1
|
Carlomagno S, Setti C, Ortolani F, Sivori S. Pancreatic ductal adenocarcinoma microenvironment: Soluble factors and cancer associated fibroblasts as modulators of NK cell functions. Immunol Lett 2024; 269:106898. [PMID: 39019404 DOI: 10.1016/j.imlet.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the most frequent pancreatic cancer and represents one of the most aggressive human neoplasms. Typically identified at advance stage disease, most PDAC tumors are unresectable and resistant to standard therapies. The immunosuppressive microenvironment in PDAC impedes tumor control but a greater understanding of the complex stromal interactions within the tumor microenvironment (TME) and the development of strategies capable of restoring antitumor effector immune responses could be crucial to fight this aggressive tumor and its spread. Natural Killer (NK) cells play a crucial role in cancer immunosurveillance and represent an attractive target for immunotherapies, both as cell therapy and as a pharmaceutical target. This review describes some crucial components of the PDAC TME (collagens, soluble factors and fibroblasts) that can influence the presence, phenotype and function of NK cells in PDAC patients tumor tissue. This focused overview highlights the therapeutic relevance of dissecting the complex stromal composition to define new strategies for NK cell-based immunotherapies to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Simona Carlomagno
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy.
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Fulvia Ortolani
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
2
|
Jung KH, Kim M, Jung HJ, Koo HJ, Kim JL, Lee H, Lee KH. PET imaging of colon cancer CD73 expression using cysteine site-specific 89Zr-labeled anti-CD73 antibody. Sci Rep 2024; 14:17994. [PMID: 39097625 PMCID: PMC11297922 DOI: 10.1038/s41598-024-68987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
CD73 is a cell-surface ectoenzyme that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine, which in turn can promote resistance to immune checkpoint blockade therapy. Immune response may therefore be improved by targeting tumor CD73, and this possibility underlines the need to non-invasively assess tumor CD73 level. In this study, we developed a cysteine site-specific 89Zr-labeled anti-CD73 (89Zr-CD73) IgG immuno-PET technique that can image tumor CD73 expression in living bodies. Anti-CD73 IgG was reduced with tris(2-carboxyethyl)phosphine, underwent sulfohydryl moiety-specific conjugation with deferoxamine-maleimide, and was radiolabeled with 89Zr. CT26 mouse colon cancer cells, CT26/CD73 cells engineered to constitutively overexpress CD73, and 4T1.2 mouse breast cancer cells underwent cell binding assays and western blotting. Balb/c nude mice bearing tumors underwent 89Zr-CD73 IgG PET imaging and biodistribution studies. 89Zr-CD73 IgG showed 20-fold higher binding to overexpressing CT26/CD73 cells compared to low-expressing CT26 cells, and moderate expressing 4T1.2 cells showed uptake that was 38.9 ± 1.51% of CT26/CD73 cells. Uptake was dramatically suppressed by excess unlabeled antibody. CD73 content proportionately increased in CT26 and CT26/CD73 cell mixtures was associated with linear increases in 89Zr-CD73 IgG uptake. 89Zr-CD73 IgG PET/CT displayed clear accumulation in CT26/CD73 tumors with greater uptake compared to CT26 tumors (3.13 ± 1.70%ID/g vs. 1.27 ± 0.31%ID/g at 8 days; P = 0.04). Specificity was further supported by low CT26/CD73 tumor-to-blood ratio of 89Zr-isotype-IgG compared to 89Zr-CD73 IgG (0.48 ± 0.08 vs. 2.68 ± 0.52 at 4 days and 0.53 ± 0.07 vs. 4.81 ± 1.02 at 8 days; both P < 0.001). Immunoblotting and immunohistochemistry confirmed strong CD73 expression in CT26/CD73 tumors and low expression in CT26 tumors. 4T1.2 tumor mice also showed clear 89Zr-CD73 IgG accumulation at 8 days (3.75 ± 0.70%ID/g) with high tumor-to-blood ratio compared to 89Zr-isotype-IgG (4.91 ± 1.74 vs. 1.20 ± 0.28; P < 0.005). 89Zr-CD73 IgG specifically targeted CD73 on high expressing cancer cells in vitro and tumors in vivo. Thus, 89Zr-CD73 IgG immuno-PET may be useful for the non-invasive monitoring of CD73 expression in tumors of living subjects.
Collapse
Affiliation(s)
- Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mina Kim
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Jin Jung
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Jung Koo
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Lim Kim
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyunjong Lee
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Cao Z, Guan M, Cheng C, Wang F, Jing Y, Zhang K, Jiao J, Ruan L, Chen Z. KIF20B and MET, hub genes of DIAPHs, predict poor prognosis and promote pancreatic cancer progression. Pathol Res Pract 2024; 254:155046. [PMID: 38266456 DOI: 10.1016/j.prp.2023.155046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The DIAPHs (DIAPH1, DIAPH2, and DIAPH3) are members of the diaphanous subfamily of the formin family. KIF20B and MET, hub genes of DIAPHs, play crucial roles in cytoskeletal remodeling, cell migration, and adhesion. However, their combined prognostic and treatment value in pancreatic adenocarcinoma (PC) warrants further investigation. METHODS Multiomics analysis tools were used to comprehensively assess the genomic expression and prognostic value of KIF20B and MET in PC. Immune cell infiltration, functional enrichment, single-cell RNA-seq (scRNA) analysis, potential therapeutic drugs, and nomograms were established and analyzed. CCK-8 levels, transwell assay, Co-IP assay, mass spectrometry, and western blotting were performed to assess the role of KIF20B and MET as modulators of β-catenin and Lactate Dehydrogenase A (LDHA) in vitro. Xenograft tumor models were used to evaluate the anti-tumor effects in vivo. RESULTS DIAPHs, KIF20B, and MET were overexpressed and functioned as poor prognostic markers of PC. Immunoinfiltration analysis revealed that pDC and NK cells were enriched with low expression levels of KIF20B and MET, whereas Th2 cells were enriched with high expression levels of these two genes. The copy number variations (CNVs) in KIF20B and MET were positively correlated with B cell and CD4 + T cell infiltration. Immunological checkpoints NT5E and CD44 were positively correlated with KIF20B and MET expression. Moreover, the nomogram constructed based on KIF20B and MET demonstrated predictive value for overall survival. scRNA-Seq analysis indicated that KIF20B and MET were enriched in endothelial, malignant, B, T, and CD8 + T cells, which correlated with glycolysis and the epithelial-mesenchymal transition (EMT). The interactions of KIF20B and MET with β-catenin and LDHA were verified by Co-IP assay and mass spectrometry. Knockdown of KIF20B and MET downregulates β-catenin and LDHA in vitro. Furthermore, dual knockdown of KIF20B and MET exhibited a synergistic suppressive effect on PC progression in vitro and in vivo. CONCLUSION DIAPHs, KIF20B, and MET are promising candidates for the prognosis and treatment of PC. More importantly, downregulation of KIF20B and MET inhibited pancreatic cancer progression by regulating LDHA and EMT.
Collapse
Affiliation(s)
- Zhangqi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingwei Guan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Wang R, Liu Z, Wang T, Zhang J, Liu J, Zhou Q. Landscape of adenosine pathway and immune checkpoint dual blockade in NSCLC: progress in basic research and clinical application. Front Immunol 2024; 15:1320244. [PMID: 38348050 PMCID: PMC10859755 DOI: 10.3389/fimmu.2024.1320244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer poses a global threat to human health, while common cancer treatments (chemotherapy and targeted therapies) have limited efficacy. Immunotherapy offers hope of sustained remission for many patients with lung cancer, but a significant proportion of patients fail to respond to treatment owing to immune resistance. There is extensive evidence to suggest the immunosuppressive microenvironment as the cause of this treatment failure. Numerous studies have suggested that the adenosine (ADO) pathway plays an important role in the formation of an immunosuppressive microenvironment and may be a key factor in the development of immune resistance in EGFR-mutant cell lung cancer. Inhibition of this pathway may therefore be a potential target to achieve effective reversal of ADO pathway-mediated immune resistance. Recently, an increasing number of clinical trials have begun to address the broad prospects of using the ADO pathway as an immunotherapeutic strategy. However, few researchers have summarized the theoretical basis and clinical rationale of the ADO pathway and immune checkpoint dual blockade in a systematic and detailed manner, particularly in lung cancer. As such, a timely review of the potential value of the ADO pathway in combination with immunotherapy strategies for lung cancer is warranted. This comprehensive review first describes the role of ADO in the formation of a lung tumor-induced immunosuppressive microenvironment, discusses the key mechanisms of ADO inhibitors in reversing lung immunosuppression, and highlights recent evidence from preclinical and clinical studies of ADO inhibitors combined with immune checkpoint blockers to improve the lung cancer immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Rulan Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenkun Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Lima CF, Tamegnon A, Rodriguez S, Maru D, Martin PL, Cooper ZA, Rodriguez-Canales J, Parra ER. Exploring the Expression of Adenosine Pathway-Related Markers CD73 and CD39 in Colorectal and Pancreatic Carcinomas Characterized by Multiplex Immunofluorescence: A Pilot Study. Pathobiology 2023; 91:205-218. [PMID: 37926083 PMCID: PMC11524541 DOI: 10.1159/000534677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Generating high levels of immunosuppressive adenosine (ADO) in the tumor microenvironment contributes to cancer immune evasion. CD39 and CD73 hydrolyze adenosine triphosphate into ADO; thus, efforts have been made to target this pathway for cancer immunotherapy. Our objective was optimizing a multiplex immunofluorescence (mIF) panel to explore the role of CD39 and CD73 within the tumor microenvironment. MATERIALS AND METHODS In three-time points, a small cohort (n = 8) of colorectal and pancreatic adenocarcinomas were automated staining using an mIF panel against CK, CD3, CD8, CD20, CD39, CD73, and CD68 to compare them with individual markers immunohistochemistry (IHC) for internal panel validation. Densities of immune cells and distances from different tumor-associated immune cells to tumor cells were exploratory assessment and compared with clinicopathologic variables and outcomes. RESULTS Comparing the three-time points and individual IHC staining results, we demonstrated high reproducibility of the mIF panel. CD39 and CD73 expression was low in malignant cells; the exploratory analysis showed higher densities of CD39 expression by various cells, predominantly stromal cells, followed by T cells, macrophages, and B cells. No expression of CD73 by B cells or macrophages was detected. Distance analysis revealed proximity of cytotoxic T cells, macrophages, and T cells expressing CD39 to malignant cells, suggesting a close regulatory signal driven by this ADO marker. CONCLUSIONS We optimized an mIF panel for detection of markers in the ADO pathway, an emerging clinically relevant pathway. The densities and spatial distribution demonstrated that this pathway may modulate aspects of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Cibelle Freitas Lima
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
| | - Auriole Tamegnon
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Saxon Rodriguez
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dipen Maru
- Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip L Martin
- Department of Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Zachary A Cooper
- Department of Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Edwin Roger Parra
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Qin D, Wei R, Huang K, Wang R, Ding H, Yao Z, Xi P, Li S. Prognostic effect of CD73 in pancreatic ductal adenocarcinoma for disease-free survival after radical surgery. J Cancer Res Clin Oncol 2023; 149:7805-7817. [PMID: 37032378 DOI: 10.1007/s00432-023-04703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a high potency of metastasis or recurrence after radical resection. Effective predictors for metastasis and recurrence postoperatively were dominant for the development of systemic adjuvant treatment regimens. The ATP hydrolase correlated gene CD73 was described as a promoter in tumor growth and immune escape of PDAC. However, there lacked research focused on the role of CD73 in PDAC metastasis. This study aimed to investigate the expression of CD73 in PDAC patients with different outcomes as well as the prognostic effect of CD73 for disease-free survival (DFS). METHODS The expression level of CD73 in cancerous samples from 301 PDAC patients was evaluated by immunohistochemistry (IHC) and translated into a histochemistry score (H-score) by the HALO analysis system. Then, the CD73 H-score was involved in multivariate Cox regression along with other clinicopathological characteristics to find independent prognostic factors for DFS. Finally, a nomogram was constructed based on those independent prognostic factors for DFS prediction. RESULTS Higher CD73 expression was found in PDAC patients with tumor metastasis postoperatively. Meanwhile, higher CD73 expressions were also investigated in PDAC patients diagnosed with advanced N stage and T stage. Furthermore, CD73 H-score along with tumor margin status, CA19-9, 8th N stage, and adjuvant chemotherapy was indicated as independent prognostic factors for DFS in PDAC patients. The nomogram based on these factors predicted DFS in a good manner. CONCLUSION CD73 was associated with PDAC metastasis and served as an effective prognostic factor for DFS in PDAC patients after radical surgery.
Collapse
Affiliation(s)
- Dailei Qin
- State Key Laboratory of Oncology in South China, Department of Hepatobiliary and Pancreatic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Department of Hepatobiliary and Pancreatic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Kewei Huang
- State Key Laboratory of Oncology in South China, Department of Clinical Laboratory, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ruiqi Wang
- State Key Laboratory of Oncology in South China, Department of Hepatobiliary and Pancreatic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Honglu Ding
- State Key Laboratory of Oncology in South China, Department of Hepatobiliary and Pancreatic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zehui Yao
- State Key Laboratory of Oncology in South China, Department of Hepatobiliary and Pancreatic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Pu Xi
- State Key Laboratory of Oncology in South China, Department of Hepatobiliary and Pancreatic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Department of Hepatobiliary and Pancreatic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Zou X, Guan C, Gao J, Shi W, Cui Y, Zhong X. Tertiary lymphoid structures in pancreatic cancer: a new target for immunotherapy. Front Immunol 2023; 14:1222719. [PMID: 37529035 PMCID: PMC10388371 DOI: 10.3389/fimmu.2023.1222719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Pancreatic cancer (PC) is extremely malignant and shows limited response to available immunotherapies due to the hypoxic and immunosuppressive nature of its tumor microenvironment (TME). The aggregation of immune cells (B cells, T cells, dendritic cells, etc.), which is induced in various chronic inflammatory settings such as infection, inflammation, and tumors, is known as the tertiary lymphoid structure (TLS). Several studies have shown that TLSs can be found in both intra- and peritumor tissues of PC. The role of TLSs in peritumor tissues in tumors remains unclear, though intratumoral TLSs are known to play an active role in a variety of tumors, including PC. The formation of intratumoral TLSs in PC is associated with a good prognosis. In addition, TLSs can be used as an indicator to assess the effectiveness of treatment. Targeted induction of TLS formation may become a new avenue of immunotherapy for PC. This review summarizes the formation, characteristics, relevant clinical outcomes, and clinical applications of TLSs in the pancreatic TME. We aim to provide new ideas for future immunotherapy of PC.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Ye J, Gavras NW, Keeley DC, Hughson AL, Hannon G, Vrooman TG, Lesch ML, Johnston CJ, Lord EM, Belt BA, Linehan DC, Eyles J, Gerber SA. CD73 and PD-L1 dual blockade amplifies antitumor efficacy of SBRT in murine PDAC models. J Immunother Cancer 2023; 11:e006842. [PMID: 37142292 PMCID: PMC10163599 DOI: 10.1136/jitc-2023-006842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) induces immunogenic cell death, leading to subsequent antitumor immune response that is in part counterbalanced by activation of immune evasive processes, for example, upregulation of programmed cell death-ligand 1 (PD-L1) and adenosine generating enzyme, CD73. CD73 is upregulated in pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue and high expression of CD73 in PDACs is associated with increased tumor size, advanced stage, lymph node involvement, metastasis, PD-L1 expression and poor prognosis. Therefore, we hypothesized that blockade of both CD73 and PD-L1 in combination with SBRT might improve antitumor efficacy in an orthotopic murine PDAC model. METHODS We assessed the combination of systemic blockade of CD73/PD-L1 and local SBRT on tumor growth in primary pancreatic tumors, and investigated systemic antitumor immunity using a metastatic murine model bearing both orthotopic primary pancreatic tumor and distal hepatic metastases. Immune response was quantified by flow cytometric and Luminex analyses. RESULTS We demonstrated that blockade of both CD73 and PD-L1 significantly amplified the antitumor effect of SBRT, leading to superior survival. The triple therapy (SBRT+anti-CD73+anti-PD-L1) modulated tumor-infiltrating immune cells with increases of interferon-γ+CD8+ T cells. Additionally, triple therapy reprogramed the profile of cytokines/chemokines in the tumor microenvironment toward a more immunostimulatory phenotype. The beneficial effects of triple therapy are completely abrogated by depletion of CD8+ T cells, and partially reversed by depletion of CD4+ T cells. Triple therapy promoted systemic antitumor responses illustrated by: (1) potent long-term antitumor memory and (2) enhanced both primary and liver metastases control along with prolonged survival.
Collapse
Affiliation(s)
- Jian Ye
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas W Gavras
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Keeley
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Angela L Hughson
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gary Hannon
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tara G Vrooman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Maggie L Lesch
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian A Belt
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Linehan
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Jim Eyles
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | - Scott A Gerber
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
9
|
Benito-Lopez JJ, Marroquin-Muciño M, Perez-Medina M, Chavez-Dominguez R, Aguilar-Cazares D, Galicia-Velasco M, Lopez-Gonzalez JS. Partners in crime: The feedback loop between metabolic reprogramming and immune checkpoints in the tumor microenvironment. Front Oncol 2023; 12:1101503. [PMID: 36713558 PMCID: PMC9879362 DOI: 10.3389/fonc.2022.1101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
The tumor microenvironment (TME) is a complex and constantly changing cellular system composed of heterogeneous populations of tumor cells and non-transformed stromal cells, such as stem cells, fibroblasts, endothelial cells, pericytes, adipocytes, and innate and adaptive immune cells. Tumor, stromal, and immune cells consume available nutrients to sustain their proliferation and effector functions and, as a result of their metabolism, produce a wide array of by-products that gradually alter the composition of the milieu. The resulting depletion of essential nutrients and enrichment of by-products work together with other features of the hostile TME to inhibit the antitumor functions of immune cells and skew their phenotype to promote tumor progression. This review briefly describes the participation of the innate and adaptive immune cells in recognizing and eliminating tumor cells and how the gradual metabolic changes in the TME alter their antitumor functions. In addition, we discuss the overexpression of the immune checkpoints and their ligands as a result of nutrient deprivation and by-products accumulation, as well as the amplification of the metabolic alterations induced by the immune checkpoints, which creates an immunosuppressive feedback loop in the TME. Finally, the combination of metabolic and immune checkpoint inhibitors as a potential strategy to treat cancer and enhance the outcome of patients is highlighted.
Collapse
Affiliation(s)
- Jesus J Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
10
|
Da M, Chen L, Enk A, Ring S, Mahnke K. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells. Front Immunol 2022; 13:914799. [PMID: 35711418 PMCID: PMC9197450 DOI: 10.3389/fimmu.2022.914799] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine (Ado) has been shown to have immunosuppressive effects in a variety of diseases. It can either be released directly into the extracellular environment by cells, or it can be produced by degradation of ATP within the extracellular spaces. This extracellular pathway is facilitated by the concerted actions of the ectoenzymes CD39 and CD73. In a first step CD39 dephosphorylates ATP to ADP and AMP, respectively, and in a second step CD73 converts AMP to Ado. Thus, activity of CD73 on the cell surface of cells is the rate limiting step in the generation of extracellular Ado. Among T cells, CD73 is most abundantly expressed by regulatory T cells (Tregs) and is even upregulated after their activation. Functionally, the generation of Ado by CD73+ Tregs has been shown to play a role in immune suppression of dendritic cells, monocytes and T cells, and the defined expression of CD73 by Tregs in immunosuppressive environments, such as tumors, made CD73 a novel checkpoint inhibitor. Therefore, therapeutical intervention by anti-CD73 antibodies or by chemical inhibitors of the enzymatic function is currently under investigation in some preclinical animal models. In the following we summarize the expression pattern and the possible functions of CD73 in T cells and Tregs, and exemplify novel ways to manipulate CD73 functions in Tregs to stimulate anti-tumor immunity.
Collapse
|
11
|
Zhao J, Soto LMS, Wang H, Katz MH, Prakash LR, Kim M, Tzeng CWD, Lee JE, Wolff RA, Huang Y, Wistuba II, Maitra A, Wang H. Overexpression of CD73 in pancreatic ductal adenocarcinoma is associated with immunosuppressive tumor microenvironment and poor survival. Pancreatology 2021; 21:942-949. [PMID: 33832821 PMCID: PMC8802341 DOI: 10.1016/j.pan.2021.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND CD73, a newly recognized immune checkpoint mediator, is expressed in several types of malignancies. However, CD73 expression and its impact on tumor microenvironment and clinical outcomes in pancreatic ductal adenocarcinoma (PDAC) remain unclear. METHODS This study included two cohorts: 138 patients from our institution (MDA) and 176 patients from TCGA dataset. CD73 expression, CD4+, CD8+, CD21+ and CD45RO + tumor infiltrating lymphocytes (TILs) were evaluated by immunohistochemistry using tissue microarrays. The results of CD73 expression were correlated with clinicopathologic parameters, survival and TILs. RESULTS CD73 overexpression correlated with poor differentiation (P = 0.002) and tumor size (P = 0.049). For CD73-low group, median overall survival (OS) and recurrence-free survival (RFS) were 26.9 ± 3.8 months and 12.6 ± 2.6 months, respectively, compared to 16.9 ± 4.4 months (P = 0.01) and 7.9 ± 1.2 months (P = 0.01), respectively, in CD73-high group. CD73 was an independent predictor for both RFS (P = 0.02) and OS (P = 0.01) by multivariate variate analysis. Similarly, CD73-high tumors had significantly shorter OS than CD73-low tumors in TCGA dataset (P < 0.0001). CD73-high correlated with decreased CD4+ TILs in MDA cohort and decreased CD8A and CR2 (CD21) expression in TCGA cohort. CONCLUSIONS CD73 overexpression is associated with poor differentiation, tumor size, and shorter survival, and is an independent prognostic factor in PDAC patients. CD73 overexpression is associated with decreased CD4+, CD8+ and CD21+ TILs. Our data support that CD73 plays an important role in immunosuppressive tumor microenvironment and promote tumor progression in PDAC.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura R Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanqing Huang
- Evolution of Cancer, Leukemia and Immunity Post Stem Cell Transplant (ECLIPSE), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Kim M, Min YK, Jang J, Park H, Lee S, Lee CH. Single-cell RNA sequencing reveals distinct cellular factors for response to immunotherapy targeting CD73 and PD-1 in colorectal cancer. J Immunother Cancer 2021; 9:jitc-2021-002503. [PMID: 34253638 PMCID: PMC8276303 DOI: 10.1136/jitc-2021-002503] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although cancer immunotherapy is one of the most effective advanced-stage cancer therapies, no clinically approved cancer immunotherapies currently exist for colorectal cancer (CRC). Recently, programmed cell death protein 1 (PD-1) blockade has exhibited clinical benefits according to ongoing clinical trials. However, ongoing clinical trials for cancer immunotherapies are focused on PD-1 signaling inhibitors such as pembrolizumab, nivolumab, and atezolizumab. In this study, we focused on revealing the distinct response mechanism for the potent CD73 ectoenzyme selective inhibitor AB680 as a promising drug candidate that functions by blocking tumorigenic ATP/adenosine signaling in comparison to current therapeutics that block PD-1 to assess the value of this drug as a novel immunotherapy for CRC. METHODS To understand the distinct mechanism of AB680 in comparison to that of a neutralizing antibody against murine PD-1 used as a PD-1 blocker, we performed single-cell RNA sequencing of CD45+ tumor-infiltrating lymphocytes from untreated controls (n=3) and from AB680-treated (n=3) and PD-1-blockade-treated murine CRC in vivo models. We also used flow cytometry, Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) models, and in vitro functional assays to validate our new findings. RESULTS We initially observed that the expressions of Nt5e (a gene for CD73) and Entpd1 (a gene for CD39) affect T cell receptor (TCR) diversity and transcriptional profiles of T cells, thus suggesting their critical roles in T cell exhaustion within tumor. Importantly, PD-1 blockade significantly increased the TCR diversity of Entpd1-negative T cells and Pdcd1-positive T cells. Additionally, we determined that AB680 improved the anticancer functions of immunosuppressed cells such as Treg and exhausted T cells, while the PD-1 blocker quantitatively reduced Malat1high Treg and M2 macrophages. We also verified that PD-1 blockade induced Treg depletion in AOM/DSS CRC in vivo models, and we confirmed that AB680 treatment caused increased activation of CD8+ T cells using an in vitro T cell assay. CONCLUSIONS The intratumoral immunomodulation of CD73 inhibition is distinct from PD-1 inhibition and exhibits potential as a novel anticancer immunotherapy for CRC, possibly through a synergistic effect when combined with PD-1 blocker treatments. This study may contribute to the ongoing development of anticancer immunotherapies targeting refractory CRC.
Collapse
Affiliation(s)
- Miok Kim
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yong Ki Min
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jinho Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hyejin Park
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea .,Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Chang Hoon Lee
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, Galluzzi L. ATP and cancer immunosurveillance. EMBO J 2021; 40:e108130. [PMID: 34121201 DOI: 10.15252/embj.2021108130] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
While intracellular adenosine triphosphate (ATP) occupies a key position in the bioenergetic metabolism of all the cellular compartments that form the tumor microenvironment (TME), extracellular ATP operates as a potent signal transducer. The net effects of purinergic signaling on the biology of the TME depend not only on the specific receptors and cell types involved, but also on the activation status of cis- and trans-regulatory circuitries. As an additional layer of complexity, extracellular ATP is rapidly catabolized by ectonucleotidases, culminating in the accumulation of metabolites that mediate distinct biological effects. Here, we discuss the molecular and cellular mechanisms through which ATP and its degradation products influence cancer immunosurveillance, with a focus on therapeutically targetable circuitries.
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucillia Bezu
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Qld, Australia
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| |
Collapse
|
14
|
Tahkola K, Ahtiainen M, Mecklin JP, Kellokumpu I, Laukkarinen J, Tammi M, Tammi R, Väyrynen JP, Böhm J. Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer. Sci Rep 2021; 11:12216. [PMID: 34108626 PMCID: PMC8190291 DOI: 10.1038/s41598-021-91796-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Hyaluronan (HA) accumulation has been associated with poor survival in various cancers, but the mechanisms for this phenomenon are still unclear. The aim of this study was to investigate the prognostic significance of stromal HA accumulation and its association with host immune response in pancreatic ductal adenocarcinoma (PDAC). The study material consisted of 101 radically treated patients for PDAC from a single geographical area. HA staining was evaluated using a HA-specific probe, and the patterns of CD3, CD8, CD73 and PD-L1 expression were evaluated using immunohistochemistry. HA staining intensity of tumour stromal areas was assessed digitally using QuPath. CD3- and CD8-based immune cell score (ICS) was determined. High-level stromal HA expression was significantly associated with poor disease-specific survival (p = 0.037) and overall survival (p = 0.013) In multivariate analysis, high-level stromal HA expression was an independent negative prognostic factor together with histopathological grade, TNM stage, CD73 positivity in tumour cells and low ICS. Moreover, high-level stromal HA expression was associated with low ICS (p = 0.017). In conclusion, stromal HA accumulation is associated with poor survival and low immune response in PDAC.
Collapse
Affiliation(s)
- Kyösti Tahkola
- grid.460356.20000 0004 0449 0385Department of Surgery, Central Finland Health Care District, Jyväskylä, Finland ,grid.502801.e0000 0001 2314 6254Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maarit Ahtiainen
- grid.460356.20000 0004 0449 0385Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- grid.460356.20000 0004 0449 0385Department of Education and Research, Central Finland Health Care District, Jyväskylä, Finland ,grid.9681.60000 0001 1013 7965Sport&Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ilmo Kellokumpu
- grid.460356.20000 0004 0449 0385Department of Surgery, Central Finland Health Care District, Jyväskylä, Finland
| | - Johanna Laukkarinen
- grid.502801.e0000 0001 2314 6254Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland ,grid.412330.70000 0004 0628 2985Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Markku Tammi
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Raija Tammi
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha P. Väyrynen
- grid.460356.20000 0004 0449 0385Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland ,grid.10858.340000 0001 0941 4873Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jan Böhm
- grid.460356.20000 0004 0449 0385Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| |
Collapse
|
15
|
Targeted Therapies for Pancreatic Cancer: Overview of Current Treatments and New Opportunities for Personalized Oncology. Cancers (Basel) 2021; 13:cancers13040799. [PMID: 33672917 PMCID: PMC7918504 DOI: 10.3390/cancers13040799] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic chemotherapy remains the only treatment option for most pancreatic ductal adenocarcinoma patients. Currently, the median overall survival of patients with advanced disease rarely exceeds 1 year. The complex network of pancreatic cancer composed of immune cells, endothelial cells, and cancer-associated fibroblasts confers intratumoral and intertumoral heterogeneity with distinct proliferative and metastatic propensity. This heterogeneity can explain why tumors do not behave uniformly and are able to escape therapy. The advance in technology of whole-genome sequencing has now provided the possibility of identifying every somatic mutation, copy-number change, and structural variant in a given cancer, giving rise to personalized targeted therapies. In this review, we provide an overview of the current and emerging treatment strategies in pancreatic cancer. By highlighting new paradigms in pancreatic ductal adenocarcinoma treatment, we hope to stimulate new thoughts for clinical trials aimed at improving patient outcomes.
Collapse
|