1
|
Gong NJ, Dibb R, Pletnikov M, Benner E, Liu C. Imaging microstructure with diffusion and susceptibility MR: neuronal density correlation in Disrupted-in-Schizophrenia-1 mutant mice. NMR IN BIOMEDICINE 2020; 33:e4365. [PMID: 32627266 DOI: 10.1002/nbm.4365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/23/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE To probe cerebral microstructural abnormalities and assess changes of neuronal density in Disrupted-in-Schizophrenia-1 (DISC1) mice using non-Gaussian diffusion and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS Brain specimens of transgenic DISC1 mice (n = 8) and control mice (n = 7) were scanned. Metrics of neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging (DKI), as well as QSM, were acquired. Cell counting was performed on Nissl-stained sections. Group differences of imaging metrics and cell density were assessed. Pearson correlations between imaging metrics and cell densities were also examined. RESULTS Significant increases of neuronal density were observed in the hippocampus of DISC1 mice. DKI metrics such as mean kurtosis exhibited significant group differences in the caudate putamen (P = 0.015), cerebral cortex (P = 0.021), and hippocampus (P = 0.011). However, DKI metrics did not correlate with cell density. In contrast, significant positive correlation between density of neurons and the neurite density index of NODDI in the hippocampus was observed (r = 0.783, P = 0.007). Significant correlation between density of neurons and susceptibility (r = 0.657, P = 0.039), as well as between density of neuroglia and susceptibility (r = 0.750, P = 0.013), was also observed in the hippocampus. CONCLUSION The imaging metrics derived from DKI were not sensitive specifically to cell density, while NODDI could provide diffusion metrics sensitive to density of neurons. The magnetic susceptibility values derived from the QSM method can serve as a sensitive biomarker for quantifying neuronal density.
Collapse
Affiliation(s)
- Nan-Jie Gong
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Russell Dibb
- Center for in vivo Microscopy, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mikhail Pletnikov
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Benner
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chunlei Liu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, North Carolina, USA
- Radiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Rhein C, Mühle C, Lenz B, Richter-Schmidinger T, Kogias G, Boix F, Lourdusamy A, Dörfler A, Peters O, Ramirez A, Jessen F, Maier W, Hüll M, Frölich L, Teipel S, Wiltfang J, Kornhuber J, Müller CP. Association of a CAMK2A genetic variant with logical memory performance and hippocampal volume in the elderly. Brain Res Bull 2020; 161:13-20. [PMID: 32418901 DOI: 10.1016/j.brainresbull.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
Calcium/Calmodulin-dependent kinase alpha (αCaMKII) has been shown to play an essential role in synaptic plasticity and in learning and memory in animal models. However, there is little evidence for an involvement in specific memories in humans. Here we tested the potential involvement of the αCaMKII coding gene CAMK2A in verbal logical memory in two Caucasian populations from Germany, in a sample of 209 elderly people with cognitive impairments and a sample of 142 healthy adults. The association of single nucleotide polymorphisms (SNPs) located within the genomic region of CAMK2A with verbal logical memory learning and retrieval from the Wechsler Memory Scale was measured and hippocampal volume was assessed by structural MRI. In the elderly people, we found the minor allele of CAMK2A intronic SNP rs919741 to predict a higher hippocampal volume and better logical memory retrieval. This association was not found in healthy adults. The present study may provide evidence for an association of a genetic variant of the CAMK2A gene specifically with retrieval of logical memory in elderly humans. This effect is possibly mediated by a higher hippocampal volume.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Anbarasu Lourdusamy
- Division of Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, NG7 2UH, UK
| | - Arnd Dörfler
- Department of Neuroradiology, University Clinic, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Eschenallee 3, DE-14050 Berlin, Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany; Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Michael Hüll
- Emmendingen Center for Psychiatry, Clinic for Geriatric Psychiatry and Psychotherapy and University of Freiburg, Freiburg, Germany
| | - Lutz Frölich
- Central Institute of Mental Health, Mannheim, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, 18147 Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen 37075, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany; Neurosciences and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Estrogen receptor 1 gene variants and estradiol activities in alcohol dependence. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:301-307. [PMID: 30677468 DOI: 10.1016/j.pnpbp.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/29/2018] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Alcohol use disorders inflict a great individual and societal burden. Although sex hormone effects have been implicated in alcohol dependence, research has mostly neglected estrogen activities and female alcohol-dependent patients. Here, we investigated associations of estrogen receptor 1 (ESR1) genetics and serum estradiol activities with aspects of alcohol dependence. METHOD Serum estradiol activities of early-abstinent alcohol-dependent in-patients (n[♂] = 113, n[♀] = 87) were followed for at median 5 days and compared with healthy controls (n[♂] = 133, n[♀] = 107). All participants were genotyped for five ESR1 single nucleotide polymorphisms (rs6902771, rs11155819, rs6557171, rs2982683, rs2982712). RESULTS Bioavailable estradiol levels decreased during withdrawal treatment (P[♂] < .001, P[♀] = .011). Male patients with an increase of bioavailable estradiol during withdrawal showed fewer days to (P = .033) and more alcohol-related readmissions (P < .05) during the 12-month follow-up. Higher estradiol and estradiol-to-testosterone activities were significantly related to liver, muscle, and cell count damage in male patients. Estradiol-to-testosterone activities in female patients were lower compared to female controls (total P = .013, bioavailable P = .009). Moreover, the ESR1 genotypes jointly separated alcohol-dependent patients from controls (P = .037). CONCLUSION Our findings support the role of ESR1 genetics in alcohol dependence and show for the first time that estradiol activities may sex-specifically predict alcohol-related sequelae and outcome following in-patient withdrawal treatment.
Collapse
|
4
|
Lu JY, Tiwari AK, Zai GC, Rastogi A, Shaikh SA, Müller DJ, Voineskos AN, Potkin SG, Lieberman JA, Meltzer HY, Remington G, Wong AH, Kennedy JL, Zai CC. Association study of Disrupted-In-Schizophrenia-1 gene variants and tardive dyskinesia. Neurosci Lett 2018; 686:17-22. [DOI: 10.1016/j.neulet.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/26/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
|
5
|
Teng S, Thomson PA, McCarthy S, Kramer M, Muller S, Lihm J, Morris S, Soares DC, Hennah W, Harris S, Camargo LM, Malkov V, McIntosh AM, Millar JK, Blackwood DH, Evans KL, Deary IJ, Porteous DJ, McCombie WR. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Mol Psychiatry 2018; 23:1270-1277. [PMID: 28630456 PMCID: PMC5984079 DOI: 10.1038/mp.2017.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWERacross P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.
Collapse
Affiliation(s)
- S Teng
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biology, Howard University, Washington DC, USA
| | - P A Thomson
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Muller
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J Lihm
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Morris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D C Soares
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - W Hennah
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - S Harris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - L M Camargo
- UCB New Medicines, One Broadway, Cambridge, MA, USA
| | - V Malkov
- Genetics and Pharmacogenomics, MRL, Merck & Co, Boston, MA, USA
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J K Millar
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - K L Evans
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - D J Porteous
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|