRNA expression and N-terminal acetylation of HIF-1α, providing molecular insight into MOF-dependent oncogenic function of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Meng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China.,Department of Cell and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Wenbo Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China.,Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, China
| | - Chengpeng Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Zhen Wu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Qibing Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China.,Department of Cell and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China.,Department of Cell and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
6
|
Ding ZN, Dong ZR, Chen ZQ, Yang YF, Yan LJ, Li HC, Liu KX, Yao CY, Yan YC, Yang CC, Li T. Effects of hypoxia-inducible factor-1α and hypoxia-inducible factor-2α overexpression on hepatocellular carcinoma survival: A systematic review with meta-analysis. J Gastroenterol Hepatol 2021; 36:1487-1496. [PMID: 33393670 DOI: 10.1111/jgh.15395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM The role of hypoxia-inducible factor-1α (HIF-1α) and hypoxia-inducible factor-2α (HIF-2α) has been implicated in the clinical prognosis of hepatocellular carcinoma (HCC), but the results remain controversial. We aim to investigate the association of HIF-1α and HIF-2α overexpression with the prognosis and clinicopathological features of HCC. METHODS A systematic search was conducted in PubMed, Embase, Scopus, Web of Science, and Cochrane Library until June 20, 2020. Meta-analysis was conducted to generate combined HRs with 95% confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS). Odds ratios (ORs) with 95% CI were also derived by fixed or random effect model. RESULTS Twenty-two studies involving 3238 patients were included. Combined data suggested that overexpression of HIF-1α in HCC was not only correlated with poorer OS [HR = 1.75 (95% CI: 1.53-2.00)] and DFS [HR = 1.64 (95% CI: 1.34-2.00)] but was also positively associated with vascular invasion [OR = 1.83 (95% CI: 1.36-2.48)], tumor size [OR = 1.36 (95% CI: 1.12-1.66)], and tumor number [1.74 (95% CI: 1.34-2.25)]. In contrast, HIF-2α overexpression was not associated with the prognosis and clinicopathological features of HCC. CONCLUSION Our data provided compelling evidence of a worse prognosis of HCC in HIF-1α overexpression patients but not HIF-2α overexpression ones.
Collapse
Affiliation(s)
- Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Kai-Xuan Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Cheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
7
|
Wang Y, Wang X, Huang X, Zhang J, Hu J, Qi Y, Xiang B, Wang Q. Integrated Genomic and Transcriptomic Analysis reveals key genes for predicting dual-phenotype Hepatocellular Carcinoma Prognosis. J Cancer 2021; 12:2993-3010. [PMID: 33854600 PMCID: PMC8040886 DOI: 10.7150/jca.56005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Dual-phenotype hepatocellular carcinoma (DPHCC) expresses both hepatocyte and cholangiocyte markers, and is characterized by high recurrence and low survival rates. The underlying molecular mechanisms of DPHCC pathogenesis are unclear. We performed whole exome sequencing and RNA sequencing of three subtypes of HCC (10 DPHCC, 10 CK19-positive HCC, and 14 CK19-negative HCC), followed by integrated bioinformatics analysis, including somatic mutation analysis, mutation signal analysis, differential gene expression analysis, and pathway enrichment analysis. Cox proportional hazard regression analyses were applied for exploring survival related characteristics. We found that mutated genes in DPHCC patients were associated with carcinogenesis and immunity, and the up-regulated genes were mainly enriched in transcription-related and cancer-related pathways, and the down-regulated genes were mainly enriched in immune-related pathways. CXCL9 was selected as the hub gene, which is associated with immune cells and survival prognosis. Our results showed that low CXCL9 expression was significantly associated with poor prognosis, and its expression was significantly reduced in DPHCC samples. In conclusion, we explored the molecular mechanisms governing DPHCC development and progression and identified CXCL9, which influences the immune microenvironment and prognosis of DPHCC and might be new clinically significant biomarkers for predicting prognosis.
Collapse
Affiliation(s)
- Yaobang Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Clinical Laboratory. First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xi Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoliang Huang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Junwen Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Yapeng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Qiuyan Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Aldera AP, Govender D. Carbonic anhydrase IX: a regulator of pH and participant in carcinogenesis. J Clin Pathol 2021; 74:jclinpath-2020-207073. [PMID: 33619217 DOI: 10.1136/jclinpath-2020-207073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 01/24/2021] [Indexed: 11/04/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane metalloenzyme which is upregulated in tumour cells under hypoxic conditions. CAIX expression is induced by the accumulation of hypoxia-inducible factor-1α and has several downstream effects, including acidification of the extracellular pH, loss of cellular adhesion and increased tumour cell migration. CAIX is upregulated in a variety of solid organ tumours and has prognostic implications. High CAIX protein expression is a marker of poor prognosis in breast, lung, ovarian and bladder carcinomas. Conversely, low expression is an indicator of poor prognosis in clear cell renal cell carcinoma (CCRCC). CAIX immunohistochemistry is useful diagnostically to identify metastatic CCRCC, and the recently recognised clear cell papillary renal cell carcinoma. There is much interest in targeting CAIX with monoclonal antibodies and small molecule inhibitors. There are several small molecule inhibitors under development which have shown promising results in clinical trials. In this paper, we provide an overview of the role of CAIX in tumourigenesis and outline its use as a prognostic, diagnostic and therapeutic biomarker.
Collapse
Affiliation(s)
- Alessandro Pietro Aldera
- Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa
- JDW Pathology Inc, Cape Town, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa
- Anatomical Pathology, Pathcare Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Méndez-Blanco C, Fernández-Palanca P, Fondevila F, González-Gallego J, Mauriz JL. Prognostic and clinicopathological significance of hypoxia-inducible factors 1α and 2α in hepatocellular carcinoma: a systematic review with meta-analysis. Ther Adv Med Oncol 2021; 13:1758835920987071. [PMID: 33613697 PMCID: PMC7874357 DOI: 10.1177/1758835920987071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly recurrent tumor after resection and has been closely related to hypoxia. Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) have been shown to contribute to tumor progression and therapy resistance in HCC. We evaluated the prognostic and clinicopathological significance of HIF-1α and HIF-2α in HCC patients. Methods: We systematically searched Embase, Cochrane, PubMed, Scopus and Web of Science (WOS) from inception to 1 June 2020 for studies evaluating HIF-1α and/or HIF-2α expression in HCC. Selected articles evaluate at least one factor by immunohistochemistry (IHC) in HCC patients who underwent surgical resection, and its relationship with prognosis and/or clinicopathological features. Study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO; CDR42020191977). We meta-analyzed the data extracted or estimated according to the Parmar method employing STATA software. We evaluated the overall effect size for the hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (CI), as well as heterogeneity across studies with the I2 statistic and chi-square-based Q test. Moreover, we conducted subgroup analysis when heterogeneity was substantial. Publication bias was assessed by funnel plot asymmetry and Egger’s test. Results: HIF-1α overexpression was correlated with overall survival (OS), disease-free survival (DFS)/recurrence-free survival (RFS) and clinicopathological features including Barcelona Clinic Liver Cancer (BCLC), capsule infiltration, intrahepatic metastasis, lymph node metastasis, tumor–node–metastasis (TNM), tumor differentiation, tumor number, tumor size (3 cm), vascular invasion and vasculogenic mimicry. We also detected a possible correlation of HIF-1α with alpha-fetoprotein (AFP), cirrhosis, histological grade, tumor size (5 cm) and albumin after subgroup analysis. Initially, only DFS/RFS appeared to be associated with HIF-2α overexpression. Subgroup analysis denoted that HIF-2α overexpression was related to OS and capsule infiltration. Conclusions: HIF-1α and HIF-2α overexpression is related to poor OS, DFS/RFS and some clinicopathological features of HCC patients, suggesting that both factors could be useful HCC biomarkers.
Collapse
Affiliation(s)
| | | | - Flavia Fondevila
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, León 24071, Spain
| |
Collapse
|
10
|
Pandit H, Li Y, Zheng Q, Guo W, Yu Y, Li S, Martin RCG. Carcinogenetic initiation contributed by EpCAM+ cancer cells in orthotopic HCC models of immunocompetent and athymic mice. Oncotarget 2020; 11:2047-2060. [PMID: 32547703 PMCID: PMC7275786 DOI: 10.18632/oncotarget.27454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Overexpression of epithelial cell adhesion molecule (EpCAM) correlates with poor prognosis, therapeutic failure and early tumor recurrence in hepatocellular carcinoma (HCC) patients. The tumor microenvironment dictates the fate of tumor-initiating cancer stem cells (CSCs); however, very limited studies were attempted to evaluate CSC tumorigenesis in the liver microenvironment. Here, we have systemically investigated the role of EpCAM+ cancer cells in tumor initiation in orthotopic HCC models. RESULTS Control mice and the mice with bland steatosis failed to develop tumors. In the mice with steatohepatitis, EpCAM+ CSCs have shown significantly increased ability in terms of tumor initiation and growth, compared to that with EpCAM- non-CSCs inoculation (p < 0.005). For Hep3B inoculation, EpCAM-High group has shown significantly higher tumor growth compared with EpCAM-Low (p < 0.005). For HepG2 inoculation, both EpCAM-High and EpCAM-Low groups confirmed similar tumor incidence and growth. METHODS Diet-induced compromised microenvironments were established to mimic clinical fatty liver and non-alcoholic steatohepatitis (NASH) patients and the tumorigenic capabilities of Hepa1-6 cells were evaluated. CSCs were enriched by spheroid culture and labeled with copGFP for EpCAM+ CSCs and with mCherry for non-CSCs. FACS-sorted cells were inoculated into left liver lobes, and tumor growth was monitored by high-frequency ultrasound. The subpopulations of Hep3B and HepG2 cells in terms of EpCAM-Low and EpCAM-High were evaluated in the orthotopic model of athymic mice. CONCLUSIONS NASH microenvironment promotes the EpCAM+ CSCs initiated tumorigenesis in immunocompetent mouse model. Differential EpCAM expression demonstrates distinct tumor biology in athymic mouse models.
Collapse
Affiliation(s)
- Harshul Pandit
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yan Li
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medicine College, China Medical University, Shenyang 110122, China
| | - Wei Guo
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Youxi Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Suping Li
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert C G Martin
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Netrin Family: Role for Protein Isoforms in Cancer. J Nucleic Acids 2019; 2019:3947123. [PMID: 30923634 PMCID: PMC6408995 DOI: 10.1155/2019/3947123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Netrins form a family of secreted and membrane-associated proteins. Netrins are involved in processes for axonal guidance, morphogenesis, and angiogenesis by regulating cell migration and survival. These processes are of special interest in tumor biology. From the netrin genes various isoforms are translated and regulated by alternative splicing. We review here the diversity of isoforms of the netrin family members and their known and potential roles in cancer.
Collapse
|
12
|
Investigation of the Prognostic Role of Carbonic Anhydrase 9 (CAIX) of the Cellular mRNA/Protein Level or Soluble CAIX Protein in Patients with Oral Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20020375. [PMID: 30654595 PMCID: PMC6359351 DOI: 10.3390/ijms20020375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Carbonic anhydrase 9 (CAIX) is an important protein that stabilizes the extracellular pH value and is transcriptionally regulated by hypoxia-inducible factor 1 (HIF1), but more stable than HIF1α. Here we show a comparative study that examines the prognostic value of CA9 mRNA, CAIX protein of tumor cells and secreted CAIX protein for oral squamous cell carcinoma (OSCC) patients. Tumor samples from 72 OSCC patients and 24 samples of normal tissue were analyzed for CA9 mRNA levels. A total of 158 OSCC samples were stained for CAIX by immunohistochemistry and 89 blood serum samples were analyzed by ELISA for soluble CAIX protein content. Survival analyses were performed by Kaplan–Meier and Cox’s regression analysis to estimate the prognostic effect of CA9/CAIX in OSCC patients. The CA9 mRNA and CAIX protein levels of tumor cells correlated with each other, but not with those of the secreted CAIX protein level of the blood of patients. ROC curves showed a significant (p < 0.001) higher mRNA-level of CA9 in OSCC samples than in adjacent normal tissue. Cox’s regression analysis revealed an increased risk (i) of death for patients with a high CA9 mRNA level (RR = 2.2; p = 0.02), (ii) of locoregional recurrence (RR = 3.2; p = 0.036) at higher CA9 mRNA levels and (iii) of death at high CAIX protein level in their tumors (RR = 1.7; p = 0.066) and especially for patients with advanced T4-tumors (RR = 2.0; p = 0.04). However, the secreted CAIX protein level was only as a trend associated with prognosis in OSCC (RR = 2.2; p = 0.066). CA9/CAIX is an independent prognostic factor for OSCC patients and therefore a potential therapeutic target.
Collapse
|
13
|
Identification of a Prognostic Hypoxia-Associated Gene Set in IDH-Mutant Glioma. Int J Mol Sci 2018; 19:ijms19102903. [PMID: 30257451 PMCID: PMC6212863 DOI: 10.3390/ijms19102903] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023] Open
Abstract
Glioma growth is often accompanied by a hypoxic microenvironment favorable for the induction and maintenance of the glioma stem cell (GSC) phenotype. Due to the paucity of cell models of Isocitrate Dehydrogenase 1 mutant (IDH1mut) GSCs, biology under hypoxic conditions has not been sufficiently studied as compared to IDH1 wildtype (IDH1wt) GSCs. We therefore grew well-characterized IDH1mut (n = 4) and IDH1wt (n = 4) GSC lines under normoxic (20%) and hypoxic (1.5%) culture conditions and harvested mRNA after 72 h. Transcriptome analyses were performed and hypoxia regulated genes were further analyzed using the expression and clinical data of the lower grade glioma cohort of The Cancer Genome Atlas (LGG TCGA) in a confirmatory approach and to test for possible survival associations. Results show that global expression changes were more pronounced in IDH1wt than in IDH1mut GSCs. However, when focusing on known hypoxia-regulated gene sets, enrichment analyses showed a comparable regulation in both IDH1mut and IDH1wt GSCs. Of 272 significantly up-regulated genes under hypoxic conditions in IDH1mut GSCs a hypoxia-related survival score (HRS-score) of five genes (LYVE1, FAM162A, WNT6, OTP, PLOD1) was identified by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm which was able to predict survival independent of age, 1p19q co-deletion status and WHO grade (II vs. III) in the LGG TCGA cohort and in the Rembrandt dataset. Altogether, we were able to identify and validate a novel hypoxia-related survival score in IDH1mut GSCs consisting of five hypoxia-regulated genes which was significantly associated with patient survival independent of known prognostic confounders.
Collapse
|
14
|
Small bowel carcinomas in celiac or Crohn's disease: distinctive histophenotypic, molecular and histogenetic patterns. Mod Pathol 2017; 30:1453-1466. [PMID: 28664941 DOI: 10.1038/modpathol.2017.40] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
Non-familial small bowel carcinomas are relatively rare and have a poor prognosis. Two small bowel carcinoma subsets may arise in distinct immune-inflammatory diseases (celiac disease and Crohn's disease) and have been recently suggested to differ in prognosis, celiac disease-associated carcinoma cases showing a better outcome, possibly due to their higher DNA microsatellite instability and tumor-infiltrating T lymphocytes. In this study, we investigated the histological structure (glandular vs diffuse/poorly cohesive, mixed or solid), cell phenotype (intestinal vs gastric/pancreatobiliary duct type) and Wnt signaling activation (β-catenin and/or SOX-9 nuclear expression) in a series of 26 celiac disease-associated small bowel carcinoma, 25 Crohn's disease-associated small bowel carcinoma and 25 sporadic small bowel carcinoma cases, searching for new prognostic parameters. In addition, non-tumor mucosa of celiac and Crohn's disease patients was investigated for epithelial precursor changes (hyperplastic, metaplastic or dysplastic) to help clarify carcinoma histogenesis. When compared with non-glandular structure and non-intestinal phenotype, both glandular structure and intestinal phenotype were associated with a more favorable outcome at univariable or stage- and microsatellite instability/tumor-infiltrating lymphocyte-inclusive multivariable analysis. The prognostic power of histological structure was independent of the clinical groups while the non-intestinal phenotype, associated with poor outcome, was dominant among Crohn's disease-associated carcinoma. Both nuclear β-catenin and SOX-9 were preferably expressed among celiac disease-associated carcinomas; however, they were devoid, per se, of prognostic value. We obtained findings supporting an origin of celiac disease-associated carcinoma in SOX-9-positive immature hyperplastic crypts, partly through flat β-catenin-positive dysplasia, and of Crohn's disease-associated carcinoma in a metaplastic (gastric and/or pancreatobiliary-type) mucosa, often through dysplastic polypoid growths of metaplastic phenotype. In conclusion, despite their common origin in a chronically inflamed mucosa, celiac disease-associated and Crohn's disease-associated small bowel carcinomas differ substantially in histological structure, phenotype, microsatellite instability/tumor-infiltrating lymphocyte status, Wnt pathway activation, mucosal precursor lesions and prognosis.
Collapse
|
15
|
Xiong XX, Qiu XY, Hu DX, Chen XQ. Advances in Hypoxia-Mediated Mechanisms in Hepatocellular Carcinoma. Mol Pharmacol 2017; 92:246-255. [PMID: 28242743 DOI: 10.1124/mol.116.107706] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common and the third most deadly malignant tumor worldwide. Hypoxia and related oxidative stress are heavily involved in the process of HCC development and its therapies. However, direct and accurate measurement of oxygen concentration and evaluation of hypoxic effects in HCC prove difficult. Moreover, the hypoxia-mediated mechanisms in HCC remain elusive. Here, we summarize recent major evidence of hypoxia in HCC lesions shown by measuring partial pressure of oxygen (pO2), the clinical importance of hypoxic markers in HCC, and recent advances in hypoxia-related mechanisms and therapies in HCC. For the mechanisms, we focus mainly on the roles of oxygen-sensing proteins (i.e., hypoxia-inducible factor and neuroglobin) and hypoxia-induced signaling proteins (e.g., matrix metalloproteinases, high mobility group box 1, Beclin 1, glucose metabolism enzymes, and vascular endothelial growth factor). With respect to therapies, we discuss mainly YQ23, sorafenib, 2-methoxyestradiol, and celastrol. This review focuses primarily on the results of clinical and animal studies.
Collapse
Affiliation(s)
- Xin Xin Xiong
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Hu XX, Yang ZX, Liang HY, Ding Y, Grimm R, Fu CX, Liu H, Yan X, Ji Y, Zeng MS, Rao SX. Whole-tumor MRI histogram analyses of hepatocellular carcinoma: Correlations with Ki-67 labeling index. J Magn Reson Imaging 2016; 46:383-392. [PMID: 27862582 DOI: 10.1002/jmri.25555] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To evaluate whether whole-tumor histogram-derived parameters for an apparent diffusion coefficient (ADC) map and contrast-enhanced magnetic resonance imaging (MRI) could aid in assessing Ki-67 labeling index (LI) of hepatocellular carcinoma (HCC). MATERIALS AND METHODS In all, 57 patients with HCC who underwent pretreatment MRI with a 3T MR scanner were included retrospectively. Histogram parameters including mean, median, standard deviation, skewness, kurtosis, and percentiles (5th , 25th , 75th , 95th ) were derived from the ADC map and MR enhancement. Correlations between histogram parameters and Ki-67 LI were evaluated and differences between low Ki-67 (≤10%) and high Ki-67 (>10%) groups were assessed. RESULTS Mean, median, 5th , 25th , 75th percentiles of ADC, and mean, median, 25th , 75th , 95th percentiles of enhancement of arterial phase (AP) demonstrated significant inverse correlations with Ki-67 LI (rho up to -0.48 for ADC, -0.43 for AP) and showed significant differences between low and high Ki-67 groups (P < 0.001-0.04). Areas under the receiver operator characteristics (ROC) curve for identification of high Ki-67 were 0.78, 0.77, 0.79, 0.82, and 0.76 for mean, median, 5th , 25th , 75th percentiles of ADC, respectively, and 0.74, 0.81, 0.76, 0.82, 0.69 for mean, median, 25th , 75th , 95th percentiles of AP, respectively. CONCLUSION Histogram-derived parameters of ADC and AP were potentially helpful for predicting Ki-67 LI of HCC. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;46:383-392.
Collapse
Affiliation(s)
- Xin-Xing Hu
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Zhao-Xia Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - He-Yue Liang
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Ying Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Robert Grimm
- MR Application Development, Siemens Healthcare, Erlangen, Germany
| | - Cai-Xia Fu
- Siemens Shenzhen Magnetic Resonance, Shenzhen, China
| | - Hui Liu
- MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China
| | - Xu Yan
- MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan hospital, Fudan University, Shanghai, China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| | - Sheng-Xiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, China
| |
Collapse
|
17
|
van Kuijk SJA, Yaromina A, Houben R, Niemans R, Lambin P, Dubois LJ. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. Front Oncol 2016; 6:69. [PMID: 27066453 PMCID: PMC4810028 DOI: 10.3389/fonc.2016.00069] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 01/08/2023] Open
Abstract
Hypoxia is a characteristic of many solid tumors and an adverse prognostic factor for treatment outcome. Hypoxia increases the expression of carbonic anhydrase IX (CAIX), an enzyme that is predominantly found on tumor cells and is involved in maintaining the cellular pH balance. Many clinical studies investigated the prognostic value of CAIX expression, but most have been inconclusive, partly due to small numbers of patients included. The present meta-analysis was therefore performed utilizing the results of all clinical studies to determine the prognostic value of CAIX expression in solid tumors. Renal cell carcinoma was excluded from this meta-analysis due to an alternative mechanism of upregulation. 958 papers were identified from a literature search performed in PubMed and Embase. These papers were independently evaluated by two reviewers and 147 studies were included in the analysis. The meta-analysis revealed strong significant associations between CAIX expression and all endpoints: overall survival [hazard ratio (HR) = 1.76, 95% confidence interval (95%CI) 1.58–1.98], disease-free survival (HR = 1.87, 95%CI 1.62–2.16), locoregional control (HR = 1.54, 95%CI 1.22–1.93), disease-specific survival (HR = 1.78, 95%CI 1.41–2.25), metastasis-free survival (HR = 1.82, 95%CI 1.33–2.50), and progression-free survival (HR = 1.58, 95%CI 1.27–1.96). Subgroup analyses revealed similar associations in the majority of tumor sites and types. In conclusion, these results show that patients having tumors with high CAIX expression have higher risk of locoregional failure, disease progression, and higher risk to develop metastases, independent of tumor type or site. The results of this meta-analysis further support the development of a clinical test to determine patient prognosis based on CAIX expression and may have important implications for the development of new treatment strategies.
Collapse
Affiliation(s)
- Simon J A van Kuijk
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ala Yaromina
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ruud Houben
- Department of Radiation Oncology, MAASTRO Clinic , Maastricht , Netherlands
| | - Raymon Niemans
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| |
Collapse
|