1
|
Sharbati F, Tabriz HM, Nazar E. Assessing the role of MSH2 and MSH6 gene expression deficiency in prostate cancer progression, a cross-sectional study. Cancer Treat Res Commun 2024; 40:100826. [PMID: 38870667 DOI: 10.1016/j.ctarc.2024.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Recently, some evidence emphasized the value of MSH2 and MSH6 inactivation and their hypermutation in predicting different cancers. The present consideration is to evaluate the value of MSH2 and MSH6 protein deficient studied by the immunohistochemistry (IHC) method and the tumor behaviors and aggressiveness in prostatic carcinoma. METHODS This cross-sectional study was performed on 80 examples extricated from patients who endured prostate cancer and were planned for radical prostatectomy surgery. The expression levels of the genes were studied by IHC staining. RESULTS The deficiency in MSH2 and MSH6 expression was revealed in 10.0 % and 11.3 % of patients respectively, while the reduction of simultaneous expression in two genes was found in 6.2 % of patients. In the two subgroups with and without MSH2 and/or MSH6 staining, there was no difference in patients' mean age and history of prostate cancer. There was also no difference in tumor-related behaviors including combined Gleason grade group, tumor stage, vascular invasion, perineural invasion, and prostatic capsular invasion between the groups with and without gene loss. CONCLUSION The evaluation of the deficient rate of two genes among patients with prostate cancer to predict the tumor grade and its aggressive behavior needs further study in every population.
Collapse
Affiliation(s)
- Fatemeh Sharbati
- Department of Pathology, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedieh Moradi Tabriz
- Department of Pathology, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Nazar
- Department of Pathology, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Du D, Yang Y, Zhang Y, Wang G, Chen L, Guan X, Rasmussen LJ, Liu D. MRE11A: a novel negative regulator of human DNA mismatch repair. Cell Mol Biol Lett 2024; 29:37. [PMID: 38486171 PMCID: PMC10938699 DOI: 10.1186/s11658-024-00547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS Our findings reveal that MRE11A is a negative regulator of human MMR.
Collapse
Affiliation(s)
- Demin Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueyan Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liying Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Zhang H, Yang X, Xie J, Cheng X, Chen J, Shen M, Ding W, Wang S, Zhang Z, Wang C, Zhao M. Clinicopathological and molecular analysis of microsatellite instability in prostate cancer: a multi-institutional study in China. Front Oncol 2023; 13:1277233. [PMID: 37901334 PMCID: PMC10613026 DOI: 10.3389/fonc.2023.1277233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Background Microsatellite instability (MSI), or mismatch repair-deficiency (dMMR), is rare in prostate cancers (PCas). The histological and molecular features of PCas with MSI/dMMR are incompletely described. Thus, we sought to identify the characteristics of PCas with MSI/dMMR. Methods and results We analyzed 1,141 primary treatment-naive PCas by MMR-related protein immunohistochemistry (MLH1, PMS2, MSH2, and MSH6). We identified eight cases exhibiting MSI/dMMR (0.7%, 8/1141). Of these, six tumors had both MSH2 and MSH6 protein loss, one had both MLH1 and PMS2 protein loss, and one had only MSH6 loss. Histologically, MSI/dMMR-PCas frequently demonstrated high histological grade (Grade Group 4 or 5), ductal/intraductal histology (6/8 cases), pleomorphic giant-cell features (4/8 cases), and conspicuous tumor lymphocytic infiltration (8/8 cases). Polymerase chain reaction-based analysis of seven MSI/dMMR tumors revealed two MSI-H tumors with loss of both MSH2 and MSH6 proteins. Subsequently, the seven cases underwent next-generation sequencing (NGS) analysis with a highly validated targeted panel; four were MSI. All cases had a high tumor mutation burden (median: 45.3 mutations/Mb). Overall, the MSI/dMMR-PCas showed a high frequency of DNA damage-repair pathway gene changes, including five with pathogenic somatic or germline MMR gene mutations. Activating mutations in the MAPK pathway, PI3K pathway, and WNT/β-catenin pathway were common. TMPRSS2::ERG rearrangement was identified in one case (1/7, 14.3%). Conclusions Several pathological features are associated with MSI/dMMR in PCas. Identification of these features may help to select patients for genetic screening. As MSI/dMMR-PCas are enriched for actionable mutations, patients should be offered NGS to guide standard-of-care treatment.
Collapse
Affiliation(s)
- Huizhi Zhang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Cheng
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Jiayi Chen
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Miaomiao Shen
- Department of Pathology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wenyi Ding
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Suying Wang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Zhe Zhang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Zhao
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| |
Collapse
|
4
|
Lyu F, Shang SY, Gao XS, Ma MW, Xie M, Ren XY, Liu MZ, Chen JY, Li SS, Huang L. Uncovering the Secrets of Prostate Cancer's Radiotherapy Resistance: Advances in Mechanism Research. Biomedicines 2023; 11:1628. [PMID: 37371723 PMCID: PMC10296152 DOI: 10.3390/biomedicines11061628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is a critical global public health issue with its incidence on the rise. Radiation therapy holds a primary role in PCa treatment; however, radiation resistance has become increasingly challenging as we uncover more about PCa's pathogenesis. Our review aims to investigate the multifaceted mechanisms underlying radiation therapy resistance in PCa. Specifically, we will examine how various factors, such as cell cycle regulation, DNA damage repair, hypoxic conditions, oxidative stress, testosterone levels, epithelial-mesenchymal transition, and tumor stem cells, contribute to radiation therapy resistance. By exploring these mechanisms, we hope to offer new insights and directions towards overcoming the challenges of radiation therapy resistance in PCa. This can also provide a theoretical basis for the clinical application of novel ultra-high-dose-rate (FLASH) radiotherapy in the era of PCa.
Collapse
Affiliation(s)
- Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Shi-Yu Shang
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
- First Clinical Medical School, Hebei North University, Zhangjiakou 075000, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Mu Xie
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Ming-Zhu Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Jia-Yan Chen
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Shan-Shi Li
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Lei Huang
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| |
Collapse
|
5
|
Jaworski D, Brzoszczyk B, Szylberg Ł. Recent Research Advances in Double-Strand Break and Mismatch Repair Defects in Prostate Cancer and Potential Clinical Applications. Cells 2023; 12:1375. [PMID: 37408208 DOI: 10.3390/cells12101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related death in men worldwide. Recent research advances have emphasized the critical roles of mismatch repair (MMR) and double-strand break (DSB) in prostate cancer development and progression. Here, we provide a comprehensive review of the molecular mechanisms underlying DSB and MMR defects in prostate cancer, as well as their clinical implications. Furthermore, we discuss the promising therapeutic potential of immune checkpoint inhibitors and PARP inhibitors in targeting these defects, particularly in the context of personalized medicine and further perspectives. Recent clinical trials have demonstrated the efficacy of these novel treatments, including Food and Drugs Association (FDA) drug approvals, offering hope for improved patient outcomes. Overall, this review emphasizes the importance of understanding the interplay between MMR and DSB defects in prostate cancer to develop innovative and effective therapeutic strategies for patients.
Collapse
Affiliation(s)
- Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Bartosz Brzoszczyk
- Department of Urology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| |
Collapse
|
6
|
Voulgari O, Goutas D, Pergaris A, Belogiannis K, Thymara E, Kavantzas N, Lazaris AC. Correlations of PTEN and ERG Immunoexpression in Prostate Carcinoma and Lesions Related to Its Natural History: Clinical Perspectives. Curr Issues Mol Biol 2023; 45:2767-2780. [PMID: 37185705 PMCID: PMC10136580 DOI: 10.3390/cimb45040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose: The aim of our study was to observe the associations between the ETS-related gene (ERG) and the phosphatase and tensin homolog gene (PTEN) immunoexpression in prostate cancer and related lesions and highlight the clinical significance of these findings. Methods: We evaluated the immunohistochemical expression of ERG and PTEN in a series of 151 invasive prostate adenocarcinomas, including low-grade (Gleason grade pattern 3) and high-grade (Gleason grade patterns 4, 5) morphological patterns which corresponded to 45.5% and 54.4% of the cases, respectively. Additionally, we evaluated the immunoexpression of the two markers both in foci of high-grade prostatic intraepithelial neoplasia (HGPIN), as a precursor lesion of cancer, and in foci of intraductal carcinoma of the prostate (IDCP). Finally, to ensure the malignant nature of the prostate glands examined, we employed p63 and alpha-methylacyl-CoA racemase (AMACR) expression. Results: We found that PTEN loss was observed in 50.7%, and ERG positivity was detected in 41.8% of our cancerous samples. In HGPIN, PTEN loss appeared to be linked with a high-grade adjacent invasive carcinoma component which also displayed PTEN loss. As far as IDCP is concerned, ERG immunonegativity was correlated with adjacent high-grade invasive cancer, which was also ERG immunonegative. Conclusions: Our findings suggest that the clonal expansion of invasive cancer appears to be associated with distinct immunophenotypic cellular alterations of both early and late cancer-related histological lesions. Patients with PTEN loss in HGPIN in prostate biopsies should be closely monitored due to the increased likelihood of having an associated invasive high-grade carcinoma that may have not been sampled. Given the clinical significance that derives from PTEN expression in HGPIN lesions, we suggest the routine use of PTEN immunohistochemistry in prostate cancer biopsies in which HGPIN is the only finding.
Collapse
|
7
|
Javeed S, Chughtai A, Zafar G, Khalid F, Batool A, Chughtai AS. An Evaluation of the Immunohistochemical Expression of Mismatch Repair Proteins (MSH2, MSH6, MLH1, and PMS2) in Prostate Adenocarcinoma. Cureus 2022; 14:e27448. [PMID: 36051725 PMCID: PMC9420449 DOI: 10.7759/cureus.27448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background and objective Mismatch repair (MMR) proteins are an integral part of the cell cycle, and they play an important role in the genomic stability of the microsatellite complex. Microsatellite instability (MSI) is associated with Lynch and multi-tumor syndromes. Identifying patients with Lynch syndrome is essential for screening, early detection, and surveillance of other Lynch syndrome-associated tumors. The role of MMR deficiency is well known in colorectal and endometrial adenocarcinoma. However, the role of MMR deficiency in prostatic adenocarcinoma is a matter of controversy. A few studies have been published to analyze the association between MMR deficiency and prostatic adenocarcinoma. In this study, we used immunohistochemistry to look into the expression of four MMR proteins in prostatic adenocarcinoma: MSH2, MSH6, MLH1, and PMS2. Methodology This was a cross-sectional descriptive study involving 74 cases of acinar prostatic adenocarcinoma, diagnosed with hematoxylin & eosin (H&E), over a period of six months between December 2021 and May 2022 at the Chughtai Institute of Pathology in Lahore, Pakistan. We performed the immunohistochemical (IHC) analysis and interpretation of four antibodies, i.e., MSH2, MSH6, MLH1, and PMS2. Results In our study, the age of the patients ranged from 50 to 98 years, with a mean age of 67.99 ± 9.59 years. The specimens were collected through transurethral resection of the prostate (TURP), transurethral vaporization of the prostate (TVP), core biopsy, and radical prostatectomy. Isolated loss of each MSH2 and PMS2 was noted in nine cases (12.20%) and MSH6 in two cases (2.70%). There was no loss noted for MLH1. Furthermore, simultaneous loss of MSH2/MSH6 was observed in one case (1.35%). Conclusion Our study findings revealed a low frequency of IHC expression of MMR proteins, especially the concurrent loss of paired MMR proteins. However, prostatic adenocarcinoma is associated with the isolated loss of MMR proteins. Thus, the present study does not warrant reflex testing/screening in every case of prostatic adenocarcinoma, because of its low frequency, which is probably suggestive of its sporadic pattern.
Collapse
|
8
|
Folkmanis K, Junk E, Merdane E, Folkmane I, Folkmanis V, Ivanovs I, Eglitis J, Jakubovskis M, Laabs S, Isajevs S, Lietuvietis V. Clinicopathological Significance of Exosomal Proteins CD9 and CD63 and DNA Mismatch Repair Proteins in Prostate Adenocarcinoma and Benign Hyperplasia. Diagnostics (Basel) 2022; 12:diagnostics12020287. [PMID: 35204378 PMCID: PMC8871402 DOI: 10.3390/diagnostics12020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction. Recently, it has been shown that exosomal biomarkers and DNA mismatch repair proteins (MMR) could play an important role in cancer risk stratification and prognosis assessment. The gold standard for prostate carcinoma (PCa) diagnosis is biopsy and histopathological examination. Thus, the complex evaluation of exosomal and MMR proteins could be beneficial for prostate cancer risk stratification and diagnostics. The aim of the current study was to evaluate and compare the expression of exosomal proteins CD9 and CD63 and MMR proteins in the tissue of patients with prostate benign hyperplasia (BPH) and PCa. Methods. The study was retrospective. Altogether, 92 patients with PCa and 20 patients with BPH (control group) were enrolled in the study. Exosomal and MMR protein expression was analyzed by immunohistochemistry (IHC). The follow-up for each PCa patient in our study lasted till disease progression and/or a maximum of 5 years. Results. Low-grade PCa was observed in 56 patients and high-grade PCa in 36 patients. CD63 expression was significantly higher in patients with high-grade PCa compared to those with low-grade PCa. CD9 expression was significantly downregulated in PCa patients compared to the control group. MMR protein expression deficiency was observed in 10 PCa patients. MMR proteins were maintained in all cases of BPH. The study found a negative correlation between MMR protein loss and PCa ISUP grade groups. Progression-free survival (PFS) in patients with MMR deficiency was significantly shorter than in patients with maintained MMR expression. Conclusions. CD9 protein expression was downregulated in PCa, compared to BPH, while CD63 protein expression was upregulated in high-grade PCa but downregulated in low-grade PCa. CD63 protein upregulation, CD9 downregulation, and loss of MMR protein characterized the shorter PFS of high-grade PCa patients. CD9, CD63, and MMR could be the routine immunohistochemical biomarkers for the diagnosis and risk stratification of PCa.
Collapse
Affiliation(s)
- Kristofs Folkmanis
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
- Department of Urology, Elbe Hospital in Stade—Teaching Hospital of Hamburg-Eppendorf University Hospital, 20246 Stade, Germany;
- Correspondence: ; Tel.: +49-152-136-57241
| | - Elizabete Junk
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
| | - Evelina Merdane
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
| | - Inese Folkmane
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
| | - Valdis Folkmanis
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
| | - Igors Ivanovs
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
| | - Janis Eglitis
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
| | - Maris Jakubovskis
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
- Department of Urology, Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sven Laabs
- Department of Urology, Elbe Hospital in Stade—Teaching Hospital of Hamburg-Eppendorf University Hospital, 20246 Stade, Germany;
| | - Sergejs Isajevs
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
| | - Vilnis Lietuvietis
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
- Department of Urology, Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
9
|
Chang HH, Lee CH, Chen YT, Huang CY, Yu CC, Lin VC, Geng JH, Lu TL, Huang SP, Bao BY. Genetic Analysis Reveals the Prognostic Significance of the DNA Mismatch Repair Gene MSH2 in Advanced Prostate Cancer. Cancers (Basel) 2022; 14:cancers14010223. [PMID: 35008387 PMCID: PMC8750592 DOI: 10.3390/cancers14010223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Androgen deprivation therapy is the most effective and widely used treatment for advanced prostate cancer, but its efficacy is highly variable among patients. Therefore, the identification of potent prognostic biomarkers is needed to determine patients at risk. We demonstrated that MSH2 rs1400633 was notably associated with patient survival during androgen deprivation therapy even after adjustment for clinical predictors and false discovery rate correction. Furthermore, our meta-analyses demonstrated that the MSH2 gene is highly expressed in prostate cancer and correlates positively with poor prognosis for this disease. Abstract DNA damage repair is frequently dysregulated in advanced prostate cancer and has been linked to cancer susceptibility and survival outcomes. The aim of this study is to assess the influence of genetic variants in DNA damage repair pathways on the prognosis of prostate cancer. Specifically, 167 single nucleotide polymorphisms (SNPs) in 18 DNA damage repair pathway genes were assessed for association with cancer-specific survival (CSS), overall survival (OS), and progression-free survival (PFS) in a cohort of 630 patients with advanced prostate cancer receiving androgen deprivation therapy. Univariate analysis identified four SNPs associated with CSS, four with OS, and two with PFS. However, only MSH2 rs1400633 C > G showed a significant association upon multivariate analysis and multiple testing adjustments (hazard ratio = 0.75, 95% confidence interval = 0.63–0.90, p = 0.002). Furthermore, rs1400633 risk allele C increased MSH2 expression in the prostate and other tissues, which correlated with more aggressive prostate cancer characteristics. A meta-analysis of 31 gene expression datasets revealed significantly higher MSH2 expression in prostate cancer than in normal tissues (p < 0.001), and this high expression was associated with a poor prognosis of prostate cancer (p = 0.002). In summary, we identified MSH2 rs1400633 as an independent prognostic biomarker for prostate cancer survival, and the association of MSH2 with cancer progression lends relevance to our findings.
Collapse
Affiliation(s)
- Hao-Han Chang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chao-Yuan Huang
- Department of Urology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan;
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Victor C. Lin
- Department of Urology, E-Da Hospital, Kaohsiung 824, Taiwan;
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
- Sex Hormone Research Center, China Medical University Hospital, Taichung 404, Taiwan
- Department of Nursing, Asia University, Taichung 413, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| |
Collapse
|
10
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Kagawa M, Kawakami S, Yamamoto A, Suzuki O, Eguchi H, Okazaki Y, Akagi K, Tamaru JI, Arai T, Yamaguchi T, Ishida H. Prevalence and clinicopathological/molecular characteristics of mismatch repair protein-deficient tumours among surgically treated patients with prostate cancer in a Japanese hospital-based population. Jpn J Clin Oncol 2021; 51:639-645. [PMID: 33244609 DOI: 10.1093/jjco/hyaa207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/10/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The prevalence and molecular characteristics of deficient mismatch repair prostate cancer in the Japanese population have scarcely been investigated. METHODS Immunohistochemistry for mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) was performed in formalin-fixed paraffin-embedded sections prepared from resected primary prostate cancers in patients who underwent prostatectomy at our institution between January 2001 and May 2016. Genetic and/or epigenetic alterations of mismatch repair genes were investigated in patients with any loss of mismatch repair protein expression in the tumour. RESULTS Of the 337 patients, four (1.2%) showed loss of mismatch repair protein expression on immunohistochemistry. All four patients showed loss of both MSH2 and MSH6 protein expression. Genetic testing was performed in two of the four patients, demonstrating no pathogenic germline alterations were present. In each of these two patients, at least one somatic alteration inactivating MSH2 without MSH2 hypermethylation was identified, leading to the diagnosis of supposed 'Lynch-like syndrome'. Patients with deficient mismatch repair prostate cancer were at a significantly higher stage (pT2pN0 vs. pT3-4pN0/pTanypN1, P = 0.02) and had a greater Gleason score (<8 vs. ≥8, P < 0.01) than those with proficient mismatch repair prostate cancer. CONCLUSIONS The prevalence of deficient mismatch repair prostate cancer in the Japanese hospital-based prostatectomized population was extremely low. To improve screening efficacy for deficient mismatch repair prostate cancer, screening candidates can be limited to patients with locally advanced, node-positive and/or Gleason score of 8 or greater prostate cancer. Universal tumour screening for Lynch syndrome seems ineffective in patients with prostate cancer.
Collapse
Affiliation(s)
- Makoto Kagawa
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Azusa Yamamoto
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
12
|
Vlajnic T, Bubendorf L. Molecular pathology of prostate cancer: a practical approach. Pathology 2020; 53:36-43. [PMID: 33234230 DOI: 10.1016/j.pathol.2020.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
While localised prostate cancer can be cured by local treatment, 'high-risk' prostate cancer often progresses to castration resistant disease and remains incurable with a dismal prognosis. In recent years, technical advances and development of novel methodologies have largely contributed to a better understanding of underlying molecular mechanisms that promote tumour growth and progression. Consecutively, novel therapeutic strategies for treatment of prostate cancer have emerged during the last decade, calling for the identification of predictive biomarkers. The concept of personalised medicine is to tailor treatment according to the specific tumour profile of an individual patient. Moreover, acquired molecular changes during tumour evolution and in response to therapy selection pressure require adapted predictive marker testing at different time points during the disease. In this setting, the pathologist plays a critical role in patient management and treatment selection. In this review, we provide a comprehensive overview of the current knowledge of molecular aspects of prostate cancer and their potential utility in the context of different therapeutic approaches. Furthermore, we discuss methods for molecular marker testing in routine clinical practice, with a focus on castration resistant prostate cancer.
Collapse
Affiliation(s)
- Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
Abstract
Recent studies have suggested an increased risk of prostate cancer in men with Lynch syndrome driven by germline mutations in mismatch repair (MMR) genes. However, the incidence and clinical implication of MMR deficiency in sporadic prostate cancers remain poorly understood. We immunohistochemically stained for MLH1, MSH2, MSH6, and PMS2 in a set of tissue microarray consisting of 220 radical prostatectomy specimens and evaluated the relationship between loss of their expression and available clinicopathological features. MLH1, MSH2, MSH6, and PMS2 were lost in 2 (0.9%), 6 (2.7%), 37 (16.8%), and 27 (12.3%) prostate cancers, respectively. Loss of at least 1 MMR protein was identified in 50 (22.7%) cases. There were no statistically significant associations between MMR deficiency and patient age, family history of prostate cancer, Gleason score, or pT/pN stage. Nonetheless, the levels of preoperative prostate-specific antigen (PSA) were significantly (P = .015) higher in patients with MMR deficiency (mean ± SD: 9.12 ± 9.01 ng/mL) than in those without abnormal MMR (5.76 ± 3.17 ng/mL). There were 15 (6.8%) cases showing loss of at least 2 MMR proteins, which was not significantly associated with PSA level or tumor grade/stage. Additionally, 5 and 2 cases showed losses of at least 3 MMR proteins and all 4 proteins, respectively. Kaplan-Meier analysis revealed no significant associations between loss of MLH1 (P = .373), MSH2 (P = .348), MSH6 (P = .946), or PMS2 (P = .681), or at least 1 (P = .477), 2 (P = .486), or 3 (P = .352) MMR proteins and biochemical recurrence. Further analyses of the data on programmed death-ligand 1 (PD-L1) expression previously stained in the same set of tissue microarray demonstrated associations between loss of ≥2 MMR proteins and a higher rate of PD-L1 expression in cancer cells (17.2% vs 5.2%; P = .033) as well as between cases showing both loss of ≥1 MMR protein(s) and PD-L1 expression in tumor-infiltrating immune cells vs a higher risk of biochemical recurrence (P = .045). MMR protein loss was seen in a subset of prostate cancers. Interestingly, it was associated with significantly higher levels of PSA. Moreover, immunohistochemical detection of MMR proteins together with other proteins, such as PD-L1, might be helpful in predicting tumor recurrence following radical prostatectomy.
Collapse
Affiliation(s)
| | | | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine
- Department of Urology
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
14
|
Gzil A, Jaworski D, Antosik P, Zarębska I, Durślewicz J, Dominiak J, Kasperska A, Neska-Długosz I, Grzanka D, Szylberg Ł. The impact of TP53BP1 and MLH1 on metastatic capability in cases of locally advanced prostate cancer and their usefulness in clinical practice. Urol Oncol 2020; 38:600.e17-600.e26. [PMID: 32280038 DOI: 10.1016/j.urolonc.2020.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lymph node (LN) metastases increase the risk of death from prostate cancer (CaP). The dysfunction of factors responsible for DNA injury detection may promote the evolution of localized primary tumors into the metastatic form. METHODS In this study, 52 cases of CaP were analyzed. The cases were divided into groups of CaP without metastases (N0), with metastases to the LNs (N+), and metastatic LN tissue. Immunohistochemical examinations were performed with antibodies against MDC1, TP53BP1, MLH1, MSH2, MSH6, and PMS2. RESULTS Statistical analysis showed lower nuclear expression of TP53BP1 in N+ cases than in N0 cases (P = 0.026). Nuclear TP53BP1 expression was lower in LN cases than in N+ cases (P = 0.019). Statistical analysis showed lower nuclear expression of MLH1 in N+ cases than in to N0 cases (P = 0.003). CONCLUSION Decreased expression of both MLH1 and TP53B1 were demonstrated in N+ cases of CaP. This observation could help to determine the risk of nodal metastasis, and to select appropriate treatment modalities for patients with locally advanced CaP.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland.
| | - Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Joanna Dominiak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Anna Kasperska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Izabela Neska-Długosz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland; Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof., Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
15
|
High homogeneity of mismatch repair deficiency in advanced prostate cancer. Virchows Arch 2019; 476:745-752. [PMID: 31811435 DOI: 10.1007/s00428-019-02701-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent reports have described favorable response rates for immune checkpoint inhibitors in prostate cancers with microsatellite instability (MSI). However, it is unclear whether MSI affects the entire tumor mass or is distributed heterogeneously, the latter potentially impairing treatment efficiency. METHODS To identify prostate cancers with MSI, 316 advanced prostate cancers were analyzed by immunohistochemistry (IHC) for the mismatch repair (MMR) proteins MLH1, PMS2, MSH2, and MSH6 on a TMA format. RESULTS Out of 200 interpretable cancers, IHC findings were consistent with MSI in 10 tumors. In 9 of these 10 cancers, tissue blocks were available for subsequent large section IHC, confirming MSI in 6 cases, each with combined protein loss of MSH2 and MSH6. One additional tumor with unequivocal loss of MLH1 and PMS2 on the TMA, for which further analyses could not be carried out due to lack of tissue, was also considered to exhibit MSI. In total, 7 of 200 interpretable advanced prostate cancers were found to exhibit MMR deficiency/MSI (3.5%). Subsequent analysis of all available cancer-containing archived tissue blocks (n=114) revealed consistent and homogeneous MMR protein loss in each case. Polymerase chain reaction (PCR)-based analysis using the "Bethesda panel" could be executed in 6 MMR deficient tumors of which 4 were MSI-high and 2 were MSI-low. CONCLUSIONS The absence of intratumoral heterogeneity for the MMR status suggests that MSI occurs early in prostate cancer. It is concluded that MMR analysis on limited biopsy material by IHC is sufficient to estimate the MMR status of the entire cancer mass.
Collapse
|