1
|
Hristov M, Landzhov B, Yakimova K. Effect of leptin on nitrergic neurons in the lateral hypothalamic area and the supraoptic nucleus of rats. Biotech Histochem 2024; 99:125-133. [PMID: 38533595 DOI: 10.1080/10520295.2024.2335167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production. We used histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) as a marker for nitric oxide synthase activity and assessed the effect of leptin on nitrergic neurons in the LH and SO of rats. We found that intraperitoneal administration of leptin led to a significant increase in the number of NADPH-d-positive neurons in the LH and SO. In addition, the intensity (optical density) of NADPH-d staining in LH and SO neurons was significantly elevated in rats that received leptin compared with saline-treated rats. These findings suggest that nitrergic neurons in the LH and SO may be implicated in mediating the central effects of leptin.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yakimova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Araújo LTFD, Reis MEMD, Andrade WMGD, Resende NDS, Lima RRMD, Nascimento ESD, Costa MSMDO, Cavalcante JC. Distribution of nitric oxide in the rock cavy (Kerodon rupestris) brain II: The brainstem. J Chem Neuroanat 2021; 116:101989. [PMID: 34126223 DOI: 10.1016/j.jchemneu.2021.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
In a recent paper, we described the distribution of Nitric oxide (NO) in the diencephalon of the rock cavy (Kerodon rupestris). This present paper follows this work, showing the distribution of NO synthesizing neurons in the rock cavy's brainstem. For this, we used immunohistochemistry against the neuronal form of nitric oxide synthase (NOS) and NADPH diaphorase histochemistry. In contrast to the diencephalon in the rock cavy, where the NOS neurons were seen to be limited to some nuclei in the thalamus and hypothalamus, the distribution of NOS in the brainstem is widespread. Neurons immunoreactive to NOS (NOS-ir) were seen as rostral as the precommissural nuclei and as caudal as the caudal and gelatinous parts of the spinal trigeminal nucleus. Places such as the raphe nuclei, trigeminal complex, superior and inferior colliculus, oculomotor complex, periaqueductal grey matter, solitary tract nucleus, laterodorsal tegmental nucleus, pedunculopontine tegmental, and other nuclei of the reticular formation are among the locations with the most NOS-ir neurons. This distribution is similar, but with some differences, to those described for other rodents, indicating that NO also has an important role in rock cavy's physiology.
Collapse
Affiliation(s)
- Lucimário Thiago Félix de Araújo
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Emanuela Martins Dos Reis
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Wylqui Mikael Gomes de Andrade
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nayra da Silva Resende
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ruthnaldo Rodrigues Melo de Lima
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Expedito Silva do Nascimento
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Judney Cley Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
3
|
Hristov M, Landzhov B, Yakimova K. Cafeteria diet-induced obesity reduces leptin-stimulated NADPH-diaphorase reactivity in the hypothalamic arcuate nucleus of rats. Acta Histochem 2020; 122:151616. [PMID: 33066838 DOI: 10.1016/j.acthis.2020.151616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Leptin is an adipokine that plays an important role in the regulation of energy homeostasis. The failure of endogenous and exogenous leptin to mediate its effects (for example, at suppressing appetite and decreasing body weight) has been termed leptin resistance. Hyperleptinemia and leptin resistance can be well demonstrated in animals in which obesity is induced by consumption of a palatable, high-calorie diet (e.g., cafeteria diet-induced obesity). Since leptin receptor signaling is known to be impaired in the hypothalamic arcuate nucleus (ARC) of obese rodents, we investigated the effect of leptin on nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity in the ARC of male Wistar rats with cafeteria diet-induced obesity. Our results have shown that after intraperitoneal administration of leptin, the number of NADPH-d positive neurons in the ARC was significantly lower in obese rats compared with that observed in normal weight rats. Additionally, we have found that leptin-induced NADPH-d staining in ARC neurons and the adjacent ependyma was decreased in obese rats. The results presented here suggest that the ability of leptin to activate nitric oxide synthase in neurons within the ARC as well as tanycytes and ependymal cells of the third ventricle is reduced in rats made obese by a cafeteria diet. We speculate that impairment in leptin-induced NO production presents a potential mechanism, involved in the pathogenesis of obesity and obesity-related disease states.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St., 1431 Sofia, Bulgaria.
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St., 1431 Sofia, Bulgaria
| | - Krassimira Yakimova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St., 1431 Sofia, Bulgaria
| |
Collapse
|
4
|
Mansour Y, Altaher W, Kulesza RJ. Characterization of the human central nucleus of the inferior colliculus. Hear Res 2019; 377:234-246. [DOI: 10.1016/j.heares.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
|
5
|
Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci 2018; 39:876-887. [PMID: 30530507 DOI: 10.1523/jneurosci.1918-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter synthesized in the brain by neuronal nitric oxide synthase (nNOS). Using immunohistochemistry and confocal imaging in the inferior colliculus (IC, auditory midbrain) of the guinea pig (Cavia porcellus, male and female), we show that nNOS occurs in two distinct cellular distributions. We confirm that, in the cortices of the IC, a subset of neurons show cytoplasmic labeling for nNOS, whereas in the central nucleus (ICc), such neurons are not present. However, we demonstrate that all neurons in the ICc do in fact express nNOS in the form of discrete puncta found at the cell membrane. Our multi-labeling studies reveal that nNOS puncta form multiprotein complexes with NMDA receptors, soluble guanylyl cyclase (sGC), and PSD95. These complexes are found apposed to glutamatergic terminals, which is indicative of synaptic function. Interestingly, these glutamatergic terminals express both vesicular glutamate transporters 1 and 2 denoting a specific source of brainstem inputs. With in vivo electrophysiological recordings of multiunit activity in the ICc, we found that local application of NMDA enhances sound-driven activity in a concentration-dependent and reversible fashion. This response is abolished by blockade of nNOS or sGC, indicating that the NMDA effect is mediated solely via the NO and cGMP signaling pathway. This discovery of a ubiquitous, but highly localized, expression of nNOS throughout the ICc and demonstration of the dramatic influence of the NMDA activated NO pathway on sound-driven neuronal activity imply a key role for NO signaling in auditory processing.SIGNIFICANCE STATEMENT We show that neuronal nitric oxide synthase (nNOS), the enzyme that synthesizes nitric oxide (NO), occurs as puncta in apparently all neurons in the central nucleus of the inferior colliculus (ICc) in the auditory midbrain. Punctate nNOS appears at glutamatergic synapses in a complex with glutamate NMDA receptors (NMDA-Rs), soluble guanylyl cyclase (sGC, the NO receptor), and PSD95 (a protein that anchors receptors and enzymes at the postsynaptic density). We show that NMDA-R modulation of sound-driven activity in the ICc is solely mediated by activation of nNOS and sGC. The presence of nNOS throughout this sensory nucleus argues for a major role of NO in hearing. Furthermore, this punctate form of nNOS expression may exist and have gone unnoticed in other brain regions.
Collapse
|
6
|
Afarinesh MR, Behzadi G. The Effects of De-Whiskering and Congenital Hypothyroidism on The Development of Nitrergic Neurons in Rat Primary Somatosensory and Motor Cortices. CELL JOURNAL 2018; 20:157-167. [PMID: 29633592 PMCID: PMC5893286 DOI: 10.22074/cellj.2018.5112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
Abstract
Objective The aim of the present study is to investigate the effects of chronic whisker deprivation on possible alterations to
the development of nitrergic neurons in the whisker part of the somatosensory (wS1) and motor (wM1) cortices in offspring
with congenital hypothyroidism (CH).
Materials and Methods In the experimental study, CH was induced by adding propylthiouracil to the rats drinking water from
embryonic day 16 to postnatal day (PND) 60. In whisker-deprived (WD) pups, all the whiskers were trimmed from PND 1 to
60. Nitrergic interneurons in the wS1/M1 cortices were detected by NADPH-diaphorase histochemistry staining technique in
the control (Ctl), Ctl+WD, Hypo and Hypo+WD groups.
Results In both wS1 and wM1 cortices the number of nitrergic neurons was significantly reduced in the Hypo and
Hypo+WD groups compared to Ctl and Ctl+WD groups, respectively (P<0.05) while bilateral whisker deprivation had no
remarkable effect. The mean soma diameter size of NADPH-d labeled neurons in the Ctl+WD and Hypo+WD groups
was decreased compared to the Ctl and Hypo groups, respectively. A similar patterns of decreased NADPH-d labeled
neurons in the wS1/M1 cortices occur in the processes of nitrergic neurons in both congenital hypothyroidism and
whisker deprivation.
Conclusion Our results suggest that both congenital hypothyroidism and whisker deprivation may disturb normal
development of the wS1 and wM1 cortical circuits in which nitrergic neurons are involved.
Collapse
Affiliation(s)
- Mohammad Reza Afarinesh
- Isfahan Neuroscience Research Center (INRC), Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Gila Behzadi
- Functional Neuroanatomy Labaratory, Department of Physiology, Faculty of Medicine, Shahid Beheshti Medicine Science University, Tehran, Iran
| |
Collapse
|