1
|
Ifenprodil rapidly ameliorates depressive-like behaviors, activates mTOR signaling and modulates proinflammatory cytokines in the hippocampus of CUMS rats. Psychopharmacology (Berl) 2020; 237:1421-1433. [PMID: 32130432 DOI: 10.1007/s00213-020-05469-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/21/2020] [Indexed: 01/23/2023]
Abstract
RATIONALE The rapid-onset and long-lasting antidepressant properties of ketamine have prompted investigations into a variety of agents that target N-methyl-D-aspartate receptors (NMDARs) for the treatment of major depressive disorder (MDD). According to the literature, ifenprodil (a GluN2B-containing NMDAR antagonist) can potentiate the antidepressant-like effects of certain antidepressant drugs in mice. Here, we report that a single injection of ifenprodil (3 mg/kg, intraperitoneally (i.p.)) was sufficient to provoke rapid antidepressant-like effects in chronic unpredictable mild stress (CUMS) rats. Moreover, ifenprodil activated mTOR signaling and reversed the CUMS-induced elevation of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the hippocampus after acute administration. Unfortunately, in our study, ifenprodil had no influence on corticosterone levels in the plasma. Our data indicate that ifenprodil per se might exert antidepressant-like effects by modulating neuroplasticity and inflammatory processes rather than the typical hormonal factors affected by stressors. OBJECTIVES To explore the potential rapid antidepressant-like effects and mechanisms of ifenprodil, a GluN2B subunit-selective NMDAR antagonist. METHODS Male Sprague-Dawley rats were used in 3 separate experiments. In experiment 1, we used the forced swim test (FST) and sucrose preference test (SPT) to identify the rapid antidepressant-like effects of ifenprodil in chronic unpredictable mild stress (CUMS) rats after acute administration. In experiment 2, we assessed neurochemical changes involved in synaptic plasticity within the hippocampus of CUMS rats. In experiment 3, we assessed the levels of corticosterone in the plasma and proinflammatory cytokines in the hippocampus in CUMS rats after ifenprodil treatment. RESULTS Ifenprodil rapidly ameliorated depressive-like behaviors in the FST and SPT, activated mTOR signaling, dephosphorylated eukaryotic elongation factor 2, enhanced BDNF expression, and promoted the synthesis of the synaptic protein GluA1 synthesis after acute administration. Moreover, ifenprodil reversed the CUMS-induced elevation of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the hippocampus after acute administration. Unfortunately, ifenprodil had no influence on corticosterone levels in the plasma in our study. CONCLUSIONS Our data indicate that ifenprodil per se might exert antidepressant-like effects through its effects on neuroplasticity and inflammatory processes rather than the typical hormonal factors affected by stressors.
Collapse
|
2
|
Selvaraj K, Manickam N, Kumaran E, Thangadurai K, Elumalai G, Sekar A, Radhakrishnan RK, Kandasamy M. Deterioration of neuroregenerative plasticity in association with testicular atrophy and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis in Huntington's disease: A putative role of the huntingtin gene in steroidogenesis. J Steroid Biochem Mol Biol 2020; 197:105526. [PMID: 31715317 DOI: 10.1016/j.jsbmb.2019.105526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder mainly affecting the structure and functions of the striatum, cerebral cortex and hippocampus leading to movement disorders, cognitive dysfunctions and emotional disturbances. The onset of HD has been linked to a pathogenic CAG repeat expansion in the huntingtin (HTT) gene that encodes for the polyglutamine (polyQ) stretches in the huntingtin (Htt) protein. Notably, the neuropathogenic events of the mutant HTT gene appear to be primed during adulthood and magnified along the ageing process. While the normal Htt protein is vital for the neuronal differentiation and neuroprotection, experimental HD models and postmortem human HD brains have been characterized by neurodegeneration and defects in neuroregenerative plasticity in the basal ganglia and limbic system including the hippocampus. Besides gonadal dysfunctions, reduced androgen levels and abnormal hypothalamic-pituitary-gonadal (HPG) axis have increasingly been evident in HD. Recently, ageing-related changes in levels of steroid sex hormones have been proposed to play a detrimental effect on the regulation of hippocampal neurogenesis in the adult brain. Considering its adult-onset nature, a potential relationship between dysregulation in the synthesis of sex steroid hormones and the pathogenesis of the mutant HTT gene appears to be an important clinical issue in HD. While the hippocampus and testis are the major sites of steroidogenesis, the presence of Htt in both areas is conclusively evident. Hence, the expression of the normal HTT gene may take part in the steroidogenic events in aforementioned organs in the physiological state, whereas the mutant HTT gene may cause defects in steroidogenesis in HD. Therefore, this review article comprehends the potential relationship between the gonadal dysfunctions and abnormal hippocampal plasticity in HD and represents a hypothesis for the putative role of the HTT gene in the regulation of steroidogenesis in gonads and in the brain.
Collapse
Affiliation(s)
- Kaviya Selvaraj
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Nivethitha Manickam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Elamathi Kumaran
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Kayalvizhi Thangadurai
- Department of Bio-Medical Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Gokul Elumalai
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Aravinthan Sekar
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| |
Collapse
|
3
|
Feng W, Wang Y, Liu ZQ, Zhang X, Han R, Miao YZ, Qin ZH. Microglia activation contributes to quinolinic acid-induced neuronal excitotoxicity through TNF-α. Apoptosis 2018; 22:696-709. [PMID: 28315174 DOI: 10.1007/s10495-017-1363-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has been reported that activation of NF-κB is involved in excitotoxicity; however, it is not fully understood how NF-κB contributes to excitotoxicity. The aim of this study is to investigate if NF-κB contributes to quinolinic acid (QA)-mediated excitotoxicity through activation of microglia. In the cultured primary cortical neurons and microglia BV-2 cells, the effects of QA on cell survival, NF-κB expression and cytokines production were investigated. The effects of BV-2-conditioned medium (BCM) on primary cortical neurons were examined. The effects of pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, and minocycline (MC), an inhibitor of microglia activation, on QA-induced excitotoxicity were assessed. QA-induced NF-κB activation and TNF-α secretion, and the roles of TNF-α in excitotoxicity were studied. QA at the concentration below 1 mM had no apparent toxic effects on cultured primary neurons or BV-2 cells. However, addition of QA-primed BCM to primary neurons did aggravate QA-induced excitotoxicity. The exacerbation of QA-induced excitotoxicity by BCM was partially ameliorated by inhibiting NF-κB and microglia activation. QA induced activation of NF-κB and upregulation of TNF-α in BV-2 cells. Addition of recombinant TNF-α mimicked QA-induced excitotoxic effects on neurons, and neutralizing TNF-α with specific antibodies partially abolished exacerbation of QA-induced excitotoxicity by BCM. These studies suggested that QA activated microglia and upregulated TNF-α through NF-κB pathway in microglia. The microglia-mediated inflammatory pathway contributed, at least in part, to QA-induced excitotoxicity.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Zi-Qi Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xuan Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - You-Zhu Miao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Beste C, Mückschel M, Rosales R, Domingo A, Lee L, Ng A, Klein C, Münchau A. Dysfunctions in striatal microstructure can enhance perceptual decision making through deficits in predictive coding. Brain Struct Funct 2017; 222:3807-3817. [PMID: 28466359 DOI: 10.1007/s00429-017-1435-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022]
Abstract
An important brain function is to predict upcoming events on the basis of extracted regularities of previous inputs. These predictive coding processes can disturb performance in concurrent perceptual decision-making and are known to depend on fronto-striatal circuits. However, it is unknown whether, and if so, to what extent striatal microstructural properties modulate these processes. We addressed this question in a human disease model of striosomal dysfunction, i.e. X-linked dystonia-parkinsonism (XDP), using high-density EEG recordings and source localization. The results show faster and more accurate perceptual decision-making performance during distraction in XDP patients compared to healthy controls. The electrophysiological data show that sensory memory and predictive coding processes reflected by the mismatch negativity related to lateral prefrontal brain regions were weakened in XDP patients and thus induced less cognitive conflict than in controls as reflected by the N2 event-related potential (ERP). Consequently, attentional shifting (P3a ERP) and reorientation processes (RON ERP) were less pronounced in the XDP group. Taken together, these results suggests that striosomal dysfunction is related to predictive coding deficits leading to a better performance in concomitant perceptual decision-making, probably because predictive coding does not interfere with perceptual decision-making processes. These effects may reflect striatal imbalances between the striosomes and the matrix compartment.
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany. .,Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Raymond Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lillian Lee
- Faculty of Neurology and Psychiatry, University of Santo Tomas, Manila, Philippines
| | - Arlene Ng
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
5
|
Paulsen JS, Miller AC, Hayes T, Shaw E. Cognitive and behavioral changes in Huntington disease before diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:69-91. [PMID: 28947127 DOI: 10.1016/b978-0-12-801893-4.00006-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phenotypic manifestations of Huntington disease (HD) can be detected at least 15 years prior to the time when a motor diagnosis is given. Advances in clinical care and future research will require consistent use of HD definitions and HD premanifest (prodromal) stages being used across clinics, sites, and countries. Cognitive and behavioral (psychiatric) changes in HD are summarized and implications for ongoing advancement in our knowledge of prodromal HD are suggested. The earliest detected cognitive changes are observed in the Symbol Digit Modalities Test, Stroop Interference, Stroop Color and Word Test-interference condition, and Trail Making Test. Cognitive changes in the middle and near motor diagnostic stages of prodromal HD involve nearly every cognitive test administered and the greatest changes over time (i.e., slopes) are found in those prodromal HD participants who are nearest to motor diagnosis. Psychiatric changes demonstrate significant worsening over time and remain elevated compared with healthy controls throughout the prodromal disease course. Psychiatric and behavior changes in prodromal HD are much lower than that obtained using cognitive assessment, although the psychiatric and behavioral changes represent symptoms most debilitating to independent capacity and wellness.
Collapse
Affiliation(s)
- Jane S Paulsen
- Departments of Psychiatry, Neurology and Psychology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| | - Amanda C Miller
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Terry Hayes
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Emily Shaw
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
6
|
Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood. Sci Rep 2016; 6:28954. [PMID: 27349808 PMCID: PMC4923946 DOI: 10.1038/srep28954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/07/2016] [Indexed: 11/08/2022] Open
Abstract
Executive functions, like the capacity to control and organize thoughts and behavior, develop from childhood to young adulthood. Although task switching and working memory processes are known to undergo strong developmental changes from childhood to adulthood, it is currently unknown how task switching processes are modulated between childhood and adulthood given that working memory processes are central to task switching. The aim of the current study is therefore to examine this question using a combined cue- and memory-based task switching paradigm in children (N = 25) and young adults (N = 25) in combination with neurophysiological (EEG) methods. We obtained an unexpected paradoxical effect suggesting that memory-based task switching is better in late childhood than in young adulthood. No group differences were observed in cue-based task switching. The neurophysiological data suggest that this effect is not due to altered attentional selection (P1, N1) or processes related to the updating, organization, and implementation of the new task-set (P3). Instead, alterations were found in the resolution of task-set conflict and the selection of an appropriate response (N2) when a task has to be switched. Our observation contrasts findings showing that cognitive control mechanisms reach their optimal functioning in early adulthood.
Collapse
|
7
|
Kobald SO, Getzmann S, Beste C, Wascher E. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG. Sci Rep 2016; 6:28371. [PMID: 27324456 PMCID: PMC4914844 DOI: 10.1038/srep28371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention.
Collapse
Affiliation(s)
- S Oliver Kobald
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
8
|
Parmeggiani B, Moura AP, Grings M, Bumbel AP, Moura Alvorcem L, Tauana Pletsch J, Fernandes CG, Wyse ATS, Wajner M, Leipnitz G. In vitro
evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism‐related enzymes in rat cerebral cortex. Int J Dev Neurosci 2015; 42:68-75. [DOI: 10.1016/j.ijdevneu.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 11/15/2022] Open
Affiliation(s)
- Belisa Parmeggiani
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| | - Alana Pimentel Moura
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| | - Mateus Grings
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| | - Anna Paula Bumbel
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| | - Leonardo Moura Alvorcem
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| | - Julia Tauana Pletsch
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| | - Carolina Gonçalves Fernandes
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| | - Angela TS Wyse
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| | - Moacir Wajner
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
- Serviço de Genética MédicaHospital de Clínicas de Porto AlegreRua Ramiro Barcelos, 2350 – CEP90035‐003Porto AlegreRSBrazil
| | - Guilhian Leipnitz
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600 – Anexo – CEP90035‐003Porto AlegreRSBrazil
| |
Collapse
|
9
|
Ghilan M, Bostrom CA, Hryciw BN, Simpson JM, Christie BR, Gil-Mohapel J. YAC128 Huntington׳s disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease. Brain Res 2014; 1581:117-28. [DOI: 10.1016/j.brainres.2014.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/02/2014] [Accepted: 06/07/2014] [Indexed: 01/31/2023]
|