1
|
Radulović S, Sunkara S, Maurer C, Leitinger G. Digging Deeper: Advancements in Visualization of Inhibitory Synapses in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:12470. [PMID: 34830352 PMCID: PMC8623765 DOI: 10.3390/ijms222212470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Recent research has provided strong evidence that neurodegeneration may develop from an imbalance between synaptic structural components in the brain. Lately, inhibitory synapses communicating via the neurotransmitters GABA or glycine have come to the center of attention. Increasing evidence suggests that imbalance in the structural composition of inhibitory synapses affect deeply the ability of neurons to communicate effectively over synaptic connections. Progressive failure of synaptic plasticity and memory are thus hallmarks of neurodegenerative diseases. In order to prove that structural changes at synapses contribute to neurodegeneration, we need to visualize single-molecule interactions at synaptic sites in an exact spatial and time frame. This visualization has been restricted in terms of spatial and temporal resolution. New developments in electron microscopy and super-resolution microscopy have improved spatial and time resolution tremendously, opening up numerous possibilities. Here we critically review current and recently developed methods for high-resolution visualization of inhibitory synapses in the context of neurodegenerative diseases. We present advantages, strengths, weaknesses, and current limitations for selected methods in research, as well as present a future perspective. A range of new options has become available that will soon help understand the involvement of inhibitory synapses in neurodegenerative disorders.
Collapse
Affiliation(s)
- Snježana Radulović
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| | - Sowmya Sunkara
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| | - Christa Maurer
- Gottfried Schatz Research Center, Division of Macroscopic and Clinical Anatomy, Medical University of Graz, 8010 Graz, Austria;
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| |
Collapse
|
2
|
Patten T, Dreier A, Herman RJ, Kimball BA, De Biasi M. Exposure to fruit-flavoring during adolescence increases nicotine consumption and promotes dose escalation. Neuropharmacology 2021; 195:108672. [PMID: 34153314 PMCID: PMC8572580 DOI: 10.1016/j.neuropharm.2021.108672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/19/2022]
Abstract
The rise of e-cigarette popularity has sparked interest in the role of palatable flavors on nicotine use. Despite growing evidence that sweet flavorants enhance nicotine reward, their influence on nicotine consumption has not been studied extensively. In addition, the impact that flavored nicotine use in adolescence could have on nicotine reward and dependence in adulthood remains unclear. This study examined the role of flavored nicotine access on nicotine preference and consumption longitudinally, from adolescence to adulthood. Male and female adolescent mice preferred a fruit-flavored nicotine solution over an unflavored nicotine solution. However, only adolescent female mice with access to flavored nicotine consumed higher doses. Furthermore, while adolescent male mice escalated consumption of both flavored and unflavored nicotine, female mice only escalated nicotine consumption when given access to flavored nicotine. As mice matured into adulthood, there was no evidence that a history of flavored-nicotine access altered preference for unflavored nicotine compared to a nicotine-free control in a classic two-bottle choice design. However, when the nicotine concentration was progressively reduced, mice that had consumed strawberry-flavored nicotine in adolescence maintained baseline nicotine consumption levels longer than mice that initiated nicotine use without flavor in adolescence. Finally, addition of fruit-flavorants into the nicotine solution during adulthood led to nicotine preference and increased levels of nicotine consumption, regardless of previous flavored-nicotine access or of familiarity with the selected flavorant. These results indicate that flavorants increase nicotine consumption independent of life stage, possibly posing a disproportionate risk to adolescent females. Our results also point to an effect of adolescent flavored-nicotine use on nicotine dose maintenance in adulthood, which could have implications for the success of future quit attempts.
Collapse
Affiliation(s)
- Theresa Patten
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Allison Dreier
- School of Arts and Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rae J Herman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,19104, USA
| | | | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,19104, USA; School of Arts and Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Henderson BJ, Cooper SY. Nicotine formulations impact reinforcement-related behaviors in a mouse model of vapor self-administration. Drug Alcohol Depend 2021; 224:108732. [PMID: 33930641 PMCID: PMC8180495 DOI: 10.1016/j.drugalcdep.2021.108732] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Electronic nicotine delivery systems (ENDS) differ from combustible cigarettes given that nicotine-salt or nicotine-freebase may be used depending on the product. We have investigated how nicotine-salt and freebase formulations alter e-Vape® self-administration (EVSA) behavior and plasma cotinine levels in male and female mice. METHODS Adult C57/BL6 J mice were used in EVSA and assigned vaping e-liquids (50:50 PGVG, 6 mg/mL nicotine-freebase, or 6 mg/mL nicotine-salt). Mice were escalated on a fixed ratio 1 (FR1) schedule in daily 2 h sessions and then transitioned to a FR3 to examine reinforcement-related behaviors. RESULTS Here we observed that mice assigned nicotine-salt exhibited increased EVSA on a FR3 schedule compared to nicotine-freebase. Additionally, mice assigned nicotine-salt exhibited higher plasma cotinine concentrations following delivery-controlled passive-inhalation sessions. CONCLUSIONS These data provide evidence nicotine-salt formulations may contribute to greater reinforcement-related behavior and highlight the need for further investigations regarding nicotine formulation in ENDS.
Collapse
Affiliation(s)
- Brandon J. Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd ave, Huntington, WV 25703, USA,Corresponding Author: Brandon J. Henderson, PhD, Department of Biomedical Sciences Joan C Edwards School of Medicine at Marshall University 1700 3rd Ave, 410 BBSC, Huntington, WV 25703 Phone: 304-696-7316
| | - Skylar Y. Cooper
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd ave, Huntington, WV 25703, USA
| |
Collapse
|
4
|
Cooper SY, Akers AT, Henderson BJ. Flavors Enhance Nicotine Vapor Self-administration in Male Mice. Nicotine Tob Res 2021; 23:566-572. [PMID: 32860507 PMCID: PMC7885783 DOI: 10.1093/ntr/ntaa165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Although the use of combustible cigarettes has decreased in many urban regions of America, the use of electronic nicotine delivery systems (ENDS) has dramatically increased. ENDS, or electronic cigarettes (e-cigarettes), differ from combustible cigarettes given that there are no restrictions on flavorant additives in e-liquids. With 95% of ENDS users vaping flavored e-liquids, it is critical to understand how flavors alter vaping-related behaviors. We have previously shown that menthol and green apple flavors enhance nicotine reward-related behavior in a mouse model and in the present study have investigated how menthol and green apple flavors alter e-Vape self-administration behavior in male mice. METHODS Adult C57/BL6J male mice were used in vapor-inhalation self-administration assays. Mice were assigned vaping e-liquids (6 mg/mL nicotine with or without menthol or green apple flavor) to escalate on a fixed-ratio 1 (FR1) schedule in daily 3-hour sessions to examine initiation-related behaviors. Following escalation, mice were transitioned to a FR3 and progressive ratio schedules in 3-hour sessions to examine reinforcement-related behaviors. RESULTS Here we observed that male mice exhibited increased rates of self-administration escalation on a FR1 schedule when assigned to flavored e-liquids. Upon transition to FR3, mice continued to exhibit enhanced levels of reinforcement with flavored e-liquids. We also observed that mice self-administer zero-nicotine green apple flavored e-liquids. CONCLUSIONS These data provide additional evidence that ENDS flavors enhance vaping-related initiation and reinforcement-related behavior and promote the need to continue investigating the role ENDS flavors play in vaping-related behaviors. IMPLICATIONS There has been much discussion recently regarding the impact of flavors on vaping-related behavior. Our study here shows that flavors significantly enhance the acquisition and reinforcement of vaping-related behavior. This suggests that flavors in electronic nicotine delivery systems significantly increase the risk of addiction-related behaviors among users of vaping products.
Collapse
Affiliation(s)
- Skylar Y Cooper
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV
| | - Brandon J Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, Huntington, WV
| |
Collapse
|
5
|
Patten T, De Biasi M. History repeats itself: Role of characterizing flavors on nicotine use and abuse. Neuropharmacology 2020; 177:108162. [PMID: 32497589 DOI: 10.1016/j.neuropharm.2020.108162] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
The popularity of e-cigarettes has skyrocketed in recent years, and most vapers use flavored e-cigarette products. Consumption of flavored e-cigarettes exceeds that of combustible cigarettes and other tobacco products among adolescents, who are particularly vulnerable to becoming nicotine dependent. Flavorings have been used by the tobacco industry since the 17th century, but the use of flavors by the e-cigarette industry to create products with "characterizing" flavors (i.e. flavors other than tobacco or menthol) has sparked a public health debate. This review addresses the possibility that characterizing flavors make nicotine more appealing, rewarding and addictive. It also discusses ways in which preclinical and clinical studies could improve our understanding of the mechanisms by which flavors may alter nicotine reward and reinforcement. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Theresa Patten
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mariella De Biasi
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
6
|
Polli FS, Kohlmeier KA. Prenatal Nicotine Exposure in Rodents: Why Are There So Many Variations in Behavioral Outcomes? Nicotine Tob Res 2019; 22:1694-1710. [DOI: 10.1093/ntr/ntz196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Introduction
The World Health Organization (WHO) reported that smoking cessation rates among women have stagnated in the past decade and estimates that hundreds of millions of women will be smokers in the next decade. Social, environmental, and biological conditions render women more susceptible to nicotine addiction, imposing additional challenges to quit smoking during gestation, which is likely why more than 8% of pregnancies in Europe are associated with smoking. In epidemiological investigations, individuals born from gestational exposure to smoking exhibit a higher risk of development of attention-deficit/hyperactive disorder (ADHD) and liability to drug dependence. Among other teratogenic compounds present in tobacco smoke, nicotine actions during neuronal development could contribute to the observed outcomes as nicotine misleads signaling among progenitor cells during brain development. Several experimental approaches have been developed to address the consequences of prenatal nicotine exposure (PNE) to the brain and behavior but, after four decades of studies, inconsistent data have been reported and the lack of consensus in the field has compromised the hypothesis that gestational nicotine exposure participates in cognitive and emotional behavioral deficits.
Aims
In this review, we discuss the most commonly used PNE models with focus on their advantages and disadvantages, their relative validity, and how the different technical approaches could play a role in the disparate outcomes.
Results
We propose methodological considerations, which could improve the translational significance of the PNE models.
Conclusions
Such alterations might be helpful in reconciling experimental findings, as well as leading to development of treatment targets for maladaptive behaviors in those prenatally exposed.
Implications
In this article, we have reviewed the advantages and disadvantages of different variables of the commonly used experimental models of PNE. We discuss how variations in the nicotine administration methods, the timing of nicotine exposure, nicotine doses, and species employed could contribute to the disparate findings in outcomes for PNE offspring, both in behavior and neuronal changes. In addition, recent findings suggest consideration of epigenetic effects extending across generations. Finally, we have suggested improvements in the available PNE models that could contribute to the enhancement of their validity, which could assist in the reconciliation of experimental findings.
Collapse
Affiliation(s)
- Filip Souza Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Ipsen TH, Polli FS, Kohlmeier KA. Calcium rises induced by AMPA and nicotine receptors in the ventral tegmental area show differences in mouse brain slices prenatally exposed to nicotine. Dev Neurobiol 2018; 78:828-848. [PMID: 29923678 DOI: 10.1002/dneu.22607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Nicotine exposure during gestation is associated with a higher risk of adverse behavioral outcomes including a heightened liability for dependency to drugs of abuse, which can exhibit drug-specificity influenced by gender. This enhanced liability suggests that nicotine use during pregnancy alters neural development in circuits involved in motivation and reward-based learning. The ventral tegmental area (VTA) is critical in motivated behaviors and we hypothesized that gestational exposure to nicotine alters the development of excitatory circuits in this nucleus. Accordingly, in VTA brain slices from male and female mice exposed to nicotine during the prenatal period (PNE) and controls, we compared cellular rises in calcium induced by AMPA receptor and nicotinic acetylcholine receptor (nAChR) stimulation by use of the ratiometric calcium binding dye, Fura-2AM. We found that AMPA induced smaller amplitude calcium rises in the PNE VTA, which was an effect only detected in males. Further, while the amplitude did not vary between treatment and control in females, a greater number of cells responded with rises in calcium in the PNE. Conversely, the proportions of cells responding with calcium rises induced by nAChR stimulation did not change in either gender according to treatment. However, larger rises in calcium in PNE females were detected. When taken together our data show that excitatory signaling in the VTA is altered in a gender-specific manner by PNE and suggest that alterations in signaling could play a role in drug-specific differences in maladaptive, motivated behaviors exhibited by males and females born to mothers exposed to nicotine during pregnancy. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 2018.
Collapse
Affiliation(s)
- Theis H Ipsen
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Filip S Polli
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Kristi A Kohlmeier
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
8
|
Morris M, Shaw A, Lambert M, Perry HH, Lowenstein E, Valenzuela D, Velazquez-Ulloa NA. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:13. [PMID: 29898654 PMCID: PMC6001141 DOI: 10.1186/s12861-018-0172-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. RESULTS We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. CONCLUSIONS We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.
Collapse
Affiliation(s)
- Melanie Morris
- School of Medicine, University of Washington, Seattle, USA
| | - Ariel Shaw
- Biochemistry, Cell and Molecular Biology Program, Lewis & Clark College, Portland, USA
| | | | | | - Eve Lowenstein
- Biology Department, Lewis & Clark College, Portland, USA
| | | | | |
Collapse
|
9
|
Alkam T, Mamiya T, Kimura N, Yoshida A, Kihara D, Tsunoda Y, Aoyama Y, Hiramatsu M, Kim HC, Nabeshima T. Prenatal nicotine exposure decreases the release of dopamine in the medial frontal cortex and induces atomoxetine-responsive neurobehavioral deficits in mice. Psychopharmacology (Berl) 2017; 234:1853-1869. [PMID: 28332006 DOI: 10.1007/s00213-017-4591-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
Increased risk of attention-deficit/hyperactivity disorder (AD/HD) is partly associated with the early developmental exposure to nicotine in tobacco smoke. Emerging reports link tobacco smoke exposure or prenatal nicotine exposure (PNE) with AD/HD-like behaviors in rodent models. We have previously reported that PNE induces cognitive behavioral deficits in offspring and decreases the contents of dopamine (DA) and its turnover in the prefrontal cortex (PFC) of offspring It is well known that the dysfunction of DAergic system in the brain is one of the core factors in the pathophysiology of AD/HD. Therefore, we examined whether the effects of PNE on the DAergic system underlie the AD/HD-related behavioral changes in mouse offspring. PNE reduced the release of DA in the medial PFC (mPFC) in mouse offspring. PNE reduced the number of tyrosine hydroxylase (TH)-positive varicosities in the mPFC and in the core as well as the shell of nucleus accumbens, but not in the striatum. PNE also induced behavioral deficits in cliff avoidance, object-based attention, and sensorimotor gating in offspring. These behavioral deficits were attenuated by acute treatment with atomoxetine (3 mg/kg, s.c.) or partially attenuated by acute treatment with MPH (1 mg/kg, s.c.). Taken together, our findings support the notion that PNE induces neurobehavioral abnormalities in mouse offspring by disrupting the DAergic system and improve our understanding about the incidence of AD/HD in children whose mothers were exposed to nicotine during their pregnancy.
Collapse
Affiliation(s)
- Tursun Alkam
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Nami Kimura
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Aya Yoshida
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Daisuke Kihara
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Tsunoda
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Aoyama
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan.
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan.
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Aino University, Ibaraki, Japan.
| |
Collapse
|
10
|
Velazquez-Ulloa NA. A Drosophila model for developmental nicotine exposure. PLoS One 2017; 12:e0177710. [PMID: 28498868 PMCID: PMC5428972 DOI: 10.1371/journal.pone.0177710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
Despite the known health risks of tobacco smoking, many people including pregnant women continue smoking. The effects of developmental nicotine exposure are known, but the underlying mechanisms are not well understood. Drosophila melanogaster is a model organism that can be used for uncovering genetic and molecular mechanisms for drugs of abuse. Here I show that Drosophila can be a model to elucidate the mechanisms for nicotine’s effects on a developing organism. Drosophila reared on nicotine food display developmental and behavioral effects similar to those in mammals including decreased survival and weight, increased developmental time, and decreased sensitivity to acute nicotine and ethanol. The Drosophila nicotinic acetylcholine receptor subunit alpha 7 (Dα7) mediates some of these effects. A novel role for Dα7 on ethanol sedation in Drosophila is also shown. Future research taking advantage of the genetic and molecular tools for Drosophila will allow additional discovery of the mechanisms behind the effects of nicotine during development.
Collapse
|
11
|
Al-Basher G, Ajarem JS, Allam AA, Mahmoud AM. Green Tea Protects Against Perinatal Nicotine-induced Histological, Biochemical and Hematological Alterations in Mice Offspring. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.109.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Dragomir A, Akay YM, Zhang D, Akay M. Ventral Tegmental Area Dopamine Neurons Firing Model Reveals Prenatal Nicotine Induced Alterations. IEEE Trans Neural Syst Rehabil Eng 2016; 25:1387-1396. [PMID: 28114025 DOI: 10.1109/tnsre.2016.2636133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The dopamine (DA) neurons found in the ventral tegmental area (VTA) are widely involved in the addiction and natural reward circuitry of the brain. Their firing patterns were shown to be important modulators of dopamine release and repetitive burst-like firing activity was highlighted as a major firing pattern of DA neurons in the VTA. In the present study we use a state space model to characterize the DA neurons firing patterns, and trace transitions of neural activity through bursting and non-bursting states. The hidden semi-Markov model (HSMM) framework, which we use, offers a statistically principled inference of bursting states and considers VTA DA firing patterns to be generated according to a Gamma process. Additionally, the explicit Gamma-based modeling of state durations allows efficient decoding of underlying neural information. Consequently, we decode and segment our single unit recordings from DA neurons in VTA according to the sequence of statistically discriminated HSMM states. The segmentation is used to study bursting state characteristics in data recorded from rats prenatally exposed to nicotine (6 mg/kg/day starting with gestational day 3) and rats from saline treated dams. Our results indicate that prenatal nicotine exposure significantly alters burst firing patterns of a subset of DA neurons in adolescent rats, suggesting nicotine exposure during gestation may induce severe effects on the neural networks involved in addiction and reward.
Collapse
|
13
|
Chan YL, Saad S, Al-Odat I, Zaky AA, Oliver B, Pollock C, Li W, Jones NM, Chen H. Impact of maternal cigarette smoke exposure on brain and kidney health outcomes in female offspring. Clin Exp Pharmacol Physiol 2016; 43:1168-1176. [DOI: 10.1111/1440-1681.12659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/17/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yik L Chan
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Sonia Saad
- Kolling Institute of Medical Research; University of Sydney; St Leonards NSW Australia
| | - Ibrahim Al-Odat
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Amgad A Zaky
- Kolling Institute of Medical Research; University of Sydney; St Leonards NSW Australia
| | - Brian Oliver
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Carol Pollock
- Kolling Institute of Medical Research; University of Sydney; St Leonards NSW Australia
| | - Weihong Li
- Department of Science and Technology; Chengdu University of Traditional Chinese Medicine; Chengdu Sichuan China
| | - Nicole M Jones
- Department of Pharmacology; School of Medical Sciences; University of New South Wales; Broadway NSW Australia
| | - Hui Chen
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| |
Collapse
|
14
|
Abstract
BACKGROUND Migraineurs variably attribute the cause of their headache to tobacco exposure, whereas tobacco is often stated to cause headache-related disability worldwide. Given tobacco's physiological and emotional addictiveness and migraine's substantial economic impact, improved functionality can be difficult for those with migraine exposed to tobacco products. Environmental tobacco exposure in indoor spaces and workplaces is associated with exacerbation of headache. Avoidance of headache triggers is included in most comprehensive migraine treatment programs, yet tobacco awareness, avoidance, or coping is rarely emphasized as part of that regimen. OBJECTIVE The aims of this study were to examine the various types of tobacco products to which headache sufferers are exposed and the known basic mechanisms by which tobacco (nicotine) exposure promotes headache pain, and to review the extensive literature on tobacco related to headache with a detailed descriptive narrative providing the basis for conclusions regarding association of noncluster headache-related tobacco exposure. Tobacco-related recommendations are offered. METHODS MEDLINE, EMBASE, and Google Scholar databases were searched without yearly restriction through the date of submission (May 2015), using the MeSH terms "tobacco," "tobacco products," "smoking," "tobacco use," "headache," and "headache disorders." The selection of articles was not limited to English studies or to humans. Articles were excluded when "headache" and "tobacco" were not both mentioned with data provided. Case series were included. Bibliographies of all articles were screened for additional relevant articles. RESULTS Although migraineurs worldwide report tobacco smoke among triggers, it is rarely among the highest in frequency, and biases abound with predominantly noncontrolled retrospective data. Prospective population-based diary data are extremely limited, and no controlled trials exist to confirm a cause and effect for headache of any type. Although some studies are nonsupportive and even conflicting, headache, pain, and tobacco exposure currently remain associated. CONCLUSION Conflicting data support the validity of patient-reported environmental tobacco exposure as a headache trigger. Prospective controlled studies are needed, but unlikely to be performed, to determine the extent that tobacco influences the headache process, in addition to other under-recognized factors. Meanwhile, because of numerous other negative health effects, decreased tobacco exposure should be recommended to headache patients of all ages in hopes of decreasing disability and improving functionality.
Collapse
Affiliation(s)
- Frederick R Taylor
- Department of Neurology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|