1
|
Le Tissier PR, Mollard P. Renewing an old interest: Pituitary folliculostellate cells. J Neuroendocrinol 2021; 33:e13053. [PMID: 34734454 PMCID: PMC11475256 DOI: 10.1111/jne.13053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
Anterior pituitary folliculostellate (FS) cells, first described almost 50 years ago, have a wide range of functions with respect to supporting and coordinating endocrine cell function, in particular through paracrine and gap junction-mediated signalling. Our previous studies identified the morphological organisation of FS cells, which mediates coordinated calcium activity throughout the homotypic FS network and allows signalling across the whole pituitary gland. It is also clear that FS cells can modify endocrine output and feedback on pituitary axes over a range of timescales. Recently, several studies have defined FS cells as a source of anterior pituitary endocrine cell renewal, which has resulted in a renaming of FS cells as "Sox2+ve stem cells". Here, we highlight the broader potential of the FS cell population in fine-tuning and coordinating pituitary axes function. In addition, we identify a need for: the definition of the possible subtypes of FS cell and their relationship with the stem cell population; the potential role of FS cells in pulsatile hormone secretion and coordination of heterotypic cell networks; and the roles that FS cells may play in both early-life programming of pituitary axes and in memory, or anticipation, of demand. Further studies of FS cells may demonstrate the fundamental importance of this cell type and its potential as a therapeutic target to correct pituitary gland dysfunction, one of which is stem cell therapy. Clearly, a thorough understanding of all of these interactions and relationships of FS and endocrine cells is required whatever therapeutic use is suggested by their various roles.
Collapse
Affiliation(s)
| | - Patrice Mollard
- Institute of Functional GenomicsCNRS, INSERMUniversity of MontpellierMontpellierFrance
| |
Collapse
|
2
|
Koenig S, Bredehöft J, Perniss A, Fuchs F, Roth J, Rummel C. Age Dependent Hypothalamic and Pituitary Responses to Novel Environment Stress or Lipopolysaccharide in Rats. Front Behav Neurosci 2018; 12:55. [PMID: 29615881 PMCID: PMC5868128 DOI: 10.3389/fnbeh.2018.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
Previously, we have shown that the transcription factor nuclear factor interleukin (NF-IL)6 can be used as an activation marker for inflammatory lipopolysaccharide (LPS)-induced and psychological novel environment stress (NES) in the rat brain. Here, we aimed to investigate age dependent changes of hypothalamic and pituitary responses to NES (cage switch) or LPS (100 μg/kg) in 2 and 24 months old rats. Animals were sacrificed at specific time points, blood and brains withdrawn and analyzed using immunohistochemistry, RT-PCR and bioassays. In the old rats, telemetric recording revealed that NES-induced hyperthermia was enhanced and prolonged compared to the young group. Plasma IL-6 levels remained unchanged and hypothalamic IL-6 mRNA expression was increased in the old rats. Interestingly, this response was accompanied by a significant upregulation of corticotropin-releasing hormone mRNA expression only in young rats after NES and overall higher plasma corticosterone levels in all aged animals. Immunohistochemical analysis revealed a significant upregulation of NF-IL6-positive cells in the pituitary after NES or LPS-injection. In another important brain structure implicated in immune-to-brain communication, namely, in the median eminence (ME), NF-IL6-immunoreactivity was increased in aged animals, while the young group showed just minor activation after LPS-stimulation. Interestingly, we found a higher amount of NF-IL6-CD68-positive cells in the posterior pituitary of old rats compared to the young counterparts. Moreover, aging affected the regulation of cytokine interaction in the anterior pituitary lobe. LPS-treatment significantly enhanced the secretion of the cytokines IL-6 and TNFα into supernatants of primary cell cultures of the anterior pituitary. Furthermore, in the young rats, incubation with IL-6 and IL-10 antibodies before LPS-stimulation led to a robust decrease of IL-6 production and an increase of TNFα production by the pituitary cells. In the old rats, this specific cytokine interaction could not be detected. Overall, the present results revealed strong differences in the activation patterns and pathways between old and young rats after both stressors. The prolonged hyperthermic and inflammatory response seen in aged animals seems to be linked to dysregulated pituitary cytokine interactions and brain cell activation (NF-IL6) in the hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Sandy Koenig
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Alexander Perniss
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Franziska Fuchs
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Marburg Center for Mind, Brain and Behavior-MCMBB, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Fuchs F, Damm J, Gerstberger R, Roth J, Rummel C. Activation of the inflammatory transcription factor nuclear factor interleukin-6 during inflammatory and psychological stress in the brain. J Neuroinflammation 2013; 10:140. [PMID: 24279606 PMCID: PMC4222273 DOI: 10.1186/1742-2094-10-140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transcription factor nuclear factor interleukin 6 (NF-IL6) is known to be activated by various inflammatory stimuli in the brain. Interestingly, we recently detected NF-IL6-activation within the hypothalamus-pituitary-adrenal (HPA)-axis of rats after systemic lipopolysaccharide (LPS)-injection. Thus, the aim of the present study was to investigate whether NF-IL6 is activated during either, inflammatory, or psychological stress in the rat brain. METHODS Rats were challenged with either the inflammatory stimulus LPS (100 μg/kg, i.p.) or exposed to a novel environment. Core body temperature (Tb) and motor activity were monitored using telemetry, animals were killed at different time points, brains and blood removed, and primary cell cultures of the anterior pituitary lobe (AL) were investigated. Analyses were performed using immunohistochemistry, RT-PCR, and cytokine-specific bioassays. RESULTS Stress stimulation by a novel environment increased NF-IL6-immunoreactivity (IR) in the pituitary's perivascular macrophages and hypothalamic paraventricular cells and a rise in Tb lasting approximately 2 h. LPS stimulation lead to NF-IL6-IR in several additional cell types including ACTH-IR-positive corticotrope cells in vivo and in vitro. Two other proinflammatory transcription factors, namely signal transducer and activator of transcription (STAT)3 and NFκB, were significantly activated and partially colocalized with NF-IL6-IR in cells of the AL only after LPS-stimulation, but not following psychological stress. In vitro NF-IL6-activation was associated with induction and secretion of TNFα in folliculostellate cells, which could be antagonized by the JAK-STAT-inhibitor AG490. CONCLUSIONS We revealed, for the first time, that NF-IL6 activation occurs not only during inflammatory LPS stimulation, but also during psychological stress, that is, a novel environment. Both stressors were associated with time-dependent activation of NF-IL6 in different cell types of the brain and the pituitary. Moreover, while NF-IL6-IR was partially linked to STAT3 and NFκB activation, TNFα production, and ACTH-IR after LPS stimulation; this was not the case after exposure to a novel environment, suggesting distinct underlying signaling pathways. Overall, NF-IL6 can be used as a broad activation marker in the brain and might be of interest for therapeutic approaches not only during inflammatory but also psychological stress.
Collapse
Affiliation(s)
- Franziska Fuchs
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| | - Jelena Damm
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| | - Rüdiger Gerstberger
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| | - Joachim Roth
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| | - Christoph Rummel
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| |
Collapse
|
4
|
Velasco-Marinero E, Herrero-Payo JJ, Carretero-González J. Changes in pituitary and prolactin cells of Wistar rats after two dental fillings with bisphenolic resins. Arch Oral Biol 2010; 56:592-8. [PMID: 21163467 DOI: 10.1016/j.archoralbio.2010.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/24/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
UNLABELLED Bisphenol-A (BPA) is used to manufacture dental materials such as sealants, fillings and cements. There is evidence of its estrogenic effects on recipients after the placement of dental sealants. Pituitary and especially prolactin (PRL) cells are targets for estrogens. OBJECTIVES The aim of this research was to determine if BPA eluted from dental resins can alter the proliferation of pituitary cells and PRL cells in the short, medium and long term in a case-control assay. METHODS Two dental fillings were inserted in the lower incisors of Wistar rats divided into groups sacrificed after one, three, five and seven months. Immunocytochemical treatment was carried out in order to determine proliferating cell nuclear antigen (PCNA) positive cells, PRL-positive cells, PRL- and PCNA-positive cells. RESULTS A significant increase of PCNA-positive cells after one (p < 0.05), three (p < 0.01) and five months (p < 0.01) was recorded. PRL-positive cells showed no statistically significant difference between intervened animals and controls. PRL- and PCNA-positive cells manifested a significant increase after five months (p < 0.05). A significant decrease in proliferating cells was observed after seven months (p < 0.05) for PCNA-positive cells and (p < 0.01) for PRL- and PCNA-positive cells. CONCLUSION Low quantities of BPA eluted during mastication can affect immunocytochemical patterns of pituitary cells, increasing cellular proliferation in the short, medium and long term although PRL cell population remained unaffected after dental fillings.
Collapse
|
5
|
Zhang XR, Zhang ZJ, Jenkins TA, Cheng WR, Reynolds GP. The effect of chronic antipsychotic drug administration on nitric oxide synthase activity and gene expression in rat penile tissues. Eur Neuropsychopharmacol 2010; 20:211-7. [PMID: 19914809 DOI: 10.1016/j.euroneuro.2009.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 09/02/2009] [Accepted: 10/04/2009] [Indexed: 10/20/2022]
Abstract
Antipsychotic drug treatment may be associated with common and problematic sexual dysfunction, especially impotence, which can diminish quality of life and lead to treatment noncompliance. Nitric oxide synthase (NOS) is an important cellular modulator of erectile function. We have therefore investigated the effect of antipsychotic drug on activity and gene expression of NOS in rat penile tissues. The activity of constitutive NOS was significantly suppressed below control by a 21 days administration of 1 mg/kg haloperidol, which also significantly decreased expression of endothelial NOS (eNOS) and neural NOS mRNA. Risperidone at 0.5 mg/kg also reduced eNOS mRNA expression. Haloperidol or risperidone did not change gene expression and activity of inducible NOS (iNOS). Quetiapine significantly increased activity and mRNA expression of iNOS with 20 and 40 mg/kg doses. These preliminary results have important implications for enhancing our understanding of mechanisms by which antipsychotic drugs induce sexual dysfunction.
Collapse
Affiliation(s)
- Xiang Rong Zhang
- Neuropsychiatric Research Institute, School of Clinical Medicine, Southeast University, Nanjing, China
| | | | | | | | | |
Collapse
|
6
|
Differential role of the nNOS gene in the development of behavioral sensitization to cocaine in adolescent and adult B6;129S mice. Psychopharmacology (Berl) 2008; 200:509-19. [PMID: 18592222 DOI: 10.1007/s00213-008-1228-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Previous studies have suggested the involvement of neuronal nitric oxide synthase (nNOS) in the development of sensitization to psychostimulants. Ontogeny-dependent differences in the response to psychostimulants have been reported. OBJECTIVE The objectives were to investigate (a) the short- and long-term consequences of adolescent and adult cocaine exposure on behavioral sensitization and (b) the role of the nNOS gene in behavioral sensitization in adolescent and adult mice. MATERIALS AND METHODS Adolescent and adult wild type (WT) and nNOS knockout (KO) mice received saline or cocaine (20 mg/kg) for 5 days and then were challenged with cocaine (20 mg/kg) after a drug-free period of 10 or 30 days. Locomotor activity was recorded by infrared beam interruptions. nNOS immunoreactive (ir) neurons in the dorsal and ventral striatum were quantified 24 h after repeated administration of cocaine to adolescent and adult WT mice. RESULTS Repeated administration of cocaine to either WT or nNOS KO mice during adolescence resulted in locomotor sensitization, which persisted into adulthood. WT but not KO adult mice developed long-term sensitization to cocaine. Repeated cocaine administration resulted in a 96% increase in the expression of nNOS-ir neurons in the dorsal striatum of adult but not adolescent WT mice. CONCLUSIONS The nNOS gene is essential for the induction of behavioral sensitization to cocaine in adulthood but not in adolescence. The increased expression of nNOS-ir neurons in the dorsal striatum may underlie the induction of behavioral sensitization in adulthood. Thus, the NO-signaling pathway has an ontogeny-dependent role in the neuroplasticity underlying cocaine behavioral sensitization.
Collapse
|
7
|
Lima FB, Szawka RE, Anselmo-Franci JA, Franci CR. Pargyline effect on luteinizing hormone secretion throughout the rat estrous cycle: Correlation with serotonin, catecholamines and nitric oxide in the medial preoptic area. Brain Res 2007; 1142:37-45. [PMID: 17303090 DOI: 10.1016/j.brainres.2007.01.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/18/2006] [Accepted: 01/12/2007] [Indexed: 11/29/2022]
Abstract
The neurons that produce gonadotrophin-releasing hormone (GnRH) are mainly found in the medial preoptic area (MPOA) and constitute a common final pathway to the control of luteinizing hormone (LH) surge on proestrus. The control of GnRH secretion depends on several neurotransmitters, such as serotonin (5-HT), noradrenaline (NA), dopamine (DA) and nitric oxide (NO). The aim of this work was to study the profile of 5-HT, catecholamines and their main metabolites in the MPOA throughout the estrous cycle and their interactions with NO system in this area to control LH surge. For this purpose, the following were evaluated: (I) the effect of pargyline (a monoamine oxidase inhibitor) acute treatment on plasma LH secretion throughout the estrous cycle, correlated with changes of 5-HT, DA and NA content as well as activity and expression of neuronal NO synthase (nNOS) within MPOA; (II) the effect of 5,7-dihydroxitriptamine (a drug that depletes 5-HT) microinjection into MPOA on plasma LH in ovariectomized rats treated with oil, estradiol (E(2)) or E(2) plus progesterone (P(4)). Pargyline prevented LH surge on proestrus without altering its basal secretion. Throughout the estrous cycle, pargyline augmented both 5-HT and DA contents in approximately 300% and NA content in 50% in the MPOA. During proestrus, pargyline stimulated nNOS activity at 9 h and inhibited it at 11 h. nNOS expression was inhibited by pargyline at 15 h. Depletion of 5-HT content in the MPOA increased LH secretion in ovariectomized rats treated with E(2) plus P(4), but it did not modify in rats treated with either oil or E(2). Therefore, the present data show that pargyline treatment can inhibit proestrus LH surge through a mechanism that may involve 5-HT and NO systems in the MPOA. Moreover, the effect of 5-HT in the MPOA for limiting LH surge seems to depend on plasma levels of E(2) and P(4).
Collapse
Affiliation(s)
- Fernanda Barbosa Lima
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão, Preto, SP, Brazil
| | | | | | | |
Collapse
|
8
|
Anderson KL, Itzhak Y. Methamphetamine-induced selective dopaminergic neurotoxicity is accompanied by an increase in striatal nitrate in the mouse. Ann N Y Acad Sci 2007; 1074:225-33. [PMID: 17105919 DOI: 10.1196/annals.1369.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Exposure to high doses of methamphetamine (METH), a major drug of abuse, may cause neuronal damage. Previous studies have implicated the role of peroxynitrite, produced by nitric oxide (NO) and reactive oxygen species, in dopaminergic neurotoxicity produced by METH in mice. The present article was undertaken to investigate if a neurotoxic regimen of METH is associated with changes in tissue levels of nitrate and nitrite, which are the stable products of NO. Administration of METH (5 mg/kg x 3) to Swiss Webster mice resulted in marked depletion of dopamine (DA) and DA transporter (DAT) binding sites but no change in 5-hydroxytryptamine (5-HT) and 5-HT transporter (5-HTT) binding sites in the striatum, amygdala, frontal cortex, and hippocampus, suggesting that METH causes selective neurotoxicity to DA nerve terminals. The concentration of nitrate in the striatum was increased by about two-fold after METH administration; however, no changes in nitrate concentration were detected in other brain regions that endured dopaminergic neurotoxicity. These findings suggest that (a) a neurotoxic regimen of METH produces selective increase in NO in the striatum, which may generate toxic species such as peroxynitrite, and (b) toxins other than NO-related derivatives may mediate dopaminergic neurotoxicity in the amygdala and frontal cortex.
Collapse
Affiliation(s)
- Karen L Anderson
- Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Gautier Building 503, 1011 NW 15th Street, Miami, FL 33136, USA
| | | |
Collapse
|
9
|
Itzhak Y, Ali SF. Role of nitrergic system in behavioral and neurotoxic effects of amphetamine analogs. Pharmacol Ther 2006; 109:246-62. [PMID: 16154200 DOI: 10.1016/j.pharmthera.2005.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/02/2005] [Indexed: 12/22/2022]
Abstract
Several amphetamine analogs are potent psychostimulants and major drugs of abuse. In animal models, the psychomotor and reinforcing effects of amphetamine, methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy), and methylphenidate (MPD; Ritalin) are thought to be dependent on increased extracellular levels of dopamine (DA) in mesocorticolimbic and mesostriatal pathways. However, amphetamine analogs that increase primarily serotonergic transmission, such as p-chloroamphetamine (PCA) and fenfluramine (FEN), have no potential for abuse. High doses of METH, MDMA, PCA, and FEN produce depletions of dopaminergic and serotonergic nerve terminal markers and are considered as potential neurotoxicants. The first part of this review briefly summarizes the behavioral and neurotoxic effects of amphetamines that have a different spectrum of activity on dopaminergic and serotonergic systems. The second part discusses evidence supporting involvement of the nitrergic system in dopamine-mediated effects of amphetamines. The nitrergic system in this context corresponds to nitric oxide (NO) produced from neuronal nitric oxide synthase (nNOS) that has roles in nonsynaptic interneuronal communication and excitotoxic neuronal injury. Increasing evidence now suggests cross talk between dopamine, glutamate, and NO. Results from our laboratory indicate that dopamine-dependent psychomotor, reinforcing, and neurotoxic effects of amphetamines are diminished by pharmacological blockade of nNOS or deletion of the nNOS gene. These findings, and evidence supporting the role of NO in synaptic plasticity and neurotoxic insults, suggest that NO functions as a neuronal messenger and a neurotoxicant subsequent to exposure to amphetamine-like psychostimulants.
Collapse
Affiliation(s)
- Yossef Itzhak
- Department of Psychiatry and Behavioral Sciences, 1011 NW 15th Street Gautier 503, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|