1
|
Zachlod D, Palomero-Gallagher N, Dickscheid T, Amunts K. Mapping Cytoarchitectonics and Receptor Architectonics to Understand Brain Function and Connectivity. Biol Psychiatry 2023; 93:471-479. [PMID: 36567226 DOI: 10.1016/j.biopsych.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
This review focuses on cytoarchitectonics and receptor architectonics as biological correlates of function and connectivity. It introduces the 3-dimensional cytoarchitectonic probabilistic maps of cortical areas and nuclei of the Julich-Brain Atlas, available at EBRAINS, to study structure-function relationships. The maps are linked to the BigBrain as microanatomical reference model and template space. The siibra software tool suite enables programmatic access to the maps and to receptor architectonic data that are anchored to brain areas. Such cellular and molecular data are tools for studying magnetic resonance connectivity including modeling and simulation. At the end, we highlight perspectives of the Julich-Brain as well as methodological considerations. Thus, microstructural maps as part of a multimodal atlas help elucidate the biological correlates of large-scale networks and brain function with a high level of anatomical detail, which provides a basis to study brains of patients with psychiatric disorders.
Collapse
Affiliation(s)
- Daniel Zachlod
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany.
| | - Nicola Palomero-Gallagher
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Department of Psychiatry, Psychotherapy, Psychosomatics, Medical Faculty, RWTH Aachen, Jülich Aachen Research Alliance-Translational Brain Medicine, Aachen, Germany
| | - Timo Dickscheid
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; Helmholtz AI, Research Centre Jülich, Jülich, Germany; Department of Computer Science, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Chiu WZ, Donker Kaat L, Boon AJW, Kamphorst W, Schleicher A, Zilles K, van Swieten JC, Palomero-Gallagher N. Multireceptor fingerprints in progressive supranuclear palsy. ALZHEIMERS RESEARCH & THERAPY 2017; 9:28. [PMID: 28412965 PMCID: PMC5393015 DOI: 10.1186/s13195-017-0259-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 05/29/2023]
Abstract
Background Progressive supranuclear palsy (PSP) with a frontal presentation, characterized by cognitive deficits and behavioral changes, has been recognized as an early clinical picture, distinct from the classical so-called Richardson and parkinsonism presentations. The midcingulate cortex is associated with executive and attention tasks and has consistently been found to be impaired in imaging studies of patients with PSP. The aim of the present study was to determine alterations in neurotransmission underlying the pathophysiology of PSP, as well as their significance for clinically identifiable PSP subgroups. Methods In vitro receptor autoradiography was used to quantify densities of 20 different receptors in the caudate nucleus and midcingulate area 24' of patients with PSP (n = 16) and age- and sex-matched control subjects (n = 14). Results Densities of γ-aminobutyric acid type B, peripheral benzodiazepine, serotonin receptor type 2, and N-methyl-d-aspartate receptors were significantly higher in area 24′ of patients with PSP, where tau impairment was stronger than in the caudate nucleus. Kainate and nicotinic cholinergic receptor densities were significantly lower, and adenosine receptor type 1 (A1) receptors significantly higher, in the caudate nucleus of patients with PSP. Receptor fingerprints also segregated PSP subgroups when clinical parameters such as occurrence of frontal presentation and tau pathology severity were taken into consideration. Conclusions We demonstrate, for the first time to our knowledge, that kainate and A1 receptors are altered in PSP and that clinically identifiable PSP subgroups differ at the neurochemical level. Numerous receptors were altered in the midcingulate cortex, further suggesting that it may prove to be a key region in PSP. Finally, we add to the evidence that nondopaminergic systems play a role in the pathophysiology of PSP, thus highlighting potential novel treatment strategies.
Collapse
Affiliation(s)
- Wang Zheng Chiu
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Wouter Kamphorst
- Department of Neuropathology, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands
| | - Axel Schleicher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.,Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Aachen, Germany
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany. .,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| |
Collapse
|
3
|
del Campo N, Tait RJ, Acosta-Cabronero J, Hong YT, Izquierdo-Garcia D, Smith R, Aigbirhio FI, Sahakian BJ, Müller U, Robbins TW, Fryer TD. Quantification of receptor-ligand binding potential in sub-striatal domains using probabilistic and template regions of interest. Neuroimage 2010; 55:101-12. [PMID: 21126591 DOI: 10.1016/j.neuroimage.2010.11.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
Sub-striatal regions of interest (ROIs) are widely used in PET studies to investigate the role of dopamine in the modulation of neural networks implicated in emotion, cognition and motor function. One common approach is that of Mawlawi et al. (2001) and Martinez et al. (2003), where each striatum is divided into five sub-regions. This study focuses on the use of two spatial normalization-based alternatives to manual sub-striatal ROI delineation per subject: manual ROI delineation on a template brain and the production of probabilistic ROIs from a set of subject-specific manually delineated ROIs. Two spatial normalization algorithms were compared: SPM5 unified segmentation and ART. The ability of these methods to quantify sub-striatal regional non-displaceable binding potential (BP(ND)) and BP(ND) % change (following methylphenidate) was tested on 32 subjects (16 controls and 16 ADHD patients) scanned with the dopamine D(2)/D(3) ligand [(18)F]fallypride. Probabilistic ROIs produced by ART provided the best results, with similarity index values against subject-specific manual ROIs of 0.75-0.89 (mean 0.84) compared to 0.70-0.85 (mean 0.79) for template ROIs. Correlations (r) for BP(ND) and BP(ND) % change between subject-specific manual ROIs and these probabilistic ROIs of 0.90-0.98 (mean 0.95) and 0.98-1.00 (mean 0.99) respectively were superior overall to those obtained with template ROIs, although only marginally so for BP(ND) % change. The significance of relationships between BP(ND) measures and both behavioural tasks and methylphenidate plasma levels was preserved with ART combined with both probabilistic and template ROIs. SPM5 virtually matched the performance of ART for BP(ND) % change estimation but was inferior for BP(ND) estimation in caudate sub-regions. ART spatial normalization combined with probabilistic ROIs and to a lesser extent template ROIs provides an efficient and accurate alternative to time-consuming manual sub-striatal ROI delineation per subject, especially when the parameter of interest is BP(ND) % change.
Collapse
|
4
|
|
5
|
Gerstl F, Windischberger C, Mitterhauser M, Wadsak W, Holik A, Kletter K, Moser E, Kasper S, Lanzenberger R. Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fMRI and PET. Neuroimage 2008; 41:204-11. [DOI: 10.1016/j.neuroimage.2008.02.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022] Open
|
6
|
Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kujovic M, Zilles K, Amunts K. Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 2007; 28:1045-59. [PMID: 17266106 PMCID: PMC6871378 DOI: 10.1002/hbm.20348] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The extrastriate visual cortex forms a complex system enabling the analysis of visually presented objects. To gain deeper insight into the anatomical basis of this system, we cytoarchitectonically mapped the ventral occipital cortex lateral to BA 18/V2 in 10 human postmortem brains. The anatomical characterization of this part of the ventral stream was performed by examination of cell-body-stained histological sections using quantitative cytoarchitectonic analysis. First, the gray level index (GLI) was measured in the ventral occipital lobe. Cytoarchitectonic borders, i.e., significant changes in the cortical lamination pattern, were then identified using an observer-independent algorithm based on multivariate analysis of GLI profiles. Two distinct cytoarchitectonic areas (hOC3v, hOC4v) were characterized in the ventral extrastriate cortex lateral to BA 18/V2. Area hOC3v was found in the collateral sulcus. hOC4v was located in this sulcus and also covered the fusiform gyrus in more occipital sections. Topographically, these areas thus seem to represent the anatomical substrates of functionally defined areas, VP/V3v and V4/V4v. Following histological analysis, the delineated cytoarchitectonic areas were transferred to 3D reconstructions of the respective postmortem brains, which in turn were spatially normalized to the Montreal Neurological Institute reference space. A probabilistic map was generated for each area which describes how many brains had a representation of this area in a particular voxel. These maps can now be used to identify the anatomical correlates of functional activations observed in neuroimaging experiments to enable a more informed investigation into the many open questions regarding the organization of the human visual cortex.
Collapse
Affiliation(s)
- Claudia Rottschy
- Institute of Medicine, Research Centre Jülich, Germany
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Medicine, Research Centre Jülich, Germany
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| | - Axel Schleicher
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| | | | - Milenko Kujovic
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| | - Karl Zilles
- Institute of Medicine, Research Centre Jülich, Germany
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
- Brain Imaging Centre West, Research Centre Jülich, Germany
| | - Katrin Amunts
- Institute of Medicine, Research Centre Jülich, Germany
- Brain Imaging Centre West, Research Centre Jülich, Germany
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Germany
| |
Collapse
|
7
|
Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. ACTA ACUST UNITED AC 2006; 210:343-52. [PMID: 16208455 DOI: 10.1007/s00429-005-0025-5] [Citation(s) in RCA: 885] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Probabilistic maps of neocortical areas and subcortical fiber tracts, warped to a common reference brain, have been published using microscopic architectonic parcellations in ten human postmortem brains. The maps have been successfully applied as topographical references for the anatomical localization of activations observed in functional imaging studies. Here, for the first time, we present stereotaxic, probabilistic maps of the hippocampus, the amygdala and the entorhinal cortex and some of their subdivisions. Cytoarchitectonic mapping was performed in serial, cell-body stained histological sections. The positions and the extent of cytoarchitectonically defined structures were traced in digitized histological sections, 3-D reconstructed and warped to the reference space of the MNI single subject brain using both linear and non-linear elastic tools of alignment. The probability maps and volumes of all structures were calculated. The precise localization of the borders of the mapped regions cannot be predicted consistently by macroanatomical landmarks. Many borders, e.g. between the subiculum and entorhinal cortex, subiculum and Cornu ammonis, and amygdala and hippocampus, do not match sulcal landmarks such as the bottom of a sulcus. Only microscopic observation enables the precise localization of the borders of these brain regions. The superposition of the cytoarchitectonic maps in the common spatial reference system shows a considerably lower degree of intersubject variability in size and position of the allocortical structures and nuclei than the previously delineated neocortical areas. For the first time, the present observations provide cytoarchitectonically verified maps of the human amygdala, hippocampus and entorhinal cortex, which take into account the stereotaxic position of the brain structures as well as intersubject variability. We believe that these maps are efficient tools for the precise microstructural localization of fMRI, PET and anatomical MR data, both in healthy and pathologically altered brains.
Collapse
Affiliation(s)
- K Amunts
- Research Center Jülich, IME, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|