1
|
Insulin-like growth factor I mitigates post-traumatic stress by inhibiting AMP-kinase in orexin neurons. Mol Psychiatry 2022; 27:2182-2196. [PMID: 35115701 PMCID: PMC9126821 DOI: 10.1038/s41380-022-01442-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Maladaptive coping behaviors are probably involved in post-traumatic stress disorders (PTSD), but underlying mechanisms are incompletely understood. We now report that mice lacking functional insulin-like growth factor I (IGF-I) receptors in orexin neurons of the lateral hypothalamus (Firoc mice) are unresponsive to the anxiolytic actions of IGF-I and develop PTSD-like behavior that is ameliorated by inhibition of orexin neurons. Conversely, systemic IGF-I treatment ameliorated PTSD-like behavior in a wild-type mouse model of PTSD (PTSD mice). Further, systemic IGF-I modified the GABA/Glutamate synaptic structure in orexin neurons of naïve wild-type mice by increasing the dephosphorylation of GABA(B) receptor subunit through inhibition of AMP-kinase (AMPK). Significantly, pharmacological inhibition of AMPK mimicked IGF-I, normalizing fear behavior in PTSD mice. Thus, we suggest that IGF-I enables coping behaviors by balancing E/I input onto orexin neurons in a context-dependent manner. These observations provide a novel therapeutic approach to PTSD through modulation of AMPK.
Collapse
|
2
|
Sleep dysregulation in binge eating disorder and "food addiction": the orexin (hypocretin) system as a potential neurobiological link. Neuropsychopharmacology 2021; 46:2051-2061. [PMID: 34145404 PMCID: PMC8505614 DOI: 10.1038/s41386-021-01052-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
It has been proposed that binge eating reflects a pathological compulsion driven by the "addictive" properties of foods. Proponents of this argument highlight the large degree of phenomenological and diagnostic overlap between binge eating disorder (BED) and substance use disorders (SUDs), including loss of control over how much is consumed and repeated unsuccessful attempts to abstain from consumption, as well as commonalities in brain structures involved in food and drug craving. To date, very little attention has been given to an additional behavioral symptom that BED shares with SUDs-sleep dysregulation-and the extent to which this may contribute to the pathophysiology of BED. Here, we review studies examining sleep outcomes in patients with BED, which collectively point to a heightened incidence of sleep abnormalities in BED. We identify the orexin (hypocretin) system as a potential neurobiological link between compulsive eating and sleep dysregulation in BED, and provide a comprehensive update on the evidence linking this system to these processes. Finally, drawing on evidence from the SUD literature indicating that the orexin system exhibits significant plasticity in response to drugs of abuse, we hypothesize that chronic palatable food consumption likewise increases orexin system activity, resulting in dysregulated sleep/wake patterns. Poor sleep, in turn, is predicted to exacerbate binge eating, contributing to a cycle of uncontrolled food consumption. By extension, we suggest that pharmacotherapies normalizing orexin signaling, which are currently being trialed for the treatment of SUDs, might also have utility in the clinical management of BED.
Collapse
|
3
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
4
|
Henningsen JB, Soylu-Kucharz R, Björkqvist M, Petersén Å. Effects of excitotoxicity in the hypothalamus in transgenic mouse models of Huntington disease. Heliyon 2021; 7:e07808. [PMID: 34458633 PMCID: PMC8379469 DOI: 10.1016/j.heliyon.2021.e07808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/21/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative movement disorder caused by an expanded CAG repeat in the huntingtin gene (HTT). The mutant huntingtin protein is ubiquitously expressed, but only certain brain regions are affected. The hypothalamus has emerged as an important area of pathology with selective loss of neurons expressing the neuropeptides orexin (hypocretin), oxytocin and vasopressin in human postmortem HD tissue. Hypothalamic changes in HD may have implications for early disease manifestations affecting the regulation of sleep, emotions and metabolism. The underlying mechanisms of selective vulnerability of certain neurons in HD are not fully understood, but excitotoxicity has been proposed to play a role. Further understanding of mechanisms rendering neurons sensitive to mutant huntingtin may reveal novel targets for therapeutic interventions. In the present study, we wanted to examine whether transgenic HD mice display altered sensitivity to excitotoxicity in the hypothalamus. We first assessed effects of hypothalamic injections of the excitotoxin quinolinic acid (QA) into wild-type (WT) mice. We show that neuronal populations expressing melanin-concentrating hormone (MCH) and cocaine and amphetamine-regulated transcript (CART) display a dose-dependent sensitivity to QA. In contrast, neuronal populations expressing orexin, oxytocin, vasopressin as well as tyrosine hydroxylase in the A13 area are resistant to QA-induced toxicity. We demonstrate that the R6/2 transgenic mouse model expressing a short fragment of mutant HTT displays hypothalamic neuropathology with discrete loss of the neuronal populations expressing orexin, MCH, CART, and orexin at 12 weeks of age. The BACHD mouse model expressing full-length mutant HTT does not display any hypothalamic neuropathology at 2 months of age. There was no effect of hypothalamic injections of QA on the neuronal populations expressing orexin, MCH, CART or oxytocin in neither HD mouse model. In conclusion, we find no support for a role of excitotoxicity in the loss of hypothalamic neuronal populations in HD.
Collapse
Affiliation(s)
- Jo B. Henningsen
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200, Copenhagen, Denmark
- Corresponding author.
| | - Rana Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| |
Collapse
|
5
|
De Risi M, Tufano M, Alvino FG, Ferraro MG, Torromino G, Gigante Y, Monfregola J, Marrocco E, Pulcrano S, Tunisi L, Lubrano C, Papy-Garcia D, Tuchman Y, Salleo A, Santoro F, Bellenchi GC, Cristino L, Ballabio A, Fraldi A, De Leonibus E. Altered heparan sulfate metabolism during development triggers dopamine-dependent autistic-behaviours in models of lysosomal storage disorders. Nat Commun 2021; 12:3495. [PMID: 34108486 PMCID: PMC8190083 DOI: 10.1038/s41467-021-23903-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.
Collapse
Affiliation(s)
- Maria De Risi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy
| | - Michele Tufano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | | | - Giulia Torromino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy
| | - Ylenia Gigante
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Lea Tunisi
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Naples, Italy
| | - Claudia Lubrano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Yaakov Tuchman
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Luigia Cristino
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Alessandro Fraldi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
6
|
Bridi MCD, Zong FJ, Min X, Luo N, Tran T, Qiu J, Severin D, Zhang XT, Wang G, Zhu ZJ, He KW, Kirkwood A. Daily Oscillation of the Excitation-Inhibition Balance in Visual Cortical Circuits. Neuron 2019; 105:621-629.e4. [PMID: 31831331 DOI: 10.1016/j.neuron.2019.11.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/16/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
A balance between synaptic excitation and inhibition (E/I balance) maintained within a narrow window is widely regarded to be crucial for cortical processing. In line with this idea, the E/I balance is reportedly comparable across neighboring neurons, behavioral states, and developmental stages and altered in many neurological disorders. Motivated by these ideas, we examined whether synaptic inhibition changes over the 24-h day to compensate for the well-documented sleep-dependent changes in synaptic excitation. We found that, in pyramidal cells of visual and prefrontal cortices and hippocampal CA1, synaptic inhibition also changes over the 24-h light/dark cycle but, surprisingly, in the opposite direction of synaptic excitation. Inhibition is upregulated in the visual cortex during the light phase in a sleep-dependent manner. In the visual cortex, these changes in the E/I balance occurred in feedback, but not feedforward, circuits. These observations open new and interesting questions on the function and regulation of the E/I balance.
Collapse
Affiliation(s)
- Michelle C D Bridi
- Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fang-Jiao Zong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nancy Luo
- Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Trinh Tran
- Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel Severin
- Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xue-Ting Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanglin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai-Wen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Alfredo Kirkwood
- Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
7
|
Abstract
Feeding, which is essential for all animals, is regulated by homeostatic mechanisms. In addition, food consumption is temporally coordinated by the brain over the circadian (~24 h) cycle. A network of circadian clocks set daily windows during which food consumption can occur. These daily windows mostly overlap with the active phase. Brain clocks that ensure the circadian control of food intake include a master light-entrainable clock in the suprachiasmatic nuclei of the hypothalamus and secondary clocks in hypothalamic and brainstem regions. Metabolic hormones, circulating nutrients and visceral neural inputs transmit rhythmic cues that permit (via close and reciprocal molecular interactions that link metabolic processes and circadian clockwork) brain and peripheral organs to be synchronized to feeding time. As a consequence of these complex interactions, growing evidence shows that chronodisruption and mistimed eating have deleterious effects on metabolic health. Conversely, eating, even eating an unbalanced diet, during the normal active phase reduces metabolic disturbances. Therefore, in addition to energy intake and dietary composition, appropriately timed meal patterns are critical to prevent circadian desynchronization and limit metabolic risks. This Review provides insight into the dual modulation of food intake by homeostatic and circadian processes, describes the mechanisms regulating feeding time and highlights the beneficial effects of correctly timed eating, as opposed to the negative metabolic consequences of mistimed eating.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian clocks and metabolism team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
8
|
Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2018; 1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Orexin-expressing neurons are located exclusively in the lateral hypothalamic and perifornical areas and exhibit complex connectivity. The intricate wiring pattern is evident from a diverse function for orexin neurons in regulating many physiological processes and behaviors including sleep, metabolism, circadian cycles, anxiety, and reward. Nevertheless, the precise synaptic and circuitry-level mechanisms mediating these processes remain enigmatic, partially due to the wide spread connectivity of the orexin system, complex neurochemistry of orexin neurons, and previous lack of suitable tools to address its complexity. Here we summarize recent advances, focusing on synaptic regulatory mechanisms in the orexin neurocircuitry, including both the synaptic inputs to orexin neurons as well as their downstream targets in the brain. A clear and detailed elucidation of these mechanisms will likely provide novel insight into how dysfunction in orexin-mediated signaling leads to human disease and may ultimately be treated with more precise strategies.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Vincent R Mirabella
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018; 9:1061. [PMID: 30319410 PMCID: PMC6167434 DOI: 10.3389/fphar.2018.01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the heterogeneous hub represented by the lateral hypothalamus, neurons containing the orexin/hypocretin peptides play a key role in vigilance state transitions and wakefulness stability, energy homeostasis, and other functions relevant for motivated behaviors. Orexin neurons, which project widely to the neuraxis, are innervated by multiple extra- and intra-hypothalamic sources. A key property of the adaptive capacity of orexin neurons is represented by daily variations of activity, which is highest in the period of the animal’s activity and wakefulness. These sets of data are here reviewed. They concern the discharge profile during the sleep/wake cycle, spontaneous Fos induction, peptide synthesis and release reflected by immunostaining intensity and peptide levels in the cerebrospinal fluid as well as postsynaptic effects. At the synaptic level, adaptive capacity of orexin neurons subserved by remodeling of excitatory and inhibitory inputs has been shown in response to changes in the nutritional status and prolonged wakefulness. The present review wishes to highlight that synaptic plasticity in the wiring of orexin neurons also occurs in unperturbed conditions and could account for diurnal variations of orexin neuron activity. Data in zebrafish larvae have shown rhythmic changes in the density of inhibitory innervation of orexin dendrites in relation to vigilance states. Recent findings in mice have indicated a diurnal reorganization of the excitatory/inhibitory balance in the perisomatic innervation of orexin neurons. Taken together these sets of data point to “chronoconnectivity,” i.e., a synaptic rearrangement of inputs to orexin neurons over the course of the day in relation to sleep and wake states. This opens questions on the underlying circadian and homeostatic regulation and on the involved players at synaptic level, which could implicate dual transmitters, cytoskeletal rearrangements, hormonal regulation, as well as surrounding glial cells and extracellular matrix. Furthermore, the question arises of a “chronoconnectivity” in the wiring of other neuronal cell groups of the sleep-wake-regulatory network, many of which are characterized by variations of their firing rate during vigilance states.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona Unit, Verona, Italy
| |
Collapse
|
10
|
Clarke RE, Verdejo-Garcia A, Andrews ZB. The role of corticostriatal-hypothalamic neural circuits in feeding behaviour: implications for obesity. J Neurochem 2018; 147:715-729. [PMID: 29704424 DOI: 10.1111/jnc.14455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/02/2023]
Abstract
Emerging evidence from human imaging studies suggests that obese individuals have altered connectivity between the hypothalamus, the key brain region controlling energy homeostasis, and cortical regions involved in decision-making and reward processing. Historically, animal studies have demonstrated that the lateral hypothalamus is the key hypothalamic region involved in feeding and reward. The lateral hypothalamus is a heterogeneous structure comprised of several distinct types of neurons which are scattered throughout. In addition, the lateral hypothalamus receives inputs from a number of cortical brain regions suggesting that it is uniquely positioned to be a key integrator of cortical information and metabolic feedback. In this review, we summarize how human brain imaging can inform detailed animal studies to investigate neural pathways connecting cortical regions and the hypothalamus. Here, we discuss key cortical brain regions that are reciprocally connected to the lateral hypothalamus and are implicated in decision-making processes surrounding food.
Collapse
Affiliation(s)
- Rachel E Clarke
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Physiology, Monash University, Clayton, Vic., Australia
| | - Antonio Verdejo-Garcia
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Vic., Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Physiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|