1
|
Kuramoto Y, Taira T, Rajbhandari S, Yoshimura S. Successful Radiofrequency Lesioning of the Pallidothalamic Tract in Paretic Form Focal Hand Dystonia With Paradoxical Unexpected Response to Intraoperative Test Electrical Stimulation: A Case Report. Cureus 2024; 16:e68088. [PMID: 39350811 PMCID: PMC11440005 DOI: 10.7759/cureus.68088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
We report a case with paretic focal hand dystonia, which at first glance was diagnosed as writer's cramp, with poor performance only when playing the guitar and writing but with increased muscle tension around the elbow rather than in the fingers and hands. The muscle tension was around the elbow and the pallidothalamic tract (PTT) was selected as the proximal muscle target with less permanent complications. During the operation, the PTT test electrical stimulation was impaired only for guitar playing, but not for other hand movements. Therefore, test lesioning at a lower temperature and for a shorter time improved the symptoms, so we were convinced that this was the target site and coagulated this site, i.e., the PPT, at the usual temperature and time. With only one target lesioning, the patient's symptoms disappeared for six months. Careful history taking and physical examination to identify the site of muscle tension is important in determining the target of paretic form dystonia. In addition, test lesioning at a lower temperature and for a shorter time is useful if the test electrical stimulation produces a paradoxically unexpected response.
Collapse
Affiliation(s)
- Yoji Kuramoto
- Neurosurgery, Hyogo Medical University, Nishinomiya, JPN
| | - Takaomi Taira
- Functional Neurosurgery, Kumagaya General Hospital, Kumagaya, JPN
- Neurosurgery, Hyogo Medical University, Nishinomiya, JPN
| | - Saujanya Rajbhandari
- Neurosurgery, Hyogo Medical University, Nishinomiya, JPN
- Diagnostic and Neuroradiology, Bern University Hospital, Bern, CHE
| | | |
Collapse
|
2
|
Ciocca M, Jameel A, Yousif N, Patel N, Smith J, Akgun S, Jones B, Gedroyc W, Nandi D, Tai Y, Seemungal BM, Bain P. Illusions of Self-Motion during Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Tremor. Ann Neurol 2024; 96:121-132. [PMID: 38709569 DOI: 10.1002/ana.26945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Brain networks mediating vestibular perception of self-motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. METHODS Here, we systematically report how magnetic resonance-guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient-reported illusions of self-motion. In 46 consecutive patients, we linked the descriptions of self-motion to sonication power and 3-dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. RESULTS A total of 63% of patients reported illusions of self-motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self-motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). INTERPRETATION The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self-motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance-guided focused ultrasound) unveils the central adaptation to the magnetic field-induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance-guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024;96:121-132.
Collapse
Affiliation(s)
- Matteo Ciocca
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Ayesha Jameel
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Nada Yousif
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Neekhil Patel
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Joely Smith
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sena Akgun
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Brynmor Jones
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wlayslaw Gedroyc
- Department of Radiology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dipankar Nandi
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Yen Tai
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Barry M Seemungal
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Peter Bain
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Butenko K, Neudorfer C, Dembek TA, Hollunder B, Meyer GM, Li N, Oxenford S, Bahners BH, Al-Fatly B, Lofredi R, Gordon EM, Dosenbach NUF, Ganos C, Hallett M, Starr PA, Ostrem JL, Wu Y, Zhang C, Fox MD, Horn A. Engaging dystonia networks with subthalamic stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307896. [PMID: 38903109 PMCID: PMC11188120 DOI: 10.1101/2024.05.24.24307896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Deep brain stimulation is a viable and efficacious treatment option for dystonia. While the internal pallidum serves as the primary target, more recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its complex surroundings have not been studied in depth. Indeed, multiple historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the exact same target. Therefore, a thorough investigation of the neural substrates underlying effects on dystonia symptoms is warranted. Here, we analyze a multi-center cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvement of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions was associated with improvement in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvement in limb dystonia and blepharospasm. This dissociation was also evident for structural connectivity, where the cerebellothalamic, corticospinal and pallidosubthalamic tracts were associated with improvement of cervical dystonia, while hyperdirect and subthalamopallidal pathways were associated with alleviation of limb dystonia and blepharospasm. Importantly, a single well-placed electrode may reach the three optimal target sites. On the level of functional networks, improvement of limb dystonia was correlated with connectivity to the corresponding somatotopic regions in primary motor cortex, while alleviation of cervical dystonia was correlated with connectivity to the recently described 'action-mode' network that involves supplementary motor and premotor cortex. Our findings suggest that different types of dystonia symptoms are modulated via distinct networks. Namely, appendicular dystonia and blepharospasm are improved with modulation of the basal ganglia, and, in particular, the subthalamic circuitry, including projections from the primary motor cortex. In contrast, cervical dystonia was more responsive when engaging the cerebello-thalamo-cortical circuit, including direct stimulation of ventral thalamic nuclei. These findings may inform DBS targeting and image-based programming strategies for patient-specific treatment of dystonia.
Collapse
Affiliation(s)
- Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bahne H Bahners
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Bassam Al-Fatly
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nico U F Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, CA, USA
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - ChenCheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiaotong University Schools of Medicine, Shanghai, China
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Steina A, Sure S, Butz M, Vesper J, Schnitzler A, Hirschmann J. Mapping Subcortico-Cortical Coupling-A Comparison of Thalamic and Subthalamic Oscillations. Mov Disord 2024; 39:684-693. [PMID: 38380765 DOI: 10.1002/mds.29730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexandra Steina
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Sure
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Neurosurgical Clinic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
5
|
Bingham CS, McIntyre CC. Coupled Activation of the Hyperdirect and Cerebellothalamic Pathways with Zona Incerta Deep Brain Stimulation. Mov Disord 2024; 39:539-545. [PMID: 38321526 PMCID: PMC10963140 DOI: 10.1002/mds.29717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/18/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or ventral intermediate nucleus (VIM) are established targets for the treatment of Parkinson's disease (PD) or essential tremor (ET), respectively. However, DBS of the zona incerta (ZI) can be effective for both disorders. VIM DBS is assumed to achieve its therapeutic effect via activation of the cerebellothalamic (CBT) pathway, whereas the activation of the hyperdirect (HD) pathway likely plays a role in the mechanisms of STN DBS. Interestingly, HD pathway axons also emit collaterals to the ZI and red nucleus (RN) and the CBT pathway courses nearby to the ZI. OBJECTIVE The aim was to examine the ability of ZI DBS to mutually activate the HD and CBT pathways in a detailed computational model of human DBS. METHODS We extended a previous model of the human HD pathway to incorporate axon collaterals to the ZI and RN. The anatomical framework of the model system also included representations of the CBT pathway and internal capsule (IC) fibers of passage. We then performed detailed biophysical simulations to quantify DBS activation of the HD, CBT, and IC pathways with electrodes located in either the STN or ZI. RESULTS STN DBS and ZI DBS both robustly activated the HD pathway. However, STN DBS was limited by IC activation at higher stimulus amplitudes. Alternatively, ZI DBS avoided IC activation while simultaneously activating the HD and CBT pathways. CONCLUSIONS From both neuroanatomical and biophysical perspectives, ZI DBS represents an advantageous target for coupled activation of the HD and CBT pathways. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Clayton S. Bingham
- Department of Biomedical Engineering, Duke University, Durham, N.C. 27708
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Duke University, Durham, N.C. 27708
- Department of Neurosurgery, Duke University, Durham, N.C. 27708
| |
Collapse
|
6
|
Wiśniewski K, Gajos A, Zaczkowski K, Szulia A, Grzegorczyk M, Dąbkowska A, Wójcik R, Bobeff EJ, Kwiecień K, Brandel MG, Fahlström A, Bogucki A, Ciszek B, Jaskólski DJ. Overlapping stimulation of subthalamic nucleus and dentato-rubro-thalamic tract in Parkinson's disease after deep brain stimulation. Acta Neurochir (Wien) 2024; 166:106. [PMID: 38403814 DOI: 10.1007/s00701-024-06006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces tremor, rigidity, and akinesia. According to the literature, the dentato-rubro-thalamic tract (DRTt) is verified target for DBS in essential tremor; however, its role in the treatment of Parkinson's disease is only vaguely described. The aim of our study was to identify the relationship between symptom alleviation in PD patients and the distance of the DBS electrode electric field (EF) to the DRTt. METHODS A single-center retrospective analysis of patients (N = 30) with idiopathic Parkinson's disease (PD) who underwent DBS between November 2018 and January 2020 was performed. DRTt and STN were visualized using diffusion-weighted imaging (DWI) and tractography protocol of magnetic resonance (MR). The EF was calculated and compared with STN and course of DRTt. Evaluation of patients before and after surgery was performed with use of UPDRS-III scale. The association between distance from EF to DRTt and clinical outcomes was examined. To confirm the anatomical variation between DRTt and STN observed in tractography, white matter dissection was performed with the Klingler technique on ten human brains. RESULTS Patients with EF overlapping STN and DRTt benefited from significant motor symptoms improvement. Anatomical findings confirmed the presence of population differences in variability of the DRTt course and were consistent with the DRTt visualized by MR. CONCLUSIONS DRTt proximity to STN, the main target in PD DBS surgery, confirmed by DWI with tractography protocol of MR combined with proper predefined stimulation parameters may improve efficacy of DBS-STN.
Collapse
Affiliation(s)
- K Wiśniewski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland.
| | - A Gajos
- Department of Extrapyramidal Diseases, Medical University of Łódź, Łódź, Poland
| | - K Zaczkowski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - A Szulia
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - M Grzegorczyk
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - A Dąbkowska
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - R Wójcik
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - E J Bobeff
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Łódź, Poland
| | - K Kwiecień
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - M G Brandel
- Department of Neurosurgery, University of California, San Diego, San Diego, CA, 92123, USA
| | - A Fahlström
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - A Bogucki
- Department of Extrapyramidal Diseases, Medical University of Łódź, Łódź, Poland
| | - B Ciszek
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - D J Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| |
Collapse
|
7
|
Gough M, Mills R, Brechany U, Nicholson C, Jenkins A, Hussain MA. Locating the ventral intermediate thalamic nucleus for deep brain stimulation surgery: analysis of a case series comparing CT and MR targeting. Br J Neurosurg 2024:1-6. [PMID: 38372013 DOI: 10.1080/02688697.2024.2313674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) surgery targeting the ventral intermediate thalamic nucleus (Vim) has proven efficacy in the treatment of tremor. AIMS The primary aim is to investigate whether there is a statistically significant difference in patient outcomes when CT-guided targeting of the Vim is compared with MRI-guided targeting. METHODS This is a retrospective study concerning patients undergoing Vim-targeted DBS at the Department of Neurosurgery, Royal Victoria Infirmary in Newcastle (9th August 2012 to 4th January 2019). Fahn-Tolosa-Marin Tremor Scale (FTM TS) and EQ-5D scores were collected from patient notes. Statistical analysis was performed using IBM® SPSS® Statistics Version 24. Independent samples t-tests were used to compare means. RESULTS Independent samples t-test did not reveal a statistically significant difference between CT (n = 10; FTM TS mean = 65.40, SD = 11.40; EQ-5D mean = 39.50, SD = 17.87) and MR (n = 7; FTM TS mean = 60.57, SD = 7.50; EQ-5D mean = 32.14, SD = 9.94) groups in pre-surgery FTM TS (t(15) = 0.977, p = 0.344) and EQ-5D (t(15) = 0.982, p = 0.342) scores. No statistically significant difference between the CT (FTM TS mean = 24.12, SD = 20.47; EQ-5D mean = 75.56, SD = 15.63) and MR (FTM TS mean = 22.86, SD = 6.72; EQ-5D mean = 70.43, SD = 15.48) groups was revealed at 1 year assessment of FTM TS (t(14) = 0.155, p = 0.879) and EQ-5D (t(14) = 0.654, p = 0.524). The median difference between pre- and post-surgery FTM TS and EQ-5D scores in the CT group at 1 year was 43.00 and 35.00, respectively. The MR patient group median difference in pre- and post-surgery at 1 year was 35.00 and 35.00 respectively. CONCLUSION No statistically significant difference between CT and MR image-guided targeting patient groups was detected.
Collapse
Affiliation(s)
| | - Russell Mills
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Una Brechany
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Claire Nicholson
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Alistair Jenkins
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Mohammed Akbar Hussain
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| |
Collapse
|
8
|
Sajonz BEA, Frommer ML, Reisert M, Blazhenets G, Schröter N, Rau A, Prokop T, Reinacher PC, Rijntjes M, Urbach H, Meyer PT, Coenen VA. Disbalanced recruitment of crossed and uncrossed cerebello-thalamic pathways during deep brain stimulation is predictive of delayed therapy escape in essential tremor. Neuroimage Clin 2024; 41:103576. [PMID: 38367597 PMCID: PMC10944187 DOI: 10.1016/j.nicl.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Thalamic deep brain stimulation (DBS) is an efficacious treatment for drug-resistant essential tremor (ET) and the dentato-rubro-thalamic tract (DRT) constitutes an important target structure. However, up to 40% of patients habituate and lose treatment efficacy over time, frequently accompanied by a stimulation-induced cerebellar syndrome. The phenomenon termed delayed therapy escape (DTE) is insufficiently understood. Our previous work showed that DTE clinically is pronounced on the non-dominant side and suggested that differential involvement of crossed versus uncrossed DRT (DRTx/DRTu) might play a role in DTE development. METHODS We retrospectively enrolled right-handed patients under bilateral thalamic DBS >12 months for ET from a cross-sectional study. They were characterized with the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) and Scale for the Assessment and Rating of Ataxia (SARA) scores at different timepoints. Normative fiber tractographic evaluations of crossed and uncrossed cerebellothalamic pathways and volume of activated tissue (VAT) studies together with [18F]Fluorodeoxyglucose positron emission tomography were applied. RESULTS A total of 29 patients met the inclusion criteria. Favoring DRTu over DRTx in the non-dominant VAT was associated with DTE (R2 = 0.4463, p < 0.01) and ataxia (R2 = 0.2319, p < 0.01). Moreover, increasing VAT size on the right (non-dominant) side was associated at trend level with more asymmetric glucose metabolism shifting towards the right (dominant) dentate nucleus. CONCLUSION Our results suggest that a disbalanced recruitment of DRTu in the non-dominant VAT induces detrimental stimulation effects on the dominant cerebellar outflow (together with contralateral stimulation) leading to DTE and thus hampering the overall treatment efficacy.
Collapse
Affiliation(s)
- Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Marvin L Frommer
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Schröter
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Michel Rijntjes
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Center for Deep Brain Stimulation, University of Freiburg, Germany
| |
Collapse
|
9
|
Kamagata K, Andica C, Uchida W, Takabayashi K, Saito Y, Lukies M, Hagiwara A, Fujita S, Akashi T, Wada A, Hori M, Kamiya K, Zalesky A, Aoki S. Advancements in Diffusion MRI Tractography for Neurosurgery. Invest Radiol 2024; 59:13-25. [PMID: 37707839 DOI: 10.1097/rli.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.
Collapse
Affiliation(s)
- Koji Kamagata
- From the Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan (K.K., C.A., W.U., K.T., Y.S., A.H., S.F., T.A., A.W., S.A.); Faculty of Health Data Science, Juntendo University, Chiba, Japan (C.A., S.A.); Department of Radiology, Alfred Health, Melbourne, Victoria, Australia (M.L.); Department of Radiology, University of Tokyo, Tokyo, Japan (S.F.); Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan (M.H., K.K.); Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia (A.Z.); and Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia (A.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Horisawa S, Miyao S, Hori T, Kim K, Kawamata T, Taira T. Abolition of seizures following Forel-H-tomy for drug-resistant epilepsy: A case report. Epilepsia Open 2023; 8:1602-1607. [PMID: 37702102 PMCID: PMC10690697 DOI: 10.1002/epi4.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
A 62-year-old female experienced an extensive cerebral contusion in the left frontotemporal lobe due to an acute subdural hematoma at the age of 44 years. Six months after the injury, the patient developed epileptic seizures. The seizures were generalized with right cervical rotation and fencing posture. Despite prescriptions for four antiepileptic drugs, partial seizures occurred several times a month and focal to bilateral tonic-clonic seizures once every 2 months. Video-electroencephalography showed epileptic discharges in the left frontal lobe. The patient was subsequently referred to our department for palliative surgery. The patient underwent a left Forel-H-tomy. The prescription of antiepileptic drugs was not changed, and the patient was seizure free for 1 year. Forel-H-tomy, a surgical procedure for intractable epilepsy, was pioneered by Dennosuke Jinnai. Despite its previously reported remarkable efficacy, Forel-H-tomy has not been performed for several decades. Nevertheless, it remains a potential alternative treatment option for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of NeurosurgeryTokyo Women's Medical UniversityShinjyukuJapan
| | - Satoru Miyao
- Department of NeurosurgeryTMG Asaka Medical CenterAsakaJapan
| | - Tomokatsu Hori
- Department of NeurosurgeryMoriyama Memorial HospitalEdogawa CityJapan
| | - Kilsoo Kim
- Department of NeurosurgeryTokyo Women's Medical UniversityShinjyukuJapan
| | - Takakazu Kawamata
- Department of NeurosurgeryTokyo Women's Medical UniversityShinjyukuJapan
| | - Takaomi Taira
- Department of NeurosurgeryTokyo Women's Medical UniversityShinjyukuJapan
| |
Collapse
|
11
|
Ikramuddin SS, Brinda AK, Butler RD, Hill ME, Dharnipragada R, Aman JE, Schrock LE, Cooper SE, Palnitkar T, Patriat R, Harel N, Vitek JL, Johnson MD. Active contact proximity to the cerebellothalamic tract predicts initial therapeutic current requirement with DBS for ET: an application of 7T MRI. Front Neurol 2023; 14:1258895. [PMID: 38020603 PMCID: PMC10666159 DOI: 10.3389/fneur.2023.1258895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To characterize how the proximity of deep brain stimulation (DBS) active contact locations relative to the cerebellothalamic tract (CTT) affect clinical outcomes in patients with essential tremor (ET). Background DBS is an effective treatment for refractory ET. However, the role of the CTT in mediating the effect of DBS for ET is not well characterized. 7-Tesla (T) MRI-derived tractography provides a means to measure the distance between the active contact and the CTT more precisely. Methods A retrospective review was conducted of 12 brain hemispheres in 7 patients at a single center who underwent 7T MRI prior to ventral intermediate nucleus (VIM) DBS lead placement for ET following failed medical management. 7T-derived diffusion tractography imaging was used to identify the CTT and was merged with the post-operative CT to calculate the Euclidean distance from the active contact to the CTT. We collected optimized stimulation parameters at initial programing, 1- and 2-year follow up, as well as a baseline and postoperative Fahn-Tolosa-Marin (FTM) scores. Results The therapeutic DBS current mean (SD) across implants was 1.8 mA (1.8) at initial programming, 2.5 mA (0.6) at 1 year, and 2.9 mA (1.1) at 2-year follow up. Proximity of the clinically-optimized active contact to the CTT was 3.1 mm (1.2), which correlated with lower current requirements at the time of initial programming (R2 = 0.458, p = 0.009), but not at the 1- and 2-year follow up visits. Subjects achieved mean (SD) improvement in tremor control of 77.9% (14.5) at mean follow-up time of 22.2 (18.9) months. Active contact distance to the CTT did not predict post-operative tremor control at the time of the longer term clinical follow up (R2 = -0.073, p = 0.58). Conclusion Active DBS contact proximity to the CTT was associated with lower therapeutic current requirement following DBS surgery for ET, but therapeutic current was increased over time. Distance to CTT did not predict the need for increased current over time, or longer term post-operative tremor control in this cohort. Further study is needed to characterize the role of the CTT in long-term DBS outcomes.
Collapse
Affiliation(s)
- Salman S. Ikramuddin
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Annemarie K. Brinda
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Rebecca D. Butler
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Meghan E. Hill
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | | | - Joshua E. Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Lauren E. Schrock
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Scott E. Cooper
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Tara Palnitkar
- CMRR, University of Minnesota, Minneapolis, MN, United States
| | - Rémi Patriat
- CMRR, University of Minnesota, Minneapolis, MN, United States
| | - Noam Harel
- CMRR, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Yu CH, Lench DH, Cooper C, Rowland NC, Takacs I, Revuelta G. Deep brain stimulation for essential tremor versus essential tremor plus: should we target the same spot in the thalamus? Front Hum Neurosci 2023; 17:1271046. [PMID: 38021224 PMCID: PMC10644388 DOI: 10.3389/fnhum.2023.1271046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Although ET is a phenomenologically heterogeneous condition, thalamic DBS appears to be equally effective across subtypes. We hypothesized stimulation sites optimized for individuals with essential tremor (ET) would differ from individuals with essential tremor plus syndrome (ET-plus). We examined group differences in optimal stimulation sites within the ventral thalamus and their overlap of with relevant white matter tracts. By capturing these differences, we sought to determine whether ET subtypes are associated with anatomically distinct neural pathways. Methods A retrospective chart review was conducted on ET patients undergoing VIM DBS at MUSC between 01/2012 and 02/2022. Clinical, demographic, neuroimaging, and DBS stimulation parameter data were collected. Clinical characteristics and pre-DBS videos were reviewed to classify ET and ET-plus cohorts. Patients in ET-plus cohorts were further divided into ET with dystonia, ET with ataxia, and ET with others. DBS leads were reconstructed using Lead-DBS and the volume of tissue activated (VTA) overlap was performed using normative connectomes. Tremor improvement was measured by reduction in a subscore of tremor rating scale (TRS) post-DBS lateralized to the more affected limb. Results Sixty-eight ET patients were enrolled after initial screening, of these 10 ET and 24 ET-plus patients were included in the final analyses. ET group had an earlier age at onset (p = 0.185) and underwent surgery at a younger age (p = 0.096). Both groups achieved effective tremor control. No significant differences were found in lead placement or VTA overlap within ventral thalamus. The VTA center of gravity (COG) in the ET-plus cohort was located dorsal to that of the ET cohort. No significant differences were found in VTA overlap with the dentato-rubral-thalamic (DRTT) tracts or the ansa lenticularis. Dystonia was more prevalent than ataxia in the ET-plus subgroups (n = 18 and n = 5, respectively). ET-plus with dystonia subgroup had a more medial COG compared to ET-plus with ataxia. Conclusion VIM DBS therapy is efficacious in patients with ET and ET-plus. There were no significant differences in optimal stimulation site or VTA overlap with white-matter tracts between ET, ET-plus and ET-plus subgroups.
Collapse
Affiliation(s)
- Cherry H. Yu
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Daniel H. Lench
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Cooper
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Nathan C. Rowland
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - Istvan Takacs
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - Gonzalo Revuelta
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
13
|
Klein J, Gerken A, Agethen N, Rothlübbers S, Upadhyay N, Purrer V, Schmeel C, Borger V, Kovalevsky M, Rachmilevitch I, Shapira Y, Wüllner U, Jenne J. Automatic planning of MR-guided transcranial focused ultrasound treatment for essential tremor. FRONTIERS IN NEUROIMAGING 2023; 2:1272061. [PMID: 37953746 PMCID: PMC10637361 DOI: 10.3389/fnimg.2023.1272061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Introduction Transcranial focused ultrasound therapy (tcFUS) offers precise thermal ablation for treating Parkinson's disease and essential tremor. However, the manual fine-tuning of fiber tracking and segmentation required for accurate treatment planning is time-consuming and demands expert knowledge of complex neuroimaging tools. This raises the question of whether a fully automated pipeline is feasible or if manual intervention remains necessary. Methods We investigate the dependence on fiber tractography algorithms, segmentation approaches, and degrees of automation, specifically for essential tremor therapy planning. For that purpose, we compare an automatic pipeline with a manual approach that requires the manual definition of the target point and is based on FMRIB software library (FSL) and other open-source tools. Results Our findings demonstrate the high feasibility of automatic fiber tracking and the automated determination of standard treatment coordinates. Employing an automatic fiber tracking approach and deep learning (DL)-supported standard coordinate calculation, we achieve anatomically meaningful results comparable to a manually performed FSL-based pipeline. Individual cases may still exhibit variations, often stemming from differences in region of interest (ROI) segmentation. Notably, the DL-based approach outperforms registration-based methods in producing accurate segmentations. Precise ROI segmentation proves crucial, surpassing the importance of fine-tuning parameters or selecting algorithms. Correct thalamus and red nucleus segmentation play vital roles in ensuring accurate pathway computation. Conclusion This study highlights the potential for automation in fiber tracking algorithms for tcFUS therapy, but acknowledges the ongoing need for expert verification and integration of anatomical expertise in treatment planning.
Collapse
Affiliation(s)
- Jan Klein
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Annika Gerken
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Niklas Agethen
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Sven Rothlübbers
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Neeraj Upadhyay
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Veronika Purrer
- Clinic and Policlinic for Neurology, University Hospital Bonn, Bonn, Germany
| | - Carsten Schmeel
- Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Clinic and Policlinic for Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | | | | | - Ullrich Wüllner
- Clinic and Policlinic for Neurology, University Hospital Bonn, Bonn, Germany
| | - Jürgen Jenne
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| |
Collapse
|
14
|
Stenmark Persson R, Fytagoridis A, Ryzhkov M, Hariz M, Blomstedt P. Long-Term Follow-Up of Unilateral Deep Brain Stimulation Targeting the Caudal Zona Incerta in 13 Patients with Parkinsonian Tremor. Stereotact Funct Neurosurg 2023; 101:369-379. [PMID: 37879313 DOI: 10.1159/000533793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an established treatment for Parkinson's disease (PD) and other movement disorders. The ventral intermediate nucleus of the thalamus is considered as the target of choice for tremor disorders, including tremor-dominant PD not suitable for DBS in the subthalamic nucleus (STN). In the last decade, several studies have shown promising results on tremor from DBS in the posterior subthalamic area (PSA), including the caudal zona incerta (cZi) located posteromedial to the STN. The aim of this study was to evaluate the long-term effect of unilateral cZi/PSA-DBS in patients with tremor-dominant PD. METHODS Thirteen patients with PD with medically refractory tremor were included. The patients were evaluated using the motor part of the Unified Parkinson Disease Rating Scale (UPDRS) off/on medication before surgery and off/on medication and stimulation 1-2 years (short-term) after surgery and at a minimum of 3 years after surgery (long-term). RESULTS At short-term follow-up, DBS improved contralateral tremor by 88% in the off-medication state. This improvement persisted after a mean of 62 months. Contralateral bradykinesia was improved by 40% at short-term and 20% at long-term follow-up, and the total UPDRS-III by 33% at short-term and by 22% at long-term follow-up with stimulation alone. CONCLUSIONS Unilateral cZi/PSA-DBS seems to remain an effective treatment for patients with severe Parkinsonian tremor several years after surgery. There was also a modest improvement on bradykinesia.
Collapse
Affiliation(s)
| | - Anders Fytagoridis
- Department of Clinical Neuroscience, Neurosurgery, Karolinska Institute, Stockholm, Sweden
| | - Maxim Ryzhkov
- Cranial and Spinal Technologies, Medtronic, Lafayette, Colorado, USA
| | - Marwan Hariz
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
- UCL Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Wang L, Li J, Pan Y, Huang P, Li D, Voon V. Subacute alpha frequency (10Hz) subthalamic stimulation for emotional processing in Parkinson's disease. Brain Stimul 2023; 16:1223-1231. [PMID: 37567462 DOI: 10.1016/j.brs.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Psychiatric comorbidities are common in Parkinson's disease (PD) and may change with high-frequency stimulation targeting the subthalamic nucleus. Numerous accounts indicate subthalamic alpha-frequency oscillation is implicated in emotional processing. While intermittent alpha-frequency (10Hz) stimulation induces positive emotional effects, with more ventromedial contacts inducing larger effects, little is known about the subacute effect of ventral 10Hz subthalamic stimulation on emotional processing. OBJECTIVE/HYPOTHESIS To evaluate the subacute effect of 10Hz stimulation at bilateral ventral subthalamic nucleus on emotional processing in PD patients using an affective task, compared to that of clinical-frequency stimulation and off-stimulation. METHODS Twenty PD patients with bilateral subthalamic deep brain stimulation for more than six months were tested with the affective task under three stimulation conditions (10Hz, 130Hz, and off-stimulation) in a double-blinded randomized design. RESULTS While 130Hz stimulation reduced arousal ratings in all patients, 10Hz stimulation increased arousal selectively in patients with higher depression scores. Furthermore, 10Hz stimulation induced a positive shift in valence rating to negative emotional stimuli in patients with lower apathy scores, and 130Hz stimulation led to more positive valence to emotional stimuli in the patients with higher apathy scores. Notably, we found correlational relationships between stimulation site and affective rating: arousal ratings increase with stimulation from anterior to posterior site, and positive valence ratings increase with stimulation from dorsal to ventral site of the ventral subthalamic nucleus. CONCLUSIONS Our findings highlight the distinctive role of 10Hz stimulation on subjective emotional experience and unveil the spatial organization of the stimulation effect.
Collapse
Affiliation(s)
- Linbin Wang
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China; Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Valerie Voon
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Chen F, Qian J, Cao Z, Li A, Cui J, Shi L, Xie J. Chemogenetic and optogenetic stimulation of zona incerta GABAergic neurons ameliorates motor impairment in Parkinson's disease. iScience 2023; 26:107149. [PMID: 37416450 PMCID: PMC10319825 DOI: 10.1016/j.isci.2023.107149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra and leads to progressive motor dysfunction. While studies have focused on the basal ganglia network, recent evidence suggests neuronal systems outside the basal ganglia are also related to PD pathogenesis. The zona incerta (ZI) is a predominantly inhibitory subthalamic region for global behavioral modulation. This study investigates the role of GABAergic neurons in the ZI in a mouse model of 6-hydroxydopamine (6-OHDA)-induced PD. First, we found a decrease in GABA-positive neurons in the ZI, and then the mice used chemogenetic/optogenetic stimulation to activate or inhibit GABAergic neurons. The motor performance of PD mice was significantly improved by chemogenetic/optogenetic activation of GABAergic neurons, and repeated chemogenetic activation of ZI GABAergic neurons increased the dopamine content in the striatum. Our work identifies the role of ZI GABAergic neurons in regulating motor behaviors in 6-OHDA-lesioned PD model mice.
Collapse
Affiliation(s)
- Fenghua Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Zhongkai Cao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Ang Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Juntao Cui
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Sato A, Taira T, Kitada K, Ando T, Hamaguchi T, Konno M, Kitabatake Y, Ishioka T. Displaced center of pressure on the treated side in individuals with essential tremor after radiofrequency ablation: a longitudinal case-control study. Front Neurol 2023; 14:1182082. [PMID: 37456636 PMCID: PMC10339740 DOI: 10.3389/fneur.2023.1182082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background Essential tremor (ET) is a common involuntary movement disorder (IMD). Radiofrequency ablation (RFA) targeting the ventral intermediate nucleus (Vim) of the thalamus is a stereotactic neurosurgery performed in individuals with ET when pharmacotherapy is no longer effective. Though the reasons remain largely unclear, certain adverse events are known to appear post-RFA. These may be due to functional changes in the Vim, related to RFA-induced tremor reduction, or an adverse reaction to compensatory movement patterns used to perform movements in the presence of tremor symptoms. Objective This study aimed to understand the characteristics of post-RFA symptoms in individuals with ET. Methods In a longitudinal case-control study, we compared post-RFA symptoms between individuals with ET who underwent Vim-targeted RFA and those with IMD who underwent non-Vim-targeted RFA. Symptoms were compared preoperatively and 1-week and 1-month postoperatively. Quantitative assessments included center-of-pressure (COP) parameters, grip strength, Mini-Mental State Examination, two verbal fluency tests, and three types of physical performance assessments (upper extremity ability, balance ability, and gait ability). Results Individuals with ET after RFA showed horizontal displacements of the COP to the treated side (the dominant side of the RFA target's hemisphere) at 1-week postoperatively compared to the preoperative period. The horizontal COP displacement was associated with balance dysfunction related to postural stability post-RFA. Other COP parameters did not significantly differ between the ET and IMD groups. Conclusion COP displacement to the treated side may be due to a time lag in adjusting postural holding strategies to the long-standing lateral difference in tremor symptoms associated with tremor improvement after RFA.
Collapse
Affiliation(s)
- Atsuya Sato
- Department of Occupational Therapy, School of Rehabilitation, Tokyo Professional University of Health Sciences, Tokyo, Japan
- Graduate School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
- Department of Rehabilitation, Sanai Hospital, Saitama, Japan
| | - Takaomi Taira
- Department of Rehabilitation, Sanai Hospital, Saitama, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuya Kitada
- Department of Rehabilitation, Sanai Hospital, Saitama, Japan
| | - Toshiki Ando
- Department of Rehabilitation, Sanai Hospital, Saitama, Japan
| | - Toyohiro Hamaguchi
- Graduate School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Michiko Konno
- Graduate School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Yoshinori Kitabatake
- Graduate School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Toshiyuki Ishioka
- Graduate School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| |
Collapse
|
18
|
Ko TH, Lee YH, Chan L, Tsai KWK, Hong CT, Lo WL. Magnetic Resonance-Guided focused ultrasound surgery for Parkinson's disease: A mini-review and comparison between deep brain stimulation. Parkinsonism Relat Disord 2023:105431. [PMID: 37164870 DOI: 10.1016/j.parkreldis.2023.105431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a new surgical treatment for Parkinson's disease (PD). Previous experience with radiofrequency lesionectomy and deep brain stimulation (DBS) has identified several candidate targets for MRgFUS intended to alleviate the motor symptoms of PD. The main advantage of MRgFUS is that it is incisionless. MRgFUS has certain limitations and is associated with adverse effects. The present study reviews the literature on conventional surgical interventions for PD, discusses recent studies on MRgFUS, and the comparison between DBS and MRgFUS for PD. The reviews aims to provide an essential reference for neurologists to select the appropriate treatments for patients with PD.
Collapse
Affiliation(s)
- Tzu-Hsiang Ko
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | | | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Lun Lo
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Lueckel JM, Upadhyay N, Purrer V, Maurer A, Borger V, Radbruch A, Attenberger U, Wuellner U, Panda R, Boecker H. Whole-brain network transitions within the framework of ignition and transfer entropy following VIM-MRgFUS in essential tremor patients. Brain Stimul 2023; 16:879-888. [PMID: 37230462 DOI: 10.1016/j.brs.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) lesioning of the ventralis intermedius nucleus (VIM) has shown promise in treating drug-refractory essential tremor (ET). It remains unknown whether focal VIM lesions by MRgFUS have broader restorative effects on information flow within the whole-brain network of ET patients. We applied an information-theoretical approach based on intrinsic ignition and the concept of transfer entropy (TE) to assess the spatiotemporal dynamics after VIM-MRgFUS. Eighteen ET patients (mean age 71.44 years) underwent repeated 3T resting-state functional magnetic resonance imaging combined with Clinical Rating Scale for Tremor (CRST) assessments one day before (T0) and one month (T1) and six months (T2) post-MRgFUS, respectively. We observed increased whole brain ignition-driven mean integration (IDMI) at T1 (p < 0.05), along with trend increases at T2. Further, constraining to motor network nodes, we identified significant increases in information-broadcasting (bilateral supplementary motor area (SMA) and left cerebellar lobule III) and information-receiving (right precentral gyrus) at T1. Remarkably, increased information-broadcasting in bilateral SMA was correlated with relative improvement of the CRST in the treated hand. In addition, causal TE-based effective connectivity (EC) at T1 showed an increase from right SMA to left cerebellar lobule crus II and from left cerebellar lobule III to right thalamus. In conclusion, results suggest a change in information transmission capacity in ET after MRgFUS and a shift towards a more integrated functional state with increased levels of global and directional information flow.
Collapse
Affiliation(s)
- Julia M Lueckel
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.
| | - Neeraj Upadhyay
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Veronika Purrer
- German Center for Neurodegenerative Diseases, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Alexander Radbruch
- German Center for Neurodegenerative Diseases, Bonn, Germany; Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Ullrich Wuellner
- German Center for Neurodegenerative Diseases, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
20
|
Lu H, Wang X, Lou X. Current applications for magnetic resonance-guided focused ultrasound in the treatment of Parkinson's disease. Chin Med J (Engl) 2023; 136:780-787. [PMID: 36914938 PMCID: PMC10150909 DOI: 10.1097/cm9.0000000000002319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 03/16/2023] Open
Abstract
ABSTRACT Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel and minimally invasive technology. Since the US Food and Drug Administration approved unilateral ventral intermediate nucleus-MRgFUS for medication-refractory essential tremor in 2016, studies on new indications, such as Parkinson's disease (PD), psychiatric diseases, and brain tumors, have been on the rise, and MRgFUS has become a promising method to treat such neurological diseases. Currently, as the second most common degenerative disease, PD is a research hotspot in the field of MRgFUS. The actions of MRgFUS on the brain range from thermoablation, blood-brain barrier (BBB) opening, to neuromodulation. Intensity is a key determinant of ultrasound actions. Generally, high intensity can be used to precisely thermoablate brain targets, whereas low intensity can be used as molecular therapies to modulate neuronal activity and open the BBB in conjunction with injected microbubbles. Here, we aimed to summarize advances in the application of MRgFUS for the treatment of PD, with a focus on thermal ablation, BBB opening, and neuromodulation, in the hope of informing clinicians of current applications.
Collapse
Affiliation(s)
- Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
| | - Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
| |
Collapse
|
21
|
Brinda A, Slopsema JP, Butler RD, Ikramuddin S, Beall T, Guo W, Chu C, Patriat R, Braun H, Goftari M, Palnitkar T, Aman J, Schrock L, Cooper SE, Matsumoto J, Vitek JL, Harel N, Johnson MD. Lateral cerebellothalamic tract activation underlies DBS therapy for Essential Tremor. Brain Stimul 2023; 16:445-455. [PMID: 36746367 PMCID: PMC10200026 DOI: 10.1016/j.brs.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND While deep brain stimulation (DBS) therapy can be effective at suppressing tremor in individuals with medication-refractory Essential Tremor, patient outcome variability remains a significant challenge across centers. Proximity of active electrodes to the cerebellothalamic tract (CTT) is likely important in suppressing tremor, but how tremor control and side effects relate to targeting parcellations within the CTT and other pathways in and around the ventral intermediate (VIM) nucleus of thalamus remain unclear. METHODS Using ultra-high field (7T) MRI, we developed high-dimensional, subject-specific pathway activation models for 23 directional DBS leads. Modeled pathway activations were compared with post-hoc analysis of clinician-optimized DBS settings, paresthesia thresholds, and dysarthria thresholds. Mixed-effect models were utilized to determine how the six parcellated regions of the CTT and how six other pathways in and around the VIM contributed to tremor suppression and induction of side effects. RESULTS The lateral portion of the CTT had the highest activation at clinical settings (p < 0.05) and a significant effect on tremor suppression (p < 0.001). Activation of the medial lemniscus and posterior-medial CTT was significantly associated with severity of paresthesias (p < 0.001). Activation of the anterior-medial CTT had a significant association with dysarthria (p < 0.05). CONCLUSIONS This study provides a detailed understanding of the fiber pathways responsible for therapy and side effects of DBS for Essential Tremor, and suggests a model-based programming approach will enable more selective activation of lateral fibers within the CTT.
Collapse
Affiliation(s)
- AnneMarie Brinda
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Julia P Slopsema
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rebecca D Butler
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thomas Beall
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - William Guo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cong Chu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Remi Patriat
- Department of Radiology, CMRR, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Henry Braun
- Department of Radiology, CMRR, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mojgan Goftari
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tara Palnitkar
- Department of Radiology, CMRR, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lauren Schrock
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Scott E Cooper
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph Matsumoto
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Noam Harel
- Department of Radiology, CMRR, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Kikuchi H, Jitsuishi T, Hirono S, Yamaguchi A, Iwadate Y. 2D and 3D structures of the whole-brain, directly visible from 100-micron slice 7TMRI images. INTERDISCIPLINARY NEUROSURGERY 2023. [DOI: 10.1016/j.inat.2023.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
23
|
Middlebrooks EH, Popple RA, Greco E, Okromelidze L, Walker HC, Lakhani DA, Anderson AR, Thomas EM, Deshpande HD, McCullough BA, Stover NP, Sung VW, Nicholas AP, Standaert DG, Yacoubian T, Dean MN, Roper JA, Grewal SS, Holland MT, Bentley JN, Guthrie BL, Bredel M. Connectomic Basis for Tremor Control in Stereotactic Radiosurgical Thalamotomy. AJNR Am J Neuroradiol 2023; 44:157-164. [PMID: 36702499 PMCID: PMC9891328 DOI: 10.3174/ajnr.a7778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Given the increased use of stereotactic radiosurgical thalamotomy and other ablative therapies for tremor, new biomarkers are needed to improve outcomes. Using resting-state fMRI and MR tractography, we hypothesized that a "connectome fingerprint" can predict tremor outcomes and potentially serve as a targeting biomarker for stereotactic radiosurgical thalamotomy. MATERIALS AND METHODS We evaluated 27 patients who underwent unilateral stereotactic radiosurgical thalamotomy for essential tremor or tremor-predominant Parkinson disease. Percentage postoperative improvement in the contralateral limb Fahn-Tolosa-Marin Clinical Tremor Rating Scale (TRS) was the primary end point. Connectome-style resting-state fMRI and MR tractography were performed before stereotactic radiosurgery. Using the final lesion volume as a seed, "connectivity fingerprints" representing ideal connectivity maps were generated as whole-brain R-maps using a voxelwise nonparametric Spearman correlation. A leave-one-out cross-validation was performed using the generated R-maps. RESULTS The mean improvement in the contralateral tremor score was 55.1% (SD, 38.9%) at a mean follow-up of 10.0 (SD, 5.0) months. Structural connectivity correlated with contralateral TRS improvement (r = 0.52; P = .006) and explained 27.0% of the variance in outcome. Functional connectivity correlated with contralateral TRS improvement (r = 0.50; P = .008) and explained 25.0% of the variance in outcome. Nodes most correlated with tremor improvement corresponded to areas of known network dysfunction in tremor, including the cerebello-thalamo-cortical pathway and the primary and extrastriate visual cortices. CONCLUSIONS Stereotactic radiosurgical targets with a distinct connectivity profile predict improvement in tremor after treatment. Such connectomic fingerprints show promise for developing patient-specific biomarkers to guide therapy with stereotactic radiosurgical thalamotomy.
Collapse
Affiliation(s)
- E H Middlebrooks
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
- Neurosurgery (E.H.M., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - R A Popple
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| | - E Greco
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
| | - L Okromelidze
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
| | - H C Walker
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - D A Lakhani
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
- Department of Radiology (D.A.L.), West Virginia University, Morgantown, West Virginia
| | - A R Anderson
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| | - E M Thomas
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
- Department of Radiation Oncology (E.M.T.), Ohio State University, Columbus, Ohio
| | | | - B A McCullough
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - N P Stover
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - V W Sung
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - A P Nicholas
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - D G Standaert
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - T Yacoubian
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - M N Dean
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - J A Roper
- School of Kinesiology (J.A.R.), Auburn University, Auburn, Alabama
| | - S S Grewal
- Neurosurgery (E.H.M., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - M T Holland
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - J N Bentley
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - B L Guthrie
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M Bredel
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| |
Collapse
|
24
|
Maesawa S, Torii J, Nakatsubo D, Noda H, Mutoh M, Ito Y, Ishizaki T, Tsuboi T, Suzuki M, Tanei T, Katsuno M, Saito R. A case report: Dual-lead deep brain stimulation of the posterior subthalamic area and the thalamus was effective for Holmes tremor after unsuccessful focused ultrasound thalamotomy. Front Hum Neurosci 2022; 16:1065459. [PMID: 36590066 PMCID: PMC9798537 DOI: 10.3389/fnhum.2022.1065459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Holmes tremor is a symptomatic tremor that develops secondary to central nervous system disorders. Stereotactic neuromodulation is considered when the tremors are intractable. Targeting the ventral intermediate nucleus (Vim) is common; however, the outcome is often unsatisfactory, and the posterior subthalamic area (PSA) is expected as alternative target. In this study, we report the case of a patient with intractable Holmes tremor who underwent dual-lead deep brain stimulation (DBS) to stimulate multiple locations in the PSA and thalamus. The patient was a 77-year-old female who complained of severe tremor in her left upper extremity that developed one year after her right thalamic infarction. Vim-thalamotomy using focused ultrasound therapy (FUS) was initially performed but failed to control tremor. Subsequently, we performed DBS using two leads to stimulate four different structures. Accordingly, one lead was implanted with the aim of targeting the ventral oralis nucleus (Vo)/zona incerta (Zi), and the other with the aim of targeting the Vim/prelemniscal radiation (Raprl). Electrode stimulation revealed that Raprl and Zi had obvious effects. Postoperatively, the patient achieved good tremor control without any side effects, which was maintained for two years. Considering that she demonstrated resting, postural, and intention/action tremor, and Vim-thalamotomy by FUS was insufficient for tremor control, complicated pathogenesis was presumed in her symptoms including both the cerebellothalamic and the pallidothalamic pathways. Using the dual-lead DBS technique, we have more choices to adjust the stimulation at multiple sites, where different functional networks are connected. Intractable tremors, such as Holmes tremor, may have complicated pathology, therefore, modulating multiple pathological networks is necessary. We suggest that the dual-lead DBS (Vo/Raprl and Vim/Zi) presented here is safe, technically feasible, and possibly effective for the control of Holmes tremor.
Collapse
Affiliation(s)
- Satoshi Maesawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan,*Correspondence: Satoshi Maesawa ✉
| | - Jun Torii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Nakatsubo
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan,The Center for Focused Ultrasound Therapy, Nagoya Kyoritsu Hospital, Nagoya, Japan
| | - Hiroshi Noda
- Department of Neurosurgery, Iwakura Hospital, Iwakura, Japan
| | - Manabu Mutoh
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomotaka Ishizaki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Tsuboi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takafumi Tanei
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
In vivo probabilistic atlas of white matter tracts of the human subthalamic area combining track density imaging and optimized diffusion tractography. Brain Struct Funct 2022; 227:2647-2665. [PMID: 36114861 PMCID: PMC9618529 DOI: 10.1007/s00429-022-02561-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The human subthalamic area is a region of high anatomical complexity, tightly packed with tiny fiber bundles. Some of them, including the pallidothalamic, cerebello-thalamic, and mammillothalamic tracts, are relevant targets in functional neurosurgery for various brain diseases. Diffusion-weighted imaging-based tractography has been suggested as a useful tool to map white matter pathways in the human brain in vivo and non-invasively, though the reconstruction of these specific fiber bundles is challenging due to their small dimensions and complex anatomy. To the best of our knowledge, a population-based, in vivo probabilistic atlas of subthalamic white matter tracts is still missing. In the present work, we devised an optimized tractography protocol for reproducible reconstruction of the tracts of subthalamic area in a large data sample from the Human Connectome Project repository. First, we leveraged the super-resolution properties and high anatomical detail provided by short tracks track-density imaging (stTDI) to identify the white matter bundles of the subthalamic area on a group-level template. Tracts identification on the stTDI template was also aided by visualization of histological sections of human specimens. Then, we employed this anatomical information to drive tractography at the subject-level, optimizing tracking parameters to maximize between-subject and within-subject similarities as well as anatomical accuracy. Finally, we gathered subject level tracts reconstructed with optimized tractography into a large-scale, normative population atlas. We suggest that this atlas could be useful in both clinical anatomy and functional neurosurgery settings, to improve our understanding of the complex morphology of this important brain region.
Collapse
|
26
|
Hirt L, Thies KA, Ojemann S, Abosch A, Darwin ML, Thompson JA, Kern DS. Case series investigating the differences between stimulation of rostral zona incerta region in isolation or in conjunction with the subthalamic nucleus on acute clinical effects for Parkinson’s disease. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Kai J, Khan AR, Haast RA, Lau JC. Mapping the subcortical connectome using in vivo diffusion MRI: Feasibility and reliability. Neuroimage 2022; 262:119553. [PMID: 35961469 DOI: 10.1016/j.neuroimage.2022.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 10/31/2022] Open
Abstract
Tractography combined with regions of interest (ROIs) has been used to non-invasively study the structural connectivity of the cortex as well as to assess the reliability of these connections. However, the subcortical connectome (subcortex to subcortex) has not been comprehensively examined, in part due to the difficulty of performing tractography in this complex and compact region. In this study, we performed an in vivo investigation using tractography to assess the feasibility and reliability of mapping known connections between structures of the subcortex using the test-retest dataset from the Human Connectome Project (HCP). We further validated our observations using a separate unrelated subjects dataset from the HCP. Quantitative assessment was performed by computing tract densities and spatial overlap of identified connections between subcortical ROIs. Further, known connections between structures of the basal ganglia and thalamus were identified and visually inspected, comparing tractography reconstructed trajectories with descriptions from tract-tracing studies. Our observations demonstrate both the feasibility and reliability of using a data-driven tractography-based approach to map the subcortical connectome in vivo.
Collapse
Affiliation(s)
- Jason Kai
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Roy Am Haast
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Aix-Marseille University, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Jonathan C Lau
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Department of Clinical Neurological Sciences, Division of Neurosurgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
28
|
Cunha de Azevedo AR, Contreras López WO, Navarro PA, Gouveia FV, Germann J, Elias GJB, Ruiz Martinez RC, Lopes Alho EJ, Fonoff ET. Unilateral Campotomy of Forel for Acquired Hemidystonia: An Open-Label Clinical Trial. Neurosurgery 2022; 91:139-145. [PMID: 35550448 DOI: 10.1227/neu.0000000000001963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hemidystonia (HD) is characterized by unilateral involuntary torsion movements and fixed postures of the limbs and face. It often develops after deleterious neuroplastic changes secondary to injuries to the brain. This condition usually responds poorly to medical treatment, and deep brain stimulation often yields unsatisfactory results. We propose this study based on encouraging results from case reports of patients with HD treated by ablative procedures in the subthalamic region. OBJECTIVE To compare the efficacy of stereotactic-guided radiofrequency lesioning of the subthalamic area vs available medical treatment in patients suffering from acquired HD. METHODS This is an open-label study in patients with secondary HD allocated according to their treatment choice, either surgical or medical treatment; both groups were followed for one year. Patients assigned in the surgical group underwent unilateral campotomy of Forel. The efficacy was assessed using the Unified Dystonia Rating Scale, Fahn-Marsden Dystonia Scale, Arm Dystonia Disability Scale, and SF-36 questionnaire scores. RESULTS Patients in the surgical group experienced significant improvement in the Unified Dystonia Rating Scale, Fahn-Marsden Dystonia Scale, and Arm Dystonia Disability Scale (39%, 35%, and 15%, respectively) 1 year after the surgery, with positive reflex in quality-of-life measures, such as bodily pain and role-emotional process. Patients kept on medical treatment did not experience significant changes during the follow-up. No infections were recorded, and no neurological adverse events were associated with either intervention. CONCLUSION The unilateral stereotaxy-guided ablation of Forel H1 and H2 fields significantly improved in patients with HD compared with optimized clinical treatment.
Collapse
Affiliation(s)
| | - William Omar Contreras López
- Department of Functional Neurosurgery, NEMOD Research Group, Universidad Autónoma de Bucaramanga, Division of Functional Neurosurgery, FOSCAL Hospital, Bucaramanga, Colombia
| | | | - Flavia Venetucci Gouveia
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada
| | | | | | - Raquel Chacon Ruiz Martinez
- LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
- Division of Neuroscience, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | | | | |
Collapse
|
29
|
Fujiyama T, Takenaka H, Asano F, Miyanishi K, Hotta-Hirashima N, Ishikawa Y, Kanno S, Seoane-Collazo P, Miwa H, Hoshino M, Yanagisawa M, Funato H. Mice Lacking Cerebellar Cortex and Related Structures Show a Decrease in Slow-Wave Activity With Normal Non-REM Sleep Amount and Sleep Homeostasis. Front Behav Neurosci 2022; 16:910461. [PMID: 35722192 PMCID: PMC9203121 DOI: 10.3389/fnbeh.2022.910461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to the well-known motor control, the cerebellum has recently been implicated in memory, cognition, addiction, and social behavior. Given that the cerebellum contains more neurons than the cerebral cortex and has tight connections to the thalamus and brainstem nuclei, it is possible that the cerebellum also regulates sleep/wakefulness. However, the role of the cerebellum in sleep was unclear, since cerebellar lesion studies inevitably involved massive inflammation in the adjacent brainstem, and sleep changes in lesion studies were not consistent with each other. Here, we examine the role of the cerebellum in sleep and wakefulness using mesencephalon- and rhombomere 1-specific Ptf1a conditional knockout (Ptf1a cKO) mice, which lack the cerebellar cortex and its related structures, and exhibit ataxic gait. Ptf1a cKO mice had similar wake and non-rapid eye movement sleep (NREMS) time as control mice and showed reduced slow wave activity during wakefulness, NREMS and REMS. Ptf1a cKO mice showed a decrease in REMS time during the light phase and had increased NREMS delta power in response to 6 h of sleep deprivation, as did control mice. Ptf1a cKO mice also had similar numbers of sleep spindles and fear memories as control mice. Thus, the cerebellum does not appear to play a major role in sleep-wake control, but may be involved in the generation of slow waves.
Collapse
Affiliation(s)
- Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Henri Takenaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Fuyuki Asano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Noriko Hotta-Hirashima
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Satomi Kanno
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Patricia Seoane-Collazo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Hideki Miwa
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Masashi Yanagisawa
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, Japan
- Hiromasa Funato
| |
Collapse
|
30
|
Overnight unilateral withdrawal of thalamic deep brain stimulation to identify reversibility of gait disturbances. Exp Neurol 2022; 355:114135. [DOI: 10.1016/j.expneurol.2022.114135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
|
31
|
Yang AI, Parker D, Vijayakumari AA, Ramayya AG, Donley-Fletcher MP, Aunapu D, Wolf RL, Baltuch GH, Verma R. Tractography-Based Surgical Targeting for Thalamic Deep Brain Stimulation: A Comparison of Probabilistic vs Deterministic Fiber Tracking of the Dentato-Rubro-Thalamic Tract. Neurosurgery 2022; 90:419-425. [PMID: 35044356 PMCID: PMC9514748 DOI: 10.1227/neu.0000000000001840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The ventral intermediate (VIM) thalamic nucleus is the main target for the surgical treatment of refractory tremor. Initial targeting traditionally relies on atlas-based stereotactic targeting formulas, which only minimally account for individual anatomy. Alternative approaches have been proposed, including direct targeting of the dentato-rubro-thalamic tract (DRTT), which, in clinical settings, is generally reconstructed with deterministic tracking. Whether more advanced probabilistic techniques are feasible on clinical-grade magnetic resonance acquisitions and lead to enhanced reconstructions is poorly understood. OBJECTIVE To compare DRTT reconstructed with deterministic vs probabilistic tracking. METHODS This is a retrospective study of 19 patients with essential tremor who underwent deep brain stimulation (DBS) with intraoperative neurophysiology and stimulation testing. We assessed the proximity of the DRTT to the DBS lead and to the active contact chosen based on clinical response. RESULTS In the commissural plane, the deterministic DRTT was anterior (P < 10-4) and lateral (P < 10-4) to the DBS lead. By contrast, although the probabilistic DRTT was also anterior to the lead (P < 10-4), there was no difference in the mediolateral dimension (P = .5). Moreover, the 3-dimensional Euclidean distance from the active contact to the probabilistic DRTT was smaller vs the distance to the deterministic DRTT (3.32 ± 1.70 mm vs 5.01 ± 2.12 mm; P < 10-4). CONCLUSION DRTT reconstructed with probabilistic fiber tracking was superior in spatial proximity to the physiology-guided DBS lead and to the empirically chosen active contact. These data inform strategies for surgical targeting of the VIM.
Collapse
Affiliation(s)
- Andrew I. Yang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Drew Parker
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Anupa A. Vijayakumari
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ashwin G. Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | | - Darien Aunapu
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ronald L. Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon H. Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ragini Verma
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Imataka S, Enatsu R, Hirano T, Sasagawa A, Arihara M, Kuribara T, Ochi S, Mikuni N. Motor Mapping with Functional Magnetic Resonance Imaging: Comparison with Electrical Cortical Stimulation. Neurol Med Chir (Tokyo) 2022; 62:215-222. [PMID: 35296585 PMCID: PMC9178115 DOI: 10.2176/jns-nmc.2021-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to evaluate motor area mapping using functional magnetic resonance imaging (fMRI) compared with electrical cortical stimulation (ECS). Motor mapping with fMRI and ECS were retrospectively compared in seven patients with refractory epilepsy in which the primary motor (M1) areas were identified by fMRI and ECS mapping between 2012 and 2019. A right finger tapping task was used for fMRI motor mapping. Blood oxygen level-dependent activation was detected in the left precentral gyrus (PreCG) /postcentral gyrus (PostCG) along the "hand knob" of the central sulcus in all seven patients. Bilateral supplementary motor areas (SMAs) were also activated (n = 6), and the cerebellar hemisphere showed activation on the right side (n = 3) and bilateral side (n = 4). Furthermore, the premotor area (PM) and posterior parietal cortex (PPC) were also activated on the left side (n = 1) and bilateral sides (n = 2). The M1 and sensory area (S1) detected by ECS included fMRI-activated PreCG/PostCG areas with broader extent. This study showed that fMRI motor mapping was locationally well correlated to the activation of M1/S1 by ECS, but the spatial extent was not concordant. In addition, the involvement of SMA, PM/PPC, and the cerebellum in simple voluntary movement was also suggested. Combination analysis of fMRI and ECS motor mapping contributes to precise localization of M1/S1.
Collapse
Affiliation(s)
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University
| | | | | | | | | | - Satoko Ochi
- Department of Neurosurgery, Sapporo Medical University
| | | |
Collapse
|
33
|
Horisawa S, Kohara K, Nonaka T, Fukui A, Mochizuki T, Iijima M, Kawamata T, Taira T. Unilateral pallidothalamic tractotomy at Forel's field H1 for cervical dystonia. Ann Clin Transl Neurol 2022; 9:478-487. [PMID: 35261204 PMCID: PMC8994978 DOI: 10.1002/acn3.51532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
Abstract
Background Neurosurgical ablation of Forel's field H1 for cervical dystonia, which is currently abandoned, was formerly used in the 1960s–1970s. Regardless of the lack of neuroimaging modalities and objective evaluation scales, the reported efficacy was significant. Although recent studies have reappraised the ablation of the pallidothalamic tract at Forel's field H1 for Parkinson's disease, the efficacy for cervical dystonia has not been investigated well. Methods Data of 35 patients with cervical dystonia who underwent unilateral pallidothalamic tractotomy at Forel's field H1 were retrospectively analyzed. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores, the neck score of the Burke–Fahn–Marsden Dystonia Rating Scale (BFMDRS), and adverse events were evaluated preoperatively and at the last available follow‐up period. Results The mean clinical follow‐up period was 13.9 ± 6.5 months. The mean TWSTRS total scores were 34.3 ± 14.0 preoperatively and 18.4 ± 16.5 at the last available follow‐up period (46.4% improvement, p < 0.0001). The BFMDRS neck score also improved significantly from 6.2 ± 2.9 preoperatively to 2.8 ± 2.8 at the last available follow‐up period (55.0% improvement on the neck score, p < 0.0001). Reduced hand dexterity in seven patients, hypophonia in five patients, dysarthria in four patients, and executive dysfunction in one patient were confirmed as adverse events at the last available follow‐up evaluation. One patient had postoperative hemorrhage. Conclusion The current study confirmed significant improvement in TWSTRS total scores and BFMDRS neck scores at the 13.9‐month follow‐up after unilateral pallidothalamic tractotomy. The pallidothalamic tract in Forel's field H1 is expected to be an alternative treatment target for cervical dystonia.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kotaro Kohara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taku Nonaka
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuki Mochizuki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Mutsumi Iijima
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
34
|
Chandra V, Hilliard JD, Foote KD. Deep brain stimulation for the treatment of tremor. J Neurol Sci 2022; 435:120190. [DOI: 10.1016/j.jns.2022.120190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023]
|
35
|
Nowacki A, Barlatey S, Al-Fatly B, Dembek T, Bot M, Green AL, Kübler D, Lachenmayer ML, Debove I, Segura-Amil A, Horn A, Visser-Vandewalle V, Schuurman R, Barbe M, Aziz TZ, Kühn AA, Nguyen TAK, Pollo C. Probabilistic mapping reveals optimal stimulation site in essential tremor. Ann Neurol 2022; 91:602-612. [PMID: 35150172 DOI: 10.1002/ana.26324] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To obtain individual clinical and neuroimaging data of patients undergoing Deep Brain Stimulation for essential tremor from five different European centers to identify predictors of outcome and to identify an optimal stimulation site. METHODS We analysed retrospectively baseline covariates, pre- and postoperative clinical tremor scores (12-month) as well as individual imaging data from 119 patients to obtain individual electrode positions and stimulation volumes. Individual imaging and clinical data was used to calculate a probabilistic stimulation map in normalized space using voxel-wise statistical analysis. Finally, we used this map to train a classifier to predict tremor improvement. RESULTS Probabilistic mapping of stimulation effects yielded a statistically significant cluster that was associated with a tremor improvement greater than 50%. This cluster of optimal stimulation extended from the posterior subthalamic area to the ventralis intermedius nucleus and coincided with a normative structural-connectivity-based cerebello-thalamic tract (CTT). The combined features "distance between the stimulation volume and the significant cluster" and "CTT activation" were used as a predictor of tremor improvement. This correctly classified a greater than 50% tremor improvement with a sensitivity of 89% and a specificity of 57%. INTERPRETATION Our multicentre ET probabilistic stimulation map identified an area of optimal stimulation along the course of the CTT. The results of this study are mainly descriptive until confirmed in independent datasets, ideally through prospective testing. This target will be made openly available and may be used to guide surgical planning and for computer-assisted programming of deep brain stimulation in the future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Sabry Barlatey
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Bassam Al-Fatly
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Till Dembek
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Maarten Bot
- Department of Neurosurgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Alexander L Green
- Nuffield Department of Clinical Neuroscience and Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United King
| | - Dorothee Kübler
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - M Lenard Lachenmayer
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Alba Segura-Amil
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland.,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Andreas Horn
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, and University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Rick Schuurman
- Department of Neurosurgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Michael Barbe
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Tipu Z Aziz
- Nuffield Department of Clinical Neuroscience and Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United King
| | - Andrea A Kühn
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - T A Khoa Nguyen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland.,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| |
Collapse
|
36
|
Sugiyama J, Toda H. A Single DBS-Lead to Stimulate the Thalamus and Subthalamus: Two-Story Targets for Tremor Disorders. Front Hum Neurosci 2022; 16:790942. [PMID: 35140594 PMCID: PMC8820320 DOI: 10.3389/fnhum.2022.790942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
|
37
|
Horisawa S, Kohara K, Murakami M, Fukui A, Kawamata T, Taira T. Deep Brain Stimulation of the Forel's Field for Dystonia: Preliminary Results. Front Hum Neurosci 2021; 15:768057. [PMID: 34912201 PMCID: PMC8667223 DOI: 10.3389/fnhum.2021.768057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022] Open
Abstract
The field of Forel (FF) is a subthalamic area through which the pallidothalamic tracts originating from the globus pallidus internus (GPi) traverse. The FF was used as a stereotactic surgical target (ablation and stimulation) to treat cervical dystonia in the 1960s and 1970s. Although recent studies have reappraised the ablation and stimulation of the pallidothalamic tract at FF for Parkinson’s disease, the efficacy of deep brain stimulation of FF (FF-DBS) for dystonia has not been well investigated. To confirm the efficacy and stimulation-induced adverse effects of FF-DBS, three consecutive patients with medically refractory dystonia who underwent FF-DBS were analyzed (tongue protrusion dystonia, cranio-cervico-axial dystonia, and hemidystonia). Compared to the Burke-Fahn-Marsden Dystonia Rating Scale-Movement Scale scores before surgery (23.3 ± 12.7), improvements were observed at 1 week (8.3 ± 5.9), 3 months (5.3 ± 5.9), and 6 months (4.7 ± 4.7, p = 0.0282) after surgery. Two patients had stimulation-induced complications, including bradykinesia and postural instability, all well controlled by stimulation adjustments.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Kotaro Kohara
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Masato Murakami
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
38
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
39
|
Kwon DH, Paek SH, Kim YB, Lee H, Cho ZH. In vivo 3D Reconstruction of the Human Pallidothalamic and Nigrothalamic Pathways With Super-Resolution 7T MR Track Density Imaging and Fiber Tractography. Front Neuroanat 2021; 15:739576. [PMID: 34776880 PMCID: PMC8579044 DOI: 10.3389/fnana.2021.739576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The output network of the basal ganglia plays an important role in motor, associative, and limbic processing and is generally characterized by the pallidothalamic and nigrothalamic pathways. However, these connections in the human brain remain difficult to elucidate because of the resolution limit of current neuroimaging techniques. The present study aimed to investigate the mesoscopic nature of these connections between the thalamus, substantia nigra pars reticulata, and globus pallidus internal segment using 7 Tesla (7T) magnetic resonance imaging (MRI). In this study, track-density imaging (TDI) of the whole human brain was employed to overcome the limitations of observing the pallidothalamic and nigrothalamic tracts. Owing to the super-resolution of the TD images, the substructures of the SN, as well as the associated tracts, were identified. This study demonstrates that 7T MRI and MR tractography can be used to visualize anatomical details, as well as 3D reconstruction, of the output projections of the basal ganglia.
Collapse
Affiliation(s)
- Dae-Hyuk Kwon
- Neuroscience Convergence Center, Green Manufacturing Research Center (GMRC), Korea University, Seoul, South Korea
| | - Sun Ha Paek
- Neurosurgery, Movement Disorder Center, Seoul National University College of Medicine, Advanced Institute of Convergence Technology (AICT), Seoul National University, Seoul, South Korea
| | - Young-Bo Kim
- Department of Neurosurgery, College of Medicine, Gachon University, Incheon, South Korea
| | - Haigun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Zang-Hee Cho
- Neuroscience Convergence Center, Green Manufacturing Research Center (GMRC), Korea University, Seoul, South Korea
| |
Collapse
|
40
|
Connectivity correlates to predict essential tremor deep brain stimulation outcome: Evidence for a common treatment pathway. NEUROIMAGE-CLINICAL 2021; 32:102846. [PMID: 34624639 PMCID: PMC8503569 DOI: 10.1016/j.nicl.2021.102846] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/14/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) is the most common surgical treatment for essential tremor (ET), yet there is variation in outcome and stimulation targets. This study seeks to consolidate proposed stimulation "sweet spots," as well as assess the value of structural connectivity in predicting treatment outcomes. MATERIALS AND METHODS Ninety-seven ET individuals with unilateral thalamic DBS were retrospectively included. Using normative brain connectomes, structural connectivity measures were correlated with the percentage improvement in contralateral tremor, based on the Fahn-Tolosa-Marin tremor rating scale (TRS), after parameter optimization (range 3.1-12.9 months) using a leave-one-out cross-validation in 83 individuals. The predictive feature map was used for cross-validation in a separate cohort of 14 ET individuals treated at another center. Lastly, estimated volumes of tissue activated (VTA) were used to assess a treatment "sweet spot," which was compared to seven previously reported stimulation sweet spots and their relationship to the tract identified by the predictive feature map. RESULTS In the training cohort, structural connectivity between the VTA and dentato-rubro-thalamic tract (DRTT) correlated with contralateral tremor improvement (R = 0.41; p < 0.0001). The same connectivity profile predicted outcomes in a separate validation cohort (R = 0.59; p = 0.028). The predictive feature map represented the anatomical course of the DRTT, and all seven analyzed sweet spots overlapped the predictive tract (DRTT). CONCLUSIONS Our results strongly support the possibility that structural connectivity is a predictor of contralateral tremor improvement in ET DBS. The results suggest the future potential for a patient-specific functionally based surgical target. Finally, the results showed convergence in "sweet spots" suggesting the importance of the DRTT to the outcome.
Collapse
|
41
|
Coenen VA, Sajonz BE, Reinacher PC, Kaller CP, Urbach H, Reisert M. A detailed analysis of anatomical plausibility of crossed and uncrossed streamline rendition of the dentato-rubro-thalamic tract (DRT(T)) in a commercial stereotactic planning system. Acta Neurochir (Wien) 2021; 163:2809-2824. [PMID: 34181083 PMCID: PMC8437929 DOI: 10.1007/s00701-021-04890-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Background An increasing number of neurosurgeons use display of the dentato-rubro-thalamic tract (DRT) based on diffusion weighted imaging (dMRI) as basis for their routine planning of stimulation or lesioning approaches in stereotactic tremor surgery. An evaluation of the anatomical validity of the display of the DRT with respect to modern stereotactic planning systems and across different tracking environments has not been performed. Methods Distinct dMRI and anatomical magnetic resonance imaging (MRI) data of high and low quality from 9 subjects were used. Six subjects had repeated MRI scans and therefore entered the analysis twice. Standardized DICOM structure templates for volume of interest definition were applied in native space for all investigations. For tracking BrainLab Elements (BrainLab, Munich, Germany), two tensor deterministic tracking (FT2), MRtrix IFOD2 (https://www.mrtrix.org), and a global tracking (GT) approach were used to compare the display of the uncrossed (DRTu) and crossed (DRTx) fiber structure after transformation into MNI space. The resulting streamlines were investigated for congruence, reproducibility, anatomical validity, and penetration of anatomical way point structures. Results In general, the DRTu can be depicted with good quality (as judged by waypoints). FT2 (surgical) and GT (neuroscientific) show high congruence. While GT shows partly reproducible results for DRTx, the crossed pathway cannot be reliably reconstructed with the other (iFOD2 and FT2) algorithms. Conclusion Since a direct anatomical comparison is difficult in the individual subjects, we chose a comparison with two research tracking environments as the best possible “ground truth.” FT2 is useful especially because of its manual editing possibilities of cutting erroneous fibers on the single subject level. An uncertainty of 2 mm as mean displacement of DRTu is expectable and should be respected when using this approach for surgical planning. Tractographic renditions of the DRTx on the single subject level seem to be still illusive.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany.
- Medical Faculty of Freiburg University, Freiburg, Germany.
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Bastian E Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Christoph P Kaller
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - Horst Urbach
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - M Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Radiology - Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
42
|
Horisawa S, Fukui A, Yamahata H, Tanaka Y, Kuwano A, Momosaki O, Iijima M, Nanke M, Kawamata T, Taira T. Unilateral pallidothalamic tractotomy for akinetic-rigid Parkinson's disease: a prospective open-label study. J Neurosurg 2021; 135:799-805. [PMID: 33450738 DOI: 10.3171/2020.7.jns201547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neurosurgical ablation is an effective treatment for medically refractory motor symptoms of Parkinson's disease (PD). A limited number of studies have reported the effect of ablation of the pallidothalamic tract for PD. In this study, the authors evaluated the safety and efficacy of unilateral pallidothalamic tractotomy for akinetic-rigid (AR)-PD. METHODS Fourteen AR-PD patients, who were enrolled in this prospective open-label study, underwent unilateral pallidothalamic tractotomy. The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III and Part IV (dyskinesia and dystonia) scores and levodopa equivalent daily dose (LEDD) were evaluated at baseline and at 3 and 12 months postoperatively. RESULTS Of the 14 patients enrolled in the study, 4 were lost to follow-up and 10 were analyzed. The total MDS-UPDRS Part III score significantly improved from 45 ± 4.6 at baseline to 32.9 ± 4.8 at 12 months postoperatively (p = 0.005). Contralateral side rigidity and bradykinesia significantly improved from 4.4 ± 0.5 and 10.4 ± 1.5 at baseline to 1.7 ± 0.4 (p = 0.005) and 5.2 ± 1.4 (p = 0.011) at 12 months, respectively. While posture significantly improved with a 20% reduction in scores (p = 0.038), no significant improvement was found in gait (p = 0.066). Dyskinesia and dystonia were improved with a 79.2% (p = 0.0012) and 91.7% (p = 0.041) reduction in scores, respectively. No significant change was found in the LEDD. Hypophonia was noted in 2 patients, eyelid apraxia was noted in 1 patient, and a reduced response to levodopa, which resulted in an increase in the daily dose of levodopa, was noted in 3 patients. No serious permanent neurological deficits were observed. CONCLUSIONS Unilateral pallidothalamic tractotomy improved contralateral side rigidity and bradykinesia, dyskinesia, and dystonia in patients with AR-PD. Clinical trial registration no.: UMIN000031138 (umin.ac.jp).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Magi Nanke
- 3School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | | | | |
Collapse
|
43
|
Ferreira F, Akram H, Ashburner J, Zrinzo L, Zhang H, Lambert C. Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity. Neuroimage 2021; 238:118231. [PMID: 34089871 PMCID: PMC8960999 DOI: 10.1016/j.neuroimage.2021.118231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
The ventralis intermedius nucleus (Vim) is centrally placed in the dentato-thalamo-cortical pathway (DTCp) and is a key surgical target in the treatment of severe medically refractory tremor. It is not visible on conventional MRI sequences; consequently, stereotactic targeting currently relies on atlas-based coordinates. This fails to capture individual anatomical variability, which may lead to poor long-term clinical efficacy. Probabilistic tractography, combined with known anatomical connectivity, enables localisation of thalamic nuclei at an individual subject level. There are, however, a number of confounds associated with this technique that may influence results. Here we focused on an established method, using probabilistic tractography to reconstruct the DTCp, to identify the connectivity-defined Vim (cd-Vim) in vivo. Using 100 healthy individuals from the Human Connectome Project, our aim was to quantify cd-Vim variability across this population, measure the discrepancy with atlas-defined Vim (ad-Vim), and assess the influence of potential methodological confounds. We found no significant effect of any of the confounds. The mean cd-Vim coordinate was located within 1.88 mm (left) and 2.12 mm (right) of the average midpoint and 3.98 mm (left) and 5.41 mm (right) from the ad-Vim coordinates. cd-Vim location was more variable on the right, which reflects hemispheric asymmetries in the probabilistic DTC reconstructed. The method was reproducible, with no significant cd-Vim location differences in a separate test-retest cohort. The superior cerebellar peduncle was identified as a potential source of artificial variance. This work demonstrates significant individual anatomical variability of the cd-Vim that atlas-based coordinate targeting fails to capture. This variability was not related to any methodological confound tested. Lateralisation of cerebellar functions, such as speech, may contribute to the observed asymmetry. Tractography-based methods seem sensitive to individual anatomical variability that is missed by conventional neurosurgical targeting; these findings may form the basis for translational tools to improve efficacy and reduce side-effects of thalamic surgery for tremor.
Collapse
Affiliation(s)
- Francisca Ferreira
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom; Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Harith Akram
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - Hui Zhang
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Computer Science and Centre for Medical Image Computing, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
44
|
Bertino S, Basile GA, Bramanti A, Ciurleo R, Tisano A, Anastasi GP, Milardi D, Cacciola A. Ventral intermediate nucleus structural connectivity-derived segmentation: anatomical reliability and variability. Neuroimage 2021; 243:118519. [PMID: 34461233 DOI: 10.1016/j.neuroimage.2021.118519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/24/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
The Ventral intermediate nucleus (Vim) of thalamus is the most targeted structure for the treatment of drug-refractory tremors. Since methodological differences across existing studies are remarkable and no gold-standard pipeline is available, in this study, we tested different parcellation pipelines for tractography-derived putative Vim identification. Thalamic parcellation was performed on a high quality, multi-shell dataset and a downsampled, clinical-like dataset using two different diffusion signal modeling techniques and two different voxel classification criteria, thus implementing a total of four parcellation pipelines. The most reliable pipeline in terms of inter-subject variability has been picked and parcels putatively corresponding to motor thalamic nuclei have been selected by calculating similarity with a histology-based mask of Vim. Then, spatial relations with optimal stimulation points for the treatment of essential tremor have been quantified. Finally, effect of data quality and parcellation pipelines on a volumetric index of connectivity clusters has been assessed. We found that the pipeline characterized by higher-order signal modeling and threshold-based voxel classification criteria was the most reliable in terms of inter-subject variability regardless data quality. The maps putatively corresponding to Vim were those derived by precentral and dentate nucleus-thalamic connectivity. However, tractography-derived functional targets showed remarkable differences in shape and sizes when compared to a ground truth model based on histochemical staining on seriate sections of human brain. Thalamic voxels connected to contralateral dentate nucleus resulted to be the closest to literature-derived stimulation points for essential tremor but at the same time showing the most remarkable inter-subject variability. Finally, the volume of connectivity parcels resulted to be significantly influenced by data quality and parcellation pipelines. Hence, caution is warranted when performing thalamic connectivity-based segmentation for stereotactic targeting.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Adriana Tisano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| |
Collapse
|
45
|
|
46
|
Coenen VA, Reisert M. DTI for brain targeting: Diffusion weighted imaging fiber tractography-Assisted deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:47-67. [PMID: 34446250 DOI: 10.1016/bs.irn.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fiber tractography assisted Deep Brain Stimulation (DBS) has been performed by different groups for more than 10 years to now. Groups around the world have adapted initial approaches to currently embrace the fiber tractography technology mainly for treating tremor (DBS and lesions), psychiatric indications (OCD and major depression) and pain (DBS). Despite the advantages of directly visualizing the target structure, the technology is demanding and is vulnerable to inaccuracies especially since it is performed on individual level. In this contribution, we will focus on tremor and psychiatric indications, and will show future applications of sophisticated tractography applications for subthalamic nucleus (STN) DBS surgery and stimulation steering as an example.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Radiology-Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
47
|
Stenmark Persson R, Nordin T, Hariz GM, Wårdell K, Forsgren L, Hariz M, Blomstedt P. Deep Brain Stimulation of Caudal Zona Incerta for Parkinson's Disease: One-Year Follow-Up and Electric Field Simulations. Neuromodulation 2021; 25:935-944. [PMID: 34313376 DOI: 10.1111/ner.13500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the effects of bilateral caudal zona incerta (cZi) deep brain stimulation (DBS) for Parkinson's disease (PD) one year after surgery and to create anatomical improvement maps based on patient-specific simulation of the electric field. MATERIALS AND METHODS We report the one-year results of bilateral cZi-DBS in 15 patients with PD. Patients were evaluated on/off medication and stimulation using the Unified Parkinson's Disease Rating Scale (UPDRS). Main outcomes were changes in motor symptoms (UPDRS-III) and quality of life according to Parkinson's Disease Questionnaire-39 (PDQ-39). Secondary outcomes included efficacy profile according to sub-items of UPDRS-III, and simulation of the electric field distribution around the DBS lead using the finite element method. Simulations from all patients were transformed to one common magnetic resonance imaging template space for creation of improvement maps and anatomical evaluation. RESULTS Median UPDRS-III score off medication improved from 40 at baseline to 21 on stimulation at one-year follow-up (48%, p < 0.0005). PDQ-39 summary index did not change but the subdomains activities of daily living (ADL) and stigma improved (25%, p < 0.03 and 75%, p < 0.01), whereas communication worsened (p < 0.03). For UPDRS-III sub-items, stimulation alone reduced median tremor score by 9 points, akinesia by 3, and rigidity by 2 points at one-year follow-up in comparison to baseline (90%, 25%, and 29% respectively, p < 0.01). Visual analysis of the anatomical improvement maps based on simulated electrical fields showed no evident relation with the degree of symptom improvement and neither did statistical analysis show any significant correlation. CONCLUSIONS Bilateral cZi-DBS alleviates motor symptoms, especially tremor, and improves ADL and stigma in PD patients one year after surgery. Improvement maps may be a useful tool for visualizing the spread of the electric field. However, there was no clear-cut relation between anatomical location of the electric field and the degree of symptom relief.
Collapse
Affiliation(s)
| | - Teresa Nordin
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gun-Marie Hariz
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden
| | - Marwan Hariz
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden.,Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden
| |
Collapse
|
48
|
YAMAMOTO K, ITO H, FUKUTAKE S, ODO T, KAMEI T, YAMAGUCHI T, TAIRA T. Focused Ultrasound Thalamotomy for Tremor-dominant Parkinson's Disease: A Prospective 1-year Follow-up Study. Neurol Med Chir (Tokyo) 2021; 61:414-421. [PMID: 33967176 PMCID: PMC8280323 DOI: 10.2176/nmc.oa.2020-0370] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
Transcranial magnetic resonance (MR)-guided focused ultrasound (FUS) therapy is an emerging and minimally invasive treatment for movement disorders. There are limited reports on its long-term outcomes for tremor-dominant Parkinson's disease (TDPD). We aimed to investigate the 1-year outcomes of ventralis intermedius (VIM) thalamotomy with FUS in patients with TDPD. Patients with medication-refractory TDPD were enrolled and underwent unilateral VIM-FUS thalamotomy. Neurologists specializing in movement disorders evaluated the tremor symptoms and disability using Parts A, B, and C of the Clinical Rating Scale for Tremor (CRST) at baseline and at 1, 3, and 12 months. In all, 11 patients (mean age: 71.6 years) were included in the analysis. Of these, five were men. The median (interquartile range) improvement from baseline in hand tremor score, the total score, and functional disability score were 87.9% (70.5-100.0), 65.3% (55.7-87.7), and 66.7% (15.5-85.1), respectively, at 12 months postoperatively. This prospective study demonstrated an improvement in the tremor and disability of patients at 12 months after unilateral VIM-FUS thalamotomy for TDPD. In addition, there were no serious persistent adverse events. Our results indicate that VIM-FUS thalamotomy can be safely and effectively used to treat patients with TDPD. A randomized controlled trial with a larger cohort and long blinded period would help investigate the recurrence, adverse effects, placebo effects, and longer efficacy of this technique.
Collapse
Affiliation(s)
- Kazuaki YAMAMOTO
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Neurosurgery, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Hisashi ITO
- Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Shigeru FUKUTAKE
- Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Takashi ODO
- Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Tetsumasa KAMEI
- Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Toshio YAMAGUCHI
- Research Institute of Diagnostic Imaging, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Takaomi TAIRA
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
49
|
Rocha MSG, de Freitas JL, Costa CDM, de Oliveira MO, Terzian PR, Queiroz JWM, Ferraz JB, Tatsch JFS, Soriano DC, Hamani C, Godinho F. Fields of Forel Brain Stimulation Improves Levodopa-Unresponsive Gait and Balance Disorders in Parkinson's Disease. Neurosurgery 2021; 89:450-459. [PMID: 34161592 DOI: 10.1093/neuros/nyab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/03/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gait and balance disturbance are challenging symptoms in advanced Parkinson's disease (PD). Anatomic and clinical data suggest that the fields of Forel may be a potential surgical target to treat these symptoms. OBJECTIVE To test whether bilateral stimulation centered at the fields of Forel improves levodopa unresponsive freezing of gait (FOG), balance problems, postural instability, and falls in PD. METHODS A total of 13 patients with levodopa-unresponsive gait disturbance (Hoehn and Yahr stage ≥3) were included. Patients were evaluated before (on-medication condition) and 1 yr after surgery (on-medication-on-stimulation condition). Motor symptoms and quality of life were assessed with the Unified Parkinson's Disease Rating scale (UPDRS III) and Quality of Life scale (PDQ-39). Clinical and instrumented analyses assessed gait, balance, postural instability, and falls. RESULTS Surgery improved balance by 43% (95% confidence interval [CI]: 21.2-36.4 to 35.2-47.1; P = .0012), reduced FOG by 35% (95% CI: 15.1-20.3 to 8.1-15.3; P = .0021), and the monthly number of falls by 82.2% (95% CI: 2.2-6.9 to -0.2-1.7; P = .0039). Anticipatory postural adjustments, velocity to turn, and postural sway measurements also improved 1 yr after deep brain stimulation (DBS). UPDRS III motor scores were reduced by 27.2% postoperatively (95% CI: 42.6-54.3 to 30.2-40.5; P < .0001). Quality of life improved 27.5% (95% CI: 34.6-48.8 to 22.4-37.9; P = .0100). CONCLUSION Our results suggest that DBS of the fields of Forel improved motor symptoms in PD, as well as the FOG, falls, balance, postural instability, and quality of life.
Collapse
Affiliation(s)
- Maria Sheila Guimarães Rocha
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil.,Faculdade Santa Marcelina, Internal Medicine Division, São Paulo, Brazil
| | | | | | - Maira Okada de Oliveira
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil.,Global Brain Health Institute, University of California-San Francisco, San Francisco, California, USA
| | - Paulo Roberto Terzian
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil
| | | | - Jamana Barbosa Ferraz
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil.,Faculdade Santa Marcelina, Internal Medicine Division, São Paulo, Brazil
| | | | - Diogo Coutinho Soriano
- Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Clement Hamani
- Sunnybrook Health Sciences Centre, Harquail Centre for Neuromodulation, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Fabio Godinho
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil.,Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil.,Institute of Psychiatry, Hospital das Clínicas, Functional Neurosurgery Division, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Abstract
Deep brain stimulation (DBS) is the most commonly used surgical treatment for drug-refractory movement disorders such as tremor and dystonia. Appropriate patient selection along with target selection is important to ensure optimal outcome without complications. This review summarizes the recent literature regarding the mechanism of action, indications, outcome, and complications of DBS in tremor and dystonia. A comparison with other modalities of surgical interventions is discussed along with a note of the recent advances in technology. Future research needs to be directed to understand the underlying etiopathogenesis of the disease and the way in which DBS modulates the intracranial abnormal networks.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|