1
|
Baizer JS, Sherwood CC, Hof PR, Baker JF, Witelson SF. Glycine is a transmitter in the human and chimpanzee cochlear nuclei. Front Neuroanat 2024; 18:1331230. [PMID: 38425805 PMCID: PMC10902441 DOI: 10.3389/fnana.2024.1331230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Auditory information is relayed from the cochlea via the eighth cranial nerve to the dorsal and ventral cochlear nuclei (DCN, VCN). The organization, neurochemistry and circuitry of the cochlear nuclei (CN) have been studied in many species. It is well-established that glycine is an inhibitory transmitter in the CN of rodents and cats, with glycinergic cells in the DCN and VCN. There are, however, major differences in the laminar and cellular organization of the DCN between humans (and other primates) and rodents and cats. We therefore asked whether there might also be differences in glycinergic neurotransmission in the CN. Methods We studied brainstem sections from humans, chimpanzees, and cats. We used antibodies to glycine receptors (GLYR) to identify neurons receiving glycinergic input, and antibodies to the neuronal glycine transporter (GLYT2) to immunolabel glycinergic axons and terminals. We also examined archival sections immunostained for calretinin (CR) and nonphosphorylated neurofilament protein (NPNFP) to try to locate the octopus cell area (OCA), a region in the VCN that rodents has minimal glycinergic input. Results In humans and chimpanzees we found widespread immunolabel for glycine receptors in DCN and in the posterior (PVCN) and anterior (AVCN) divisions of the VCN. We found a parallel distribution of GLYT2-immunolabeled fibers and puncta. The data also suggest that, as in rodents, a region containing octopus cells in cats, humans and chimpanzees has little glycinergic input. Discussion Our results show that glycine is a major transmitter in the human and chimpanzee CN, despite the species differences in DCN organization. The sources of the glycinergic input to the CN in humans and chimpanzees are not known.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, United States
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James F. Baker
- Department of Neuroscience, Northwestern University Medical School, Chicago, IL, United States
| | - Sandra F. Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Baizer JS, Witelson SF. Comparative analysis of four nuclei in the human brainstem: Individual differences, left-right asymmetry, species differences. Front Neuroanat 2023; 17:1069210. [PMID: 36874056 PMCID: PMC9978016 DOI: 10.3389/fnana.2023.1069210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction It is commonly thought that while the organization of the cerebral cortex changes dramatically over evolution, the organization of the brainstem is conserved across species. It is further assumed that, as in other species, brainstem organization is similar from one human to the next. We will review our data on four human brainstem nuclei that suggest that both ideas may need modification. Methods We have studied the neuroanatomical and neurochemical organization of the nucleus paramedianus dorsalis (PMD), the principal nucleus of the inferior olive (IOpr), the arcuate nucleus of the medulla (Arc) and the dorsal cochlear nucleus (DC). We compared these human brainstem nuclei to nuclei in other mammals including chimpanzees, monkeys, cats and rodents. We studied human cases from the Witelson Normal Brain collection using Nissl and immunostained sections, and examined archival Nissl and immunostained sections from other species. Results We found significant individual variability in the size and shape of brainstem structures among humans. There is left-right asymmetry in the size and appearance of nuclei, dramatically so in the IOpr and Arc. In humans there are nuclei, e.g., the PMD and the Arc, not seen in several other species. In addition, there are brainstem structures that are conserved across species but show major expansion in humans, e.g., the IOpr. Finally, there are nuclei, e.g. the DC, that show major differences in structure among species. Discussion Overall, the results suggest several principles of human brainstem organization that distinguish humans from other species. Studying the functional correlates of, and the genetic contributions to, these brainstem characteristics are important future research directions.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Baizer JS, Webster CJ, Witelson SF. Individual variability in the size and organization of the human arcuate nucleus of the medulla. Brain Struct Funct 2021; 227:159-176. [PMID: 34613435 DOI: 10.1007/s00429-021-02396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
The arcuate nucleus (Arc) of the medulla is found in almost all human brains and in a small percentage of chimpanzee brains. It is absent in the brains of other mammalian species including mice, rats, cats, and macaque monkeys. The Arc is classically considered a precerebellar relay nucleus, receiving input from the cerebral cortex and projecting to the cerebellum via the inferior cerebellar peduncle. However, several studies have found aplasia of the Arc in babies who died of SIDS (Sudden Infant Death Syndrome), and it was suggested that the Arc is the locus of chemosensory neurons critical for brainstem control of respiration. Aplasia of the Arc, however, has also been reported in adults, suggesting that it is not critical for survival. We have examined the Arc in closely spaced Nissl-stained sections in thirteen adult human cases to acquire a better understanding of the degree of variability of its size and location in adults. We have also examined immunostained sections to look for neurochemical compartments in this nucleus. Caudally, neurons of the Arc are ventrolateral to the pyramidal tracts (py); rostrally, they are ventro-medial to the py and extend up along the midline. In some cases, the Arc is discontinuous, with a gap between sections with the ventrolaterally located and the ventromedially located neurons. In all cases, there is some degree of left-right asymmetry in Arc position, size, and shape at all rostro-caudal levels. Somata of neurons in the Arc express calretinin (CR), neuronal nitric oxide synthase (nNOS), and nonphosphorylated neurofilament protein (NPNFP). Calbindin (CB) is expressed in puncta whereas there is no expression of parvalbumin (PV) in somata or puncta. There is also immunostaining for GAD and GABA receptors suggesting inhibitory input to Arc neurons. These properties were consistent among cases. Our data show differences in location of caudal and rostral Arc neurons and considerable variability among cases in the size and shape of the Arc. The variability in size suggests that "hypoplasia" of the Arc is difficult to define. The discontinuity of the Arc in many cases suggests that establishing aplasia of the Arc requires examination of many closely spaced sections through the brainstem.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, South Campus, Buffalo, NY, 14214, USA.
| | - Charles J Webster
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, South Campus, Buffalo, NY, 14214, USA
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
4
|
Baizer JS, Wong KM, Salvi RJ, Manohar S, Sherwood CC, Hof PR, Baker JF, Witelson SF. Species Differences in the Organization of the Ventral Cochlear Nucleus. Anat Rec (Hoboken) 2018; 301:862-886. [PMID: 29236365 PMCID: PMC5902649 DOI: 10.1002/ar.23751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/18/2017] [Accepted: 09/17/2017] [Indexed: 01/18/2023]
Abstract
The mammalian cochlear nuclei (CN) consist of two major subdivisions, the dorsal (DCN) and ventral (VCN) nuclei. We previously reported differences in the structural and neurochemical organization of the human DCN from that in several other species. Here we extend this analysis to the VCN, considering both the organization of subdivisions and the types and distributions of neurons. Classically, the VCN in mammals is composed of two subdivisions, the anteroventral (VCA) and posteroventral cochlear nuclei (VCP). Anatomical and electrophysiological data in several species have defined distinct neuronal types with different distributions in the VCA and VCP. We asked if VCN subdivisions and anatomically defined neuronal types might be distinguished by patterns of protein expression in humans. We also asked if the neurochemical characteristics of the VCN are the same in humans as in other mammalian species, analyzing data from chimpanzees, macaque monkeys, cats, rats and chinchillas. We examined Nissl- and immunostained sections, using antibodies that had labeled neurons in other brainstem nuclei in humans. Nissl-stained sections supported the presence of both VCP and VCA in humans and chimpanzees. However, patterns of protein expression did not differentiate classes of neurons in humans; neurons of different soma shapes and dendritic configurations all expressed the same proteins. The patterns of immunostaining in macaque monkey, cat, rat, and chinchilla were different from those in humans and chimpanzees and from each other. The results may correlate with species differences in auditory function and plasticity. Anat Rec, 301:862-886, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Keit Men Wong
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
| | - Senthilvelan Manohar
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James F Baker
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
5
|
Individual variability in the structural properties of neurons in the human inferior olive. Brain Struct Funct 2017; 223:1667-1681. [PMID: 29189906 DOI: 10.1007/s00429-017-1580-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/26/2017] [Indexed: 12/19/2022]
Abstract
The inferior olive (IO) is the sole source of the climbing fibers innervating the cerebellar cortex. We have previously shown both individual differences in the size and folding pattern of the principal nucleus (IOpr) in humans as well as in the expression of different proteins in IOpr neurons. This high degree of variability was not present in chimpanzee samples. The neurochemical differences might reflect static differences among individuals, but might also reflect age-related processes resulting in alterations of protein synthesis. Several observations support the latter idea. First, accumulation of lipofuscin, the "age pigment" is well documented in IOpr neurons. Second, there are silver- and abnormal tau-immunostained intraneuronal granules in IOpr neurons (Ikeda et al. Neurosci Lett 258:113-116, 1998). Finally, Olszewski and Baxter (Cytoarchitecture of the human brain stem, Second edn. Karger, Basel, 1954) observed an apparent loss of IOpr neurons in older individuals. We have further investigated the possibility of age-related changes in IOpr neurons using silver- and immunostained sections. We found silver-labeled intraneuronal granules in neurons of the IOpr in all human cases studied (n = 17, ages 25-71). We did not, however, confirm immunostaining with antibodies to abnormal tau. There was individual variability in the density of neurons as well as in the expression of the calcium-binding protein calretinin. In the chimpanzee, there were neither silver-stained intraneuronal granules nor irregularities in immunostaining. Overall, the data support the hypothesis that in some, but not all, humans there are functional changes in IOpr neurons and ultimately cell death. Neurochemical changes of IOpr neurons may contribute to age-related changes in motor and cognitive skills mediated by the cerebellum.
Collapse
|
6
|
Baizer JS, Wong KM, Paolone NA, Weinstock N, Salvi RJ, Manohar S, Witelson SF, Baker JF, Sherwood CC, Hof PR. Laminar and neurochemical organization of the dorsal cochlear nucleus of the human, monkey, cat, and rodents. Anat Rec (Hoboken) 2014; 297:1865-84. [PMID: 25132345 DOI: 10.1002/ar.23000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 06/09/2014] [Indexed: 01/02/2023]
Abstract
The dorsal cochlear nucleus (DCN) is a brainstem structure that receives input from the auditory nerve. Many studies in a diversity of species have shown that the DCN has a laminar organization and identifiable neuron types with predictable synaptic relations to each other. In contrast, studies on the human DCN have found a less distinct laminar organization and fewer cell types, although there has been disagreement among studies in how to characterize laminar organization and which of the cell types identified in other animals are also present in humans. We have reexamined DCN organization in the human using immunohistochemistry to analyze the expression of several proteins that have been useful in delineating the neurochemical organization of other brainstem structures in humans: nonphosphorylated neurofilament protein (NPNFP), nitric oxide synthase (nNOS), and three calcium-binding proteins. The results for humans suggest a laminar organization with only two layers, and the presence of large projection neurons that are enriched in NPNFP. We did not observe evidence in humans of the inhibitory interneurons that have been described in the cat and rodent DCN. To compare humans and other animals directly we used immunohistochemistry to examine the DCN in the macaque monkey, the cat, and three rodents. We found similarities between macaque monkey and human in the expression of NPNFP and nNOS, and unexpected differences among species in the patterns of expression of the calcium-binding proteins.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Baizer JS. Unique features of the human brainstem and cerebellum. Front Hum Neurosci 2014; 8:202. [PMID: 24778611 PMCID: PMC3985031 DOI: 10.3389/fnhum.2014.00202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/21/2014] [Indexed: 12/28/2022] Open
Abstract
The cerebral cortex is greatly expanded in the human brain. There is a parallel expansion of the cerebellum, which is interconnected with the cerebral cortex. We have asked if there are accompanying changes in the organization of pre-cerebellar brainstem structures. We have examined the cytoarchitectonic and neurochemical organization of the human medulla and pons. We studied human cases from the Witelson Normal Brain Collection, analyzing Nissl sections and sections processed for immunohistochemistry for multiple markers including the calcium-binding proteins calbindin, calretinin, and parvalbumin, non-phosphorylated neurofilament protein, and the synthetic enzyme for nitric oxide, nitric oxide synthase. We have also compared the neurochemical organization of the human brainstem to that of several other species including the chimpanzee, macaque and squirrel monkey, cat, and rodent, again using Nissl staining and immunohistochemistry. We found that there are major differences in the human brainstem, ranging from relatively subtle differences in the neurochemical organization of structures found in each of the species studied to the emergence of altogether new structures in the human brainstem. Two aspects of human cortical organization, individual differences and left–right asymmetry, are also seen in the brainstem (principal nucleus of the inferior olive) and the cerebellum (the dentate nucleus). We suggest that uniquely human motor and cognitive abilities derive from changes at all levels of the central nervous system, including the cerebellum and brainstem, and not just the cerebral cortex.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, NY , USA
| |
Collapse
|
8
|
Baizer JS, Paolone NA, Sherwood CC, Hof PR. Neurochemical organization of the vestibular brainstem in the common chimpanzee (Pan troglodytes). Brain Struct Funct 2012. [PMID: 23179862 DOI: 10.1007/s00429-012-0470-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chimpanzees are one of the closest living relatives of humans. However, the cognitive and motor abilities of chimpanzees and humans are quite different. The fact that humans are habitually bipedal and chimpanzees are not implies different uses of vestibular information in the control of posture and balance. Furthermore, bipedal locomotion permits the development of fine motor skills of the hand and tool use in humans, suggesting differences between species in the structures and circuitry for manual control. Much motor behavior is mediated via cerebro-cerebellar circuits that depend on brainstem relays. In this study, we investigated the organization of the vestibular brainstem in chimpanzees to gain insight into whether these structures differ in their anatomy from humans. We identified the four nuclei of vestibular nuclear complex in the chimpanzee and also looked at several other precerebellar structures. The size and arrangement of some of these nuclei differed between chimpanzees and humans, and also displayed considerable inter-individual variation. We identified regions within the cytoarchitectonically defined medial vestibular nucleus visualized by immunoreactivity to the calcium-binding proteins calretinin and calbindin as previously shown in other species including human. We have found that the nucleus paramedianus dorsalis, which is identified in the human but not in macaque monkeys, is present in the chimpanzee brainstem. However, the arcuate nucleus, which is present in humans, was not found in chimpanzees. The present study reveals major differences in the organization of the vestibular brainstem among Old World anthropoid primate species. Furthermore, in chimpanzees, as well as humans, there is individual variability in the organization of brainstem nuclei.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA,
| | | | | | | |
Collapse
|