1
|
Zhang GH, Murthy KD, Binti Pare R, Qian YH. Protective effect of Tβ4 on central nervous system tissues and its developmental prospects. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue repair and regeneration in the central nervous system (CNS) remains a serious medical problem. CNS diseases such as traumatic and neurological brain injuries have a high mortality and disability rate, thereby bringing a considerable amount of economic burden to society and families. How to treat traumatic and neurological brain injuries has always been a serious issue faced by neurosurgeons. The global incidence of traumatic and neurological brain injuries has gradually increased and become a global challenge. Thymosin β4 (Tβ4) is the main G-actin variant molecule in eukaryotic cells. During the development of the CNS, Tβ4 regulates neurogenesis, tangential expansion, tissue growth, and cerebral hemisphere folding. In addition, Tβ4 has anti-apoptotic and anti-inflammatory properties. It promotes angiogenesis, wound healing, stem/progenitor cell differentiation, and other characteristics of cell migration and survival, providing a scientific basis for the repair and regeneration of injured nerve tissue. This review provides evidence to support the role of Tβ4 in the protection and repair of nervous tissue in CNS diseases, especially with the potential to control brain inflammatory processes, and thus open up new therapeutic applications for a series of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gui-hong Zhang
- School of Medicine, Xi’an International University, Xi’an, China
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Krishna Dilip Murthy
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Rahmawati Binti Pare
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Yi-hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
2
|
Zhou L, Zhao W, Fu Y, Fang X, Ren S, Ren J. Genome-wide detection of genetic loci and candidate genes for teat number and body conformation traits at birth in Chinese Sushan pigs. Anim Genet 2019; 50:753-756. [PMID: 31475745 DOI: 10.1111/age.12844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2019] [Indexed: 12/20/2022]
Abstract
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38 128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome-wide significant (P = 1.31e-6) SNP for teat number on chromosome X and 15 chromosome-wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G-protein coupled receptor and steroid hormone-mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.
Collapse
Affiliation(s)
- L Zhou
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and Reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - W Zhao
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and Reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Y Fu
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and Reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - X Fang
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and Reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - S Ren
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and Reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - J Ren
- College of Animal Science, South China Agricultural University, 510642, Guangzhou, China
| |
Collapse
|
3
|
Scheyltjens I, Arckens L. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plast 2016; 2016:8723623. [PMID: 27403348 PMCID: PMC4923604 DOI: 10.1155/2016/8723623] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/05/2022] Open
Abstract
The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning.
Collapse
Affiliation(s)
- Isabelle Scheyltjens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Kim DH, Moon EY, Yi JH, Lee HE, Park SJ, Ryu YK, Kim HC, Lee S, Ryu JH. Peptide fragment of thymosin β4 increases hippocampal neurogenesis and facilitates spatial memory. Neuroscience 2015; 310:51-62. [PMID: 26363149 DOI: 10.1016/j.neuroscience.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
Abstract
Although several studies have suggested the neuroprotective effect of thymosin β4 (TB4), a major actin-sequestering protein, on the central nervous system, little is understood regarding the action of N-acetyl-serylaspartyl-lysyl-proline (Ac-SDKP), a peptide fragment of TB4 on brain function. Here, we examined neurogenesis-stimulative effect of Ac-SDKP. Intrahippocampal infusion of Ac-SDKP facilitated the generation of new neurons in the hippocampus. Ac-SDKP-treated mouse hippocampus showed an increase in β-catenin stability with reduction of glycogen synthase kinase-3β (GSK-3β) activity. Moreover, inhibition of vascular endothelial growth factor (VEGF) signaling blocked Ac-SDKP-facilitated neural proliferation. Subchronic intrahippocampal infusion of Ac-SDKP also increased spatial memory. Taken together, these data demonstrate that Ac-SDKP functions as a regulator of neural proliferation and indicate that Ac-SDKP may be a therapeutic candidate for diseases characterized by neuronal loss.
Collapse
Affiliation(s)
- D H Kim
- Department of Medicinal Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea; Dong-A Anti-Aging Research Center, Dong-A University, Busan 604-714, Republic of Korea
| | - E-Y Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea.
| | - J H Yi
- School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - H E Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - S J Park
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Y-K Ryu
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - H-C Kim
- Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Taejeon 305-806, Republic of Korea
| | - S Lee
- Faculty of Marine Biomedical Science, Cheju National University, Jeju 690-756, Republic of Korea
| | - J H Ryu
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
5
|
Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L. The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age dependent. J Comp Neurol 2014; 522:950-70. [DOI: 10.1002/cne.23455] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/17/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Jeroen Aerts
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Ellen Ytebrouck
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Samme Vreysen
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Annelies Laeremans
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| |
Collapse
|
6
|
Rengaraj D, Hwang YS, Liang XH, Deng WB, Yang ZM, Han JY. Comparative expression and regulation of TMSB4X in male reproductive tissues of rats and chickens. ACTA ACUST UNITED AC 2013; 319:584-95. [DOI: 10.1002/jez.1820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Deivendran Rengaraj
- World Class University (WCU) Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences; Seoul National University; Seoul South Korea
| | - Young Sun Hwang
- World Class University (WCU) Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences; Seoul National University; Seoul South Korea
| | | | - Wen Bo Deng
- Department of Biology; Shantou University; Shantou China
| | - Zeng Ming Yang
- Department of Biology; Shantou University; Shantou China
| | - Jae Yong Han
- World Class University (WCU) Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences; Seoul National University; Seoul South Korea
| |
Collapse
|