1
|
Horisawa S, Saito R, Qian B, Hori H, Kim K, Murakami M, Kakegawa T, Abe K, Fukui A, Kohara K, Iijima M, Kawamata T, Taira T. Focused Ultrasound Pallidothalamic Tractotomy in Cervical Dystonia: A Pilot Study. Mov Disord 2024. [PMID: 39487633 DOI: 10.1002/mds.30030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND No clinical trials have been reported on the use of focused ultrasound (FUS) for treating cervical dystonia. OBJECTIVE We aimed to confirm the efficacy and safety of FUS pallidothalamic tractotomy for cervical dystonia. METHODS This was a prospective, open-label, non-controlled pilot study. The primary outcome was defined as a change in the score for the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) from baseline to 6 months after FUS pallidothalamic tractotomy. The secondary outcomes included a change in the neck scale for the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), mood scales including Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Apathy Evaluating Scale (AES), and adverse events. Patients were assessed for TWSTRS, BFMDRS, and adverse events at baseline, 1 week, 1 month, 3 months, and 6 months after treatment. BDI, BAI, and AES were assessed at baseline and 6 months after treatment. RESULTS Ten patients were enrolled in this study. The mean age of onset of dystonia was 51.6 ± 10.2 years. The TWSTRS at 6 months (29.9 ± 16.0, range: 3-55) was significantly improved by 43.4% (P < 0.001) from baseline. The BFMDRS-Neck scales at 6 months (4.2 ± 2.8) were significantly improved by 38.2% (P < 0.001) from baseline. The BDI, BAI, and AES at 6 months were improved by 23.2%, 10.9%, and 30.3%, respectively from baseline. Reduced hand dexterity in three patients and weight gain in two patients were confirmed at the last evaluation. CONCLUSION This study suggests that FUS pallidothalamic tractotomy may be an effective treatment option for patients with cervical dystonia. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Ryo Saito
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Bohui Qian
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroki Hori
- Department of FUS Center, Moriyama Neurological Center Hospital, Tokyo, Japan
| | - Kilsoo Kim
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Masato Murakami
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Toru Kakegawa
- Department of Neurosurgery, Kumagaya General Hospital, Saitama, Japan
| | - Keiichi Abe
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Center Hospital of the National Center of the Global Health and Medicine, Tokyo, Japan
| | - Kotaro Kohara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Mutsumi Iijima
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Butenko K, Neudorfer C, Dembek TA, Hollunder B, Meyer GM, Li N, Oxenford S, Bahners BH, Al-Fatly B, Lofredi R, Gordon EM, Dosenbach NUF, Ganos C, Hallett M, Starr PA, Ostrem JL, Wu Y, Zhang C, Fox MD, Horn A. Engaging dystonia networks with subthalamic stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307896. [PMID: 38903109 PMCID: PMC11188120 DOI: 10.1101/2024.05.24.24307896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Deep brain stimulation is a viable and efficacious treatment option for dystonia. While the internal pallidum serves as the primary target, more recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its complex surroundings have not been studied in depth. Indeed, multiple historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the exact same target. Therefore, a thorough investigation of the neural substrates underlying effects on dystonia symptoms is warranted. Here, we analyze a multi-center cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvement of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions was associated with improvement in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvement in limb dystonia and blepharospasm. This dissociation was also evident for structural connectivity, where the cerebellothalamic, corticospinal and pallidosubthalamic tracts were associated with improvement of cervical dystonia, while hyperdirect and subthalamopallidal pathways were associated with alleviation of limb dystonia and blepharospasm. Importantly, a single well-placed electrode may reach the three optimal target sites. On the level of functional networks, improvement of limb dystonia was correlated with connectivity to the corresponding somatotopic regions in primary motor cortex, while alleviation of cervical dystonia was correlated with connectivity to the recently described 'action-mode' network that involves supplementary motor and premotor cortex. Our findings suggest that different types of dystonia symptoms are modulated via distinct networks. Namely, appendicular dystonia and blepharospasm are improved with modulation of the basal ganglia, and, in particular, the subthalamic circuitry, including projections from the primary motor cortex. In contrast, cervical dystonia was more responsive when engaging the cerebello-thalamo-cortical circuit, including direct stimulation of ventral thalamic nuclei. These findings may inform DBS targeting and image-based programming strategies for patient-specific treatment of dystonia.
Collapse
Affiliation(s)
- Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bahne H Bahners
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Bassam Al-Fatly
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nico U F Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, CA, USA
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - ChenCheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiaotong University Schools of Medicine, Shanghai, China
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Neudorfer C, Kultas-Ilinsky K, Ilinsky I, Paschen S, Helmers AK, Cosgrove GR, Richardson RM, Horn A, Deuschl G. The role of the motor thalamus in deep brain stimulation for essential tremor. Neurotherapeutics 2024; 21:e00313. [PMID: 38195310 PMCID: PMC11103222 DOI: 10.1016/j.neurot.2023.e00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
The advent of next-generation technology has significantly advanced the implementation and delivery of Deep Brain Stimulation (DBS) for Essential Tremor (ET), yet controversies persist regarding optimal targets and networks responsible for tremor genesis and suppression. This review consolidates key insights from anatomy, neurology, electrophysiology, and radiology to summarize the current state-of-the-art in DBS for ET. We explore the role of the thalamus in motor function and describe how differences in parcellations and nomenclature have shaped our understanding of the neuroanatomical substrates associated with optimal outcomes. Subsequently, we discuss how seminal studies have propagated the ventral intermediate nucleus (Vim)-centric view of DBS effects and shaped the ongoing debate over thalamic DBS versus stimulation in the posterior subthalamic area (PSA) in ET. We then describe probabilistic- and network-mapping studies instrumental in identifying the local and network substrates subserving tremor control, which suggest that the PSA is the optimal DBS target for tremor suppression in ET. Taken together, DBS offers promising outcomes for ET, with the PSA emerging as a better target for suppression of tremor symptoms. While advanced imaging techniques have substantially improved the identification of anatomical targets within this region, uncertainties persist regarding the distinct anatomical substrates involved in optimal tremor control. Inconsistent subdivisions and nomenclature of motor areas and other subdivisions in the thalamus further obfuscate the interpretation of stimulation results. While loss of benefit and habituation to DBS remain challenging in some patients, refined DBS techniques and closed-loop paradigms may eventually overcome these limitations.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | - Igor Ilinsky
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA
| | - Steffen Paschen
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | | | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
4
|
Skovbjerg G, Fritzen AM, Svendsen CSA, Perens J, Skytte JL, Lund C, Lund J, Madsen MR, Roostalu U, Hecksher-Sørensen J, Clemmensen C. Atlas of exercise-induced brain activation in mice. Mol Metab 2024; 82:101907. [PMID: 38428817 PMCID: PMC10943479 DOI: 10.1016/j.molmet.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES There is significant interest in uncovering the mechanisms through which exercise enhances cognition, memory, and mood, and lowers the risk of neurodegenerative diseases. In this study, we utilize forced treadmill running and distance-matched voluntary wheel running, coupled with light sheet 3D brain imaging and c-Fos immunohistochemistry, to generate a comprehensive atlas of exercise-induced brain activation in mice. METHODS To investigate the effects of exercise on brain activity, we compared whole-brain activation profiles of mice subjected to treadmill running with mice subjected to distance-matched wheel running. Male mice were assigned to one of four groups: a) an acute bout of voluntary wheel running, b) confinement to a cage with a locked running wheel, c) forced treadmill running, or d) placement on an inactive treadmill. Immediately following each exercise or control intervention, blood samples were collected for plasma analysis, and brains were collected for whole-brain c-Fos quantification. RESULTS Our dataset reveals 255 brain regions activated by acute exercise in mice, the majority of which have not previously been linked to exercise. We find a broad response of 140 regulated brain regions that are shared between voluntary wheel running and treadmill running, while 32 brain regions are uniquely regulated by wheel running and 83 brain regions uniquely regulated by treadmill running. In contrast to voluntary wheel running, forced treadmill running triggers activity in brain regions associated with stress, fear, and pain. CONCLUSIONS Our findings demonstrate a significant overlap in neuronal activation signatures between voluntary wheel running and distance-matched forced treadmill running. However, our analysis also reveals notable differences and subtle nuances between these two widely used paradigms. The comprehensive dataset is accessible online at www.neuropedia.dk, with the aim of enabling future research directed towards unraveling the neurobiological response to exercise.
Collapse
Affiliation(s)
- Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Gubra, Hørsholm, Denmark
| | - Andreas Mæchel Fritzen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Sashi Aier Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Saleem KS, Avram AV, Yen CCC, Magdoom KN, Schram V, Basser PJ. Multimodal anatomical mapping of subcortical regions in marmoset monkeys using high-resolution MRI and matched histology with multiple stains. Neuroimage 2023; 281:120311. [PMID: 37634884 DOI: 10.1016/j.neuroimage.2023.120311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States.
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Cecil Chern-Chyi Yen
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Kulam Najmudeen Magdoom
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Vincent Schram
- Microscopy and Imaging Core (MIC), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Jamora RDG, Khu KJO, Sy MCC, Pascual JSG, Legaspi GD, Aguilar JA. Transcranial magnetic resonance-guided focused ultrasound pallidothalamic tractotomy for patients with X-linked dystonia-parkinsonism: a study protocol. BMC Neurol 2023; 23:306. [PMID: 37596524 PMCID: PMC10436542 DOI: 10.1186/s12883-023-03344-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
Transcranial magnetic resonance-guided focused ultrasound (MRgFUS) is a noninvasive method for controlling tremor and has recently been used in patients with X-linked dystonia-parkinsonism (XDP). This study aims to determine the improvement in dystonia and parkinsonism in patients with XDP after MRgFUS pallidothalamic tractotomy. This prospective study will be conducted at the Philippine General Hospital, University of the Philippines Manila. The primary outcome measure is the change in the pre- and post-treatment XDP-Movement Disorder Society of the Philippines Scale scores. In addition, demographic and clinical data will be collected, including the Burke-Fahn-Marsden Dystonia Rating Scale, Part III of the Movement Disorder Society-Unified Parkinson's disease Rating Scale score, XDP clinical and functional stage, the five-level EuroQol five-dimensional questionnaire, Montreal Cognitive Assessment scores, MRgFUS treatment parameters, and adverse events. Patients will be assessed within 24 hours of treatment, then at 2 weeks, 3 months, 6 months, 9 months, and 12 months post-treatment. This protocol was approved by the University of the Philippines Manila Research Ethics Board (UPMREB 2022-0271-01). Data collection began in January 2023. This protocol has been registered with ClinicalTrials.gov: Trial Registration number: NCT05592028.
Collapse
Affiliation(s)
- Roland Dominic G Jamora
- Division of Adult Neurology, Department of Neurosciences, College of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.
| | - Kathleen Joy O Khu
- Division of Neurosurgery, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Marie Charmaine C Sy
- Division of Adult Neurology, Department of Neurosciences, College of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Juan Silvestre G Pascual
- Division of Neurosurgery, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Gerardo D Legaspi
- Division of Neurosurgery, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Jose A Aguilar
- Division of Neurosurgery, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
7
|
Saleem KS, Avram AV, Yen CCC, Magdoom KN, Schram V, Basser PJ. Multimodal anatomical mapping of subcortical regions in Marmoset monkeys using high-resolution MRI and matched histology with multiple stains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534950. [PMID: 37034636 PMCID: PMC10081239 DOI: 10.1101/2023.03.30.534950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.
Collapse
|
8
|
Parras O, Domínguez P, Tomás-Biosca A, Guridi J. The role of tractography in the localization of the Vim nucleus of the thalamus and the dentato-rubro-thalamic tract for the treatment of tremor. Neurologia 2022; 37:691-699. [PMID: 31917004 DOI: 10.1016/j.nrl.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/08/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION The ventralis intermedius (Vim) nucleus of the thalamus is the usual surgical target for tremor. However, locating the structure may be difficult as it is not visible with conventional imaging methods; therefore, surgical procedures typically use indirect calculations correlated with clinical and intraoperative neurophysiological findings. Current ablative surgical procedures such as Gamma-Knife thalamotomy and magnetic resonance-guided focused ultrasound require new alternatives for locating the Vim nucleus. In this review, we compare Vim nucleus location for the treatment of tremor using stereotactic procedures versus direct location by means of tractography. DISCUSSION The most widely used cytoarchitectonic definition of the Vim nucleus is that established by Schaltenbrand and Wahren. There is a well-defined limit between the motor and the sensory thalamus; Vim neurons respond to passive joint movements and are synchronous with peripheral tremor. The most frequently used stereotactic coordinates for the Vim nucleus are based on indirect calculations referencing the mid-commissural line and third ventricle, which vary between patients. Recent studies suggest that the dentato-rubro-thalamic tract is an optimal target for controlling tremor, citing a clinical improvement; however, this has not yet been corroborated. CONCLUSIONS Visualisation of the cerebello-rubro-thalamic pathway by tractography may help in locating the Vim nucleus. The technique has several limitations, and the method requires standardisation to obtain more precise results. The utility of direct targeting by tractography over indirect targeting for patients with tremor remains to be demonstrated in the long-term.
Collapse
Affiliation(s)
- O Parras
- Servicio de Neurocirugía, Clínica Universidad de Navarra, Pamplona, España
| | - P Domínguez
- Servicio de Neurorradiología, Clínica Universidad de Navarra, Pamplona, España
| | - A Tomás-Biosca
- Servicio de Neurocirugía, Clínica Universidad de Navarra, Pamplona, España
| | - J Guridi
- Servicio de Neurocirugía, Clínica Universidad de Navarra, Pamplona, España.
| |
Collapse
|
9
|
In vivo probabilistic atlas of white matter tracts of the human subthalamic area combining track density imaging and optimized diffusion tractography. Brain Struct Funct 2022; 227:2647-2665. [PMID: 36114861 PMCID: PMC9618529 DOI: 10.1007/s00429-022-02561-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The human subthalamic area is a region of high anatomical complexity, tightly packed with tiny fiber bundles. Some of them, including the pallidothalamic, cerebello-thalamic, and mammillothalamic tracts, are relevant targets in functional neurosurgery for various brain diseases. Diffusion-weighted imaging-based tractography has been suggested as a useful tool to map white matter pathways in the human brain in vivo and non-invasively, though the reconstruction of these specific fiber bundles is challenging due to their small dimensions and complex anatomy. To the best of our knowledge, a population-based, in vivo probabilistic atlas of subthalamic white matter tracts is still missing. In the present work, we devised an optimized tractography protocol for reproducible reconstruction of the tracts of subthalamic area in a large data sample from the Human Connectome Project repository. First, we leveraged the super-resolution properties and high anatomical detail provided by short tracks track-density imaging (stTDI) to identify the white matter bundles of the subthalamic area on a group-level template. Tracts identification on the stTDI template was also aided by visualization of histological sections of human specimens. Then, we employed this anatomical information to drive tractography at the subject-level, optimizing tracking parameters to maximize between-subject and within-subject similarities as well as anatomical accuracy. Finally, we gathered subject level tracts reconstructed with optimized tractography into a large-scale, normative population atlas. We suggest that this atlas could be useful in both clinical anatomy and functional neurosurgery settings, to improve our understanding of the complex morphology of this important brain region.
Collapse
|
10
|
Butenko K, Li N, Neudorfer C, Roediger J, Horn A, Wenzel GR, Eldebakey H, Kühn AA, Reich MM, Volkmann J, Rienen UV. Linking profiles of pathway activation with clinical motor improvements - A retrospective computational study. Neuroimage Clin 2022; 36:103185. [PMID: 36099807 PMCID: PMC9474565 DOI: 10.1016/j.nicl.2022.103185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an established therapy for patients with Parkinson's disease. In silico computer models for DBS hold the potential to inform a selection of stimulation parameters. In recent years, the focus has shifted towards DBS-induced firing in myelinated axons, deemed particularly relevant for the external modulation of neural activity. OBJECTIVE The aim of this project was to investigate correlations between patient-specific pathway activation profiles and clinical motor improvement. METHODS We used the concept of pathway activation modeling, which incorporates advanced volume conductor models and anatomically authentic fiber trajectories to estimate DBS-induced action potential initiation in anatomically plausible pathways that traverse in close proximity to targeted nuclei. We applied the method on two retrospective datasets of DBS patients, whose clinical improvement had been evaluated according to the motor part of the Unified Parkinson's Disease Rating Scale. Based on differences in outcome and activation levels for intrapatient DBS protocols in a training cohort, we derived a pathway activation profile that theoretically induces a complete alleviation of symptoms described by UPDRS-III. The profile was further enhanced by analyzing the importance of matching activation levels for individual pathways. RESULTS The obtained profile emphasized the importance of activation in pathways descending from the motor-relevant cortical regions as well as the pallidothalamic pathways. The degree of similarity of patient-specific profiles to the optimal profile significantly correlated with clinical motor improvement in a test cohort. CONCLUSION Pathway activation modeling has a translational utility in the context of motor symptom alleviation in Parkinson's patients treated with DBS.
Collapse
Affiliation(s)
- Konstantin Butenko
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany,Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Corresponding author.
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Roediger
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Einstein Center for Neurosciences, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor R. Wenzel
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hazem Eldebakey
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Andrea A. Kühn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany,Department Life, Light & Matter, University of Rostock, Rostock, Germany,Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany,Corresponding author.
| |
Collapse
|
11
|
Hirt L, Thies KA, Ojemann S, Abosch A, Darwin ML, Thompson JA, Kern DS. Case series investigating the differences between stimulation of rostral zona incerta region in isolation or in conjunction with the subthalamic nucleus on acute clinical effects for Parkinson’s disease. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Cunha de Azevedo AR, Contreras López WO, Navarro PA, Gouveia FV, Germann J, Elias GJB, Ruiz Martinez RC, Lopes Alho EJ, Fonoff ET. Unilateral Campotomy of Forel for Acquired Hemidystonia: An Open-Label Clinical Trial. Neurosurgery 2022; 91:139-145. [PMID: 35550448 DOI: 10.1227/neu.0000000000001963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hemidystonia (HD) is characterized by unilateral involuntary torsion movements and fixed postures of the limbs and face. It often develops after deleterious neuroplastic changes secondary to injuries to the brain. This condition usually responds poorly to medical treatment, and deep brain stimulation often yields unsatisfactory results. We propose this study based on encouraging results from case reports of patients with HD treated by ablative procedures in the subthalamic region. OBJECTIVE To compare the efficacy of stereotactic-guided radiofrequency lesioning of the subthalamic area vs available medical treatment in patients suffering from acquired HD. METHODS This is an open-label study in patients with secondary HD allocated according to their treatment choice, either surgical or medical treatment; both groups were followed for one year. Patients assigned in the surgical group underwent unilateral campotomy of Forel. The efficacy was assessed using the Unified Dystonia Rating Scale, Fahn-Marsden Dystonia Scale, Arm Dystonia Disability Scale, and SF-36 questionnaire scores. RESULTS Patients in the surgical group experienced significant improvement in the Unified Dystonia Rating Scale, Fahn-Marsden Dystonia Scale, and Arm Dystonia Disability Scale (39%, 35%, and 15%, respectively) 1 year after the surgery, with positive reflex in quality-of-life measures, such as bodily pain and role-emotional process. Patients kept on medical treatment did not experience significant changes during the follow-up. No infections were recorded, and no neurological adverse events were associated with either intervention. CONCLUSION The unilateral stereotaxy-guided ablation of Forel H1 and H2 fields significantly improved in patients with HD compared with optimized clinical treatment.
Collapse
Affiliation(s)
| | - William Omar Contreras López
- Department of Functional Neurosurgery, NEMOD Research Group, Universidad Autónoma de Bucaramanga, Division of Functional Neurosurgery, FOSCAL Hospital, Bucaramanga, Colombia
| | | | - Flavia Venetucci Gouveia
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada
| | | | | | - Raquel Chacon Ruiz Martinez
- LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
- Division of Neuroscience, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | | | | |
Collapse
|
13
|
Neudorfer C, Kroneberg D, Al-Fatly B, Goede L, Kübler D, Faust K, van Rienen U, Tietze A, Picht T, Herrington TM, Middlebrooks EH, Kühn A, Schneider GH, Horn A. Personalizing Deep Brain Stimulation Using Advanced Imaging Sequences. Ann Neurol 2022; 91:613-628. [PMID: 35165921 DOI: 10.1002/ana.26326] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE With a growing appreciation for interindividual anatomical variability and patient-specific brain connectivity, advanced imaging sequences offer the opportunity to directly visualize anatomical targets for deep brain stimulation (DBS). The lack of quantitative evidence demonstrating their clinical utility, however, has hindered their broad implementation in clinical practice. METHODS Using fast gray matter acquisition T1 inversion recovery (FGATIR) sequences, the present study identified a thalamic hypointensity that holds promise as a visual marker in DBS. To validate the clinical utility of the identified hypointensity, we retrospectively analyzed 65 patients (26 female, mean age = 69.1 ± 12.7 years) who underwent DBS in the treatment of essential tremor. We characterized its neuroanatomical substrates and evaluated the hypointensity's ability to predict clinical outcome using stimulation volume modeling and voxelwise mapping. Finally, we determined whether the hypointensity marker could predict symptom improvement on a patient-specific level. RESULTS Anatomical characterization suggested that the identified hypointensity constituted the terminal part of the dentatorubrothalamic tract. Overlap between DBS stimulation volumes and the hypointensity in standard space significantly correlated with tremor improvement (R2 = 0.16, p = 0.017) and distance to hotspots previously reported in the literature (R2 = 0.49, p = 7.9e-4). In contrast, the amount of variance explained by other anatomical atlas structures was reduced. When accounting for interindividual neuroanatomical variability, the predictive power of the hypointensity increased further (R2 = 0.37, p = 0.002). INTERPRETATION Our findings introduce and validate a novel imaging-based marker attainable from FGATIR sequences that has the potential to personalize and inform targeting and programming in DBS for essential tremor. ANN NEUROL 2022;91:613-628.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany.,MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR), MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Kroneberg
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Lukas Goede
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Dorothee Kübler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department Life, Light, and Matter, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL
| | - Andrea Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin, Berlin, Germany.,MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR), MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proc Natl Acad Sci U S A 2022; 119:e2114985119. [PMID: 35357970 PMCID: PMC9168456 DOI: 10.1073/pnas.2114985119] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied deep brain stimulation effects in two types of dystonia and conclude that different specific connections between the pallidum and thalamus are responsible for optimal treatment effects. Since alternative treatment options for dystonia beyond deep brain stimulation are scarce, our results will be crucial to maximize treatment outcome in this population of patients. Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.
Collapse
|
15
|
Lanska DJ. Changing graphic representations of the brain from the late middle ages to the present. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2022; 31:109-114. [PMID: 35584549 DOI: 10.1080/0964704x.2022.2067718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Douglas J Lanska
- Institute of Social Science, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia; University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Horisawa S, Kohara K, Nonaka T, Fukui A, Mochizuki T, Iijima M, Kawamata T, Taira T. Unilateral pallidothalamic tractotomy at Forel's field H1 for cervical dystonia. Ann Clin Transl Neurol 2022; 9:478-487. [PMID: 35261204 PMCID: PMC8994978 DOI: 10.1002/acn3.51532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
Abstract
Background Neurosurgical ablation of Forel's field H1 for cervical dystonia, which is currently abandoned, was formerly used in the 1960s–1970s. Regardless of the lack of neuroimaging modalities and objective evaluation scales, the reported efficacy was significant. Although recent studies have reappraised the ablation of the pallidothalamic tract at Forel's field H1 for Parkinson's disease, the efficacy for cervical dystonia has not been investigated well. Methods Data of 35 patients with cervical dystonia who underwent unilateral pallidothalamic tractotomy at Forel's field H1 were retrospectively analyzed. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scores, the neck score of the Burke–Fahn–Marsden Dystonia Rating Scale (BFMDRS), and adverse events were evaluated preoperatively and at the last available follow‐up period. Results The mean clinical follow‐up period was 13.9 ± 6.5 months. The mean TWSTRS total scores were 34.3 ± 14.0 preoperatively and 18.4 ± 16.5 at the last available follow‐up period (46.4% improvement, p < 0.0001). The BFMDRS neck score also improved significantly from 6.2 ± 2.9 preoperatively to 2.8 ± 2.8 at the last available follow‐up period (55.0% improvement on the neck score, p < 0.0001). Reduced hand dexterity in seven patients, hypophonia in five patients, dysarthria in four patients, and executive dysfunction in one patient were confirmed as adverse events at the last available follow‐up evaluation. One patient had postoperative hemorrhage. Conclusion The current study confirmed significant improvement in TWSTRS total scores and BFMDRS neck scores at the 13.9‐month follow‐up after unilateral pallidothalamic tractotomy. The pallidothalamic tract in Forel's field H1 is expected to be an alternative treatment target for cervical dystonia.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kotaro Kohara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taku Nonaka
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuki Mochizuki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Mutsumi Iijima
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
17
|
Horisawa S, Kohara K, Murakami M, Fukui A, Kawamata T, Taira T. Deep Brain Stimulation of the Forel's Field for Dystonia: Preliminary Results. Front Hum Neurosci 2021; 15:768057. [PMID: 34912201 PMCID: PMC8667223 DOI: 10.3389/fnhum.2021.768057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022] Open
Abstract
The field of Forel (FF) is a subthalamic area through which the pallidothalamic tracts originating from the globus pallidus internus (GPi) traverse. The FF was used as a stereotactic surgical target (ablation and stimulation) to treat cervical dystonia in the 1960s and 1970s. Although recent studies have reappraised the ablation and stimulation of the pallidothalamic tract at FF for Parkinson’s disease, the efficacy of deep brain stimulation of FF (FF-DBS) for dystonia has not been well investigated. To confirm the efficacy and stimulation-induced adverse effects of FF-DBS, three consecutive patients with medically refractory dystonia who underwent FF-DBS were analyzed (tongue protrusion dystonia, cranio-cervico-axial dystonia, and hemidystonia). Compared to the Burke-Fahn-Marsden Dystonia Rating Scale-Movement Scale scores before surgery (23.3 ± 12.7), improvements were observed at 1 week (8.3 ± 5.9), 3 months (5.3 ± 5.9), and 6 months (4.7 ± 4.7, p = 0.0282) after surgery. Two patients had stimulation-induced complications, including bradykinesia and postural instability, all well controlled by stimulation adjustments.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Kotaro Kohara
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Masato Murakami
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
18
|
Saleem KS, Avram AV, Glen D, Yen CCC, Ye FQ, Komlosh M, Basser PJ. High-resolution mapping and digital atlas of subcortical regions in the macaque monkey based on matched MAP-MRI and histology. Neuroimage 2021; 245:118759. [PMID: 34838750 PMCID: PMC8815330 DOI: 10.1016/j.neuroimage.2021.118759] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T1-weighted images. We also derived subcortical template "SC21" from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States.
| | - Alexandru V Avram
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health (NIMH), United States
| | | | - Frank Q Ye
- Neurophysiology Imaging Facility, NIMH and NINDS, NIH, , United States
| | - Michal Komlosh
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Peter J Basser
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| |
Collapse
|
19
|
Kwon DH, Paek SH, Kim YB, Lee H, Cho ZH. In vivo 3D Reconstruction of the Human Pallidothalamic and Nigrothalamic Pathways With Super-Resolution 7T MR Track Density Imaging and Fiber Tractography. Front Neuroanat 2021; 15:739576. [PMID: 34776880 PMCID: PMC8579044 DOI: 10.3389/fnana.2021.739576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The output network of the basal ganglia plays an important role in motor, associative, and limbic processing and is generally characterized by the pallidothalamic and nigrothalamic pathways. However, these connections in the human brain remain difficult to elucidate because of the resolution limit of current neuroimaging techniques. The present study aimed to investigate the mesoscopic nature of these connections between the thalamus, substantia nigra pars reticulata, and globus pallidus internal segment using 7 Tesla (7T) magnetic resonance imaging (MRI). In this study, track-density imaging (TDI) of the whole human brain was employed to overcome the limitations of observing the pallidothalamic and nigrothalamic tracts. Owing to the super-resolution of the TD images, the substructures of the SN, as well as the associated tracts, were identified. This study demonstrates that 7T MRI and MR tractography can be used to visualize anatomical details, as well as 3D reconstruction, of the output projections of the basal ganglia.
Collapse
Affiliation(s)
- Dae-Hyuk Kwon
- Neuroscience Convergence Center, Green Manufacturing Research Center (GMRC), Korea University, Seoul, South Korea
| | - Sun Ha Paek
- Neurosurgery, Movement Disorder Center, Seoul National University College of Medicine, Advanced Institute of Convergence Technology (AICT), Seoul National University, Seoul, South Korea
| | - Young-Bo Kim
- Department of Neurosurgery, College of Medicine, Gachon University, Incheon, South Korea
| | - Haigun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Zang-Hee Cho
- Neuroscience Convergence Center, Green Manufacturing Research Center (GMRC), Korea University, Seoul, South Korea
| |
Collapse
|
20
|
Four Deep Brain Stimulation Targets for Obsessive-Compulsive Disorder: Are They Different? Biol Psychiatry 2021; 90:667-677. [PMID: 32951818 PMCID: PMC9569132 DOI: 10.1016/j.biopsych.2020.06.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Deep brain stimulation is a promising therapeutic approach for patients with treatment-resistant obsessive-compulsive disorder, a condition linked to abnormalities in corticobasal ganglia networks. Effective targets are placed in one of four subcortical areas with the goal of capturing prefrontal, anterior cingulate, and basal ganglia connections linked to the limbic system. These include the anterior limb of the internal capsule, the ventral striatum, the subthalamic nucleus, and a midbrain target. The goal of this review is to examine these 4 targets with respect to the similarities and differences of their connections. Following a review of the connections for each target based on anatomic studies in nonhuman primates, we examine the accuracy of diffusion magnetic resonance imaging tractography to replicate those connections in nonhuman primates, before evaluating the connections in the human brain based on diffusion magnetic resonance imaging tractography. Results demonstrate that the four targets generally involve similar connections, all of which are part of the internal capsule. Nonetheless, some connections are unique to each site. Delineating the similarities and differences across targets is a critical step for evaluating and comparing the effectiveness of each and how circuits contribute to the therapeutic outcome. It also underscores the importance that the terminology used for each target accurately reflects its position and its anatomic connections, so as to enable comparisons across clinical studies and for basic scientists to probe mechanisms underlying deep brain stimulation.
Collapse
|
21
|
Horisawa S, Fukui A, Yamahata H, Tanaka Y, Kuwano A, Momosaki O, Iijima M, Nanke M, Kawamata T, Taira T. Unilateral pallidothalamic tractotomy for akinetic-rigid Parkinson's disease: a prospective open-label study. J Neurosurg 2021; 135:799-805. [PMID: 33450738 DOI: 10.3171/2020.7.jns201547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neurosurgical ablation is an effective treatment for medically refractory motor symptoms of Parkinson's disease (PD). A limited number of studies have reported the effect of ablation of the pallidothalamic tract for PD. In this study, the authors evaluated the safety and efficacy of unilateral pallidothalamic tractotomy for akinetic-rigid (AR)-PD. METHODS Fourteen AR-PD patients, who were enrolled in this prospective open-label study, underwent unilateral pallidothalamic tractotomy. The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III and Part IV (dyskinesia and dystonia) scores and levodopa equivalent daily dose (LEDD) were evaluated at baseline and at 3 and 12 months postoperatively. RESULTS Of the 14 patients enrolled in the study, 4 were lost to follow-up and 10 were analyzed. The total MDS-UPDRS Part III score significantly improved from 45 ± 4.6 at baseline to 32.9 ± 4.8 at 12 months postoperatively (p = 0.005). Contralateral side rigidity and bradykinesia significantly improved from 4.4 ± 0.5 and 10.4 ± 1.5 at baseline to 1.7 ± 0.4 (p = 0.005) and 5.2 ± 1.4 (p = 0.011) at 12 months, respectively. While posture significantly improved with a 20% reduction in scores (p = 0.038), no significant improvement was found in gait (p = 0.066). Dyskinesia and dystonia were improved with a 79.2% (p = 0.0012) and 91.7% (p = 0.041) reduction in scores, respectively. No significant change was found in the LEDD. Hypophonia was noted in 2 patients, eyelid apraxia was noted in 1 patient, and a reduced response to levodopa, which resulted in an increase in the daily dose of levodopa, was noted in 3 patients. No serious permanent neurological deficits were observed. CONCLUSIONS Unilateral pallidothalamic tractotomy improved contralateral side rigidity and bradykinesia, dyskinesia, and dystonia in patients with AR-PD. Clinical trial registration no.: UMIN000031138 (umin.ac.jp).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Magi Nanke
- 3School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | | | | |
Collapse
|
22
|
Parras O, Domínguez P, Tomás-Biosca A, Guridi J. The role of tractography in the localisation of the Vim nucleus of the thalamus and the dentatorubrothalamic tract for the treatment of tremor. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:691-699. [DOI: 10.1016/j.nrleng.2019.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
|
23
|
Strotzer QD, Kohl Z, Anthofer JM, Faltermeier R, Schmidt NO, Torka E, Greenlee MW, Fellner C, Schlaier JR, Beer AL. Structural Connectivity Patterns of Side Effects Induced by Subthalamic Deep Brain Stimulation for Parkinson's Disease. Brain Connect 2021; 12:374-384. [PMID: 34210163 DOI: 10.1089/brain.2021.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Tractography based on diffusion-weighted magnetic resonance imaging (DWI) models the structural connectivity of the human brain. Deep brain stimulation (DBS) targeting the subthalamic nucleus is an effective treatment for advanced Parkinson's disease, but may induce adverse effects. This study investigated the relationship between structural connectivity patterns of DBS electrodes and stimulation-induced side effects. Materials and Methods: Twenty-one patients with Parkinson's disease treated with bilateral subthalamic DBS were examined. Overall, 168 electrode contacts were categorized as inducing or noninducing depending on their capability for inducing side effects such as motor effects, paresthesia, dysarthria, oculomotor effects, hyperkinesia, and other complications as assessed during the initial programming session. Furthermore, the connectivity of each contact with target regions was evaluated by probabilistic tractography based on DWI. Finally, stimulation sites and structural connectivity patterns of inducing and noninducing contacts were compared. Results: Inducing contacts differed across the various side effects and from those mitigating Parkinson's symptoms. Although contacts showed a largely overlapping spatial distribution within the subthalamic region, they could be distinguished by their connectivity patterns. In particular, inducing contacts were more likely connected with supplementary motor areas (hyperkinesia, dysarthria), frontal cortex (oculomotor), fibers of the internal capsule (paresthesia), and the basal ganglia-thalamo-cortical circuitry (dysarthria). Discussion: Side effects induced by DBS seem to be associated with distinct connectivity patterns. Cerebellar connections are hardly associated with side effects, although they seem relevant for mitigating motor symptoms in Parkinson's disease. A symptom-specific, connectivity-based approach for target planning in DBS may enhance treatment outcomes and reduce adverse effects.
Collapse
Affiliation(s)
- Quirin D Strotzer
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany.,Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany.,Institute of Radiology, and University of Regensburg Medical Center, Regensburg, Germany
| | - Zacharias Kohl
- Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany.,Department of Neurology, University of Regensburg Medical Center, Regensburg, Germany.,Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Judith M Anthofer
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany.,Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany
| | - Rupert Faltermeier
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany
| | - Nils O Schmidt
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany
| | - Elisabeth Torka
- Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany.,Department of Neurology, University of Regensburg Medical Center, Regensburg, Germany
| | - Mark W Greenlee
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Claudia Fellner
- Institute of Radiology, and University of Regensburg Medical Center, Regensburg, Germany
| | - Juergen R Schlaier
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany.,Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany
| | - Anton L Beer
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Distinct Opsin 3 ( Opn3) Expression in the Developing Nervous System during Mammalian Embryogenesis. eNeuro 2021; 8:ENEURO.0141-21.2021. [PMID: 34417283 PMCID: PMC8445036 DOI: 10.1523/eneuro.0141-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Opsin 3 (Opn3) is highly expressed in the adult brain, however, information for spatial and temporal expression patterns during embryogenesis is significantly lacking. Here, an Opn3-eGFP reporter mouse line was used to monitor cell body expression and axonal projections during embryonic and early postnatal to adult stages. By applying 2D and 3D fluorescence imaging techniques, we have identified the onset of Opn3 expression, which predominantly occurred during embryonic stages, in various structures during brain/head development. In addition, this study defines over twenty Opn3-eGFP-positive neural structures never reported before. Opn3-eGFP was first observed at E9.5 in neural regions, including the ganglia that will ultimately form the trigeminal, facial and vestibulocochlear cranial nerves (CNs). As development proceeds, expanded Opn3-eGFP expression coincided with the formation and maturation of critical components of the central and peripheral nervous systems (CNS, PNS), including various motor-sensory tracts, such as the dorsal column-medial lemniscus (DCML) sensory tract, and olfactory, acoustic, and optic tracts. The widespread, yet distinct, detection of Opn3-eGFP already at early embryonic stages suggests that Opn3 might play important functional roles in the developing brain and spinal cord to regulate multiple motor and sensory circuitry systems, including proprioception, nociception, ocular movement, and olfaction, as well as memory, mood, and emotion. This study presents a crucial blueprint from which to investigate autonomic and cognitive opsin-dependent neural development and resultant behaviors under physiological and pathophysiological conditions.
Collapse
|
25
|
Rocha MSG, de Freitas JL, Costa CDM, de Oliveira MO, Terzian PR, Queiroz JWM, Ferraz JB, Tatsch JFS, Soriano DC, Hamani C, Godinho F. Fields of Forel Brain Stimulation Improves Levodopa-Unresponsive Gait and Balance Disorders in Parkinson's Disease. Neurosurgery 2021; 89:450-459. [PMID: 34161592 DOI: 10.1093/neuros/nyab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/03/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gait and balance disturbance are challenging symptoms in advanced Parkinson's disease (PD). Anatomic and clinical data suggest that the fields of Forel may be a potential surgical target to treat these symptoms. OBJECTIVE To test whether bilateral stimulation centered at the fields of Forel improves levodopa unresponsive freezing of gait (FOG), balance problems, postural instability, and falls in PD. METHODS A total of 13 patients with levodopa-unresponsive gait disturbance (Hoehn and Yahr stage ≥3) were included. Patients were evaluated before (on-medication condition) and 1 yr after surgery (on-medication-on-stimulation condition). Motor symptoms and quality of life were assessed with the Unified Parkinson's Disease Rating scale (UPDRS III) and Quality of Life scale (PDQ-39). Clinical and instrumented analyses assessed gait, balance, postural instability, and falls. RESULTS Surgery improved balance by 43% (95% confidence interval [CI]: 21.2-36.4 to 35.2-47.1; P = .0012), reduced FOG by 35% (95% CI: 15.1-20.3 to 8.1-15.3; P = .0021), and the monthly number of falls by 82.2% (95% CI: 2.2-6.9 to -0.2-1.7; P = .0039). Anticipatory postural adjustments, velocity to turn, and postural sway measurements also improved 1 yr after deep brain stimulation (DBS). UPDRS III motor scores were reduced by 27.2% postoperatively (95% CI: 42.6-54.3 to 30.2-40.5; P < .0001). Quality of life improved 27.5% (95% CI: 34.6-48.8 to 22.4-37.9; P = .0100). CONCLUSION Our results suggest that DBS of the fields of Forel improved motor symptoms in PD, as well as the FOG, falls, balance, postural instability, and quality of life.
Collapse
Affiliation(s)
- Maria Sheila Guimarães Rocha
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil.,Faculdade Santa Marcelina, Internal Medicine Division, São Paulo, Brazil
| | | | | | - Maira Okada de Oliveira
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil.,Global Brain Health Institute, University of California-San Francisco, San Francisco, California, USA
| | - Paulo Roberto Terzian
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil
| | | | - Jamana Barbosa Ferraz
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil.,Faculdade Santa Marcelina, Internal Medicine Division, São Paulo, Brazil
| | | | - Diogo Coutinho Soriano
- Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Clement Hamani
- Sunnybrook Health Sciences Centre, Harquail Centre for Neuromodulation, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Fabio Godinho
- Hospital Santa Marcelina, Neurology and Functional Neurosurgery Department, São Paulo, Brazil.,Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, Brazil.,Institute of Psychiatry, Hospital das Clínicas, Functional Neurosurgery Division, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Neudorfer C, Elias GJB, Jakobs M, Boutet A, Germann J, Narang K, Loh A, Paff M, Horn A, Kucharczyk W, Deeb W, Salvato B, Almeida L, Foote KD, Rosenberg PB, Tang-Wai DF, Anderson WS, Mari Z, Ponce FA, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Lozano AM. Mapping autonomic, mood, and cognitive effects of hypothalamic region deep brain stimulation. Brain 2021; 144:2837-2851. [PMID: 33905474 DOI: 10.1093/brain/awab170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/12/2022] Open
Abstract
Due to its involvement in a wide variety of cardiovascular, metabolic, and behavioral functions, the hypothalamus constitutes a potential target for neuromodulation in a number of treatment-refractory conditions. The precise neural substrates and circuitry subserving these responses, however, are poorly characterized to date. We sought to retrospectively explore the acute sequalae of hypothalamic region deep brain stimulation and characterize their neuroanatomical correlates. To this end we studied at multiple international centers 58 patients (mean age: 68.5 ± 7.9 years, 26 females) suffering from mild Alzheimer's disease who underwent stimulation of the fornix region between 2007 and 2019. We catalogued the diverse spectrum of acutely induced clinical responses during electrical stimulation and interrogated their neural substrates using volume of tissue activated modelling, voxel-wise mapping, and supervised machine learning techniques. In total 627 acute clinical responses to stimulation - including tachycardia, hypertension, flushing, sweating, warmth, coldness, nausea, phosphenes, and fear - were recorded and catalogued across patients using standard descriptive methods. The most common manifestations during hypothalamic region stimulation were tachycardia (30.9%) and warmth (24.6%) followed by flushing (9.1%) and hypertension (6.9%). Voxel-wise mapping identified distinct, locally separable clusters for all sequelae that could be mapped to specific hypothalamic and extrahypothalamic gray- and white-matter structures. K-nearest neighbor classification further validated the clinico-anatomical correlates emphasizing the functional importance of identified neural substrates with area under the receiving operating characteristic curves (AUROC) between 0.67 - 0.91. Overall, we were able to localize acute effects of hypothalamic region stimulation to distinct tracts and nuclei within the hypothalamus and the wider diencephalon providing clinico-anatomical insights that may help to guide future neuromodulation work.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Martin Jakobs
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Keshav Narang
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michelle Paff
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Wissam Deeb
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | | | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Paul B Rosenberg
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - David F Tang-Wai
- Department of Neurology, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Francisco A Ponce
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna D Burke
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Marwan N Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Horisawa S, Kohara K, Nonaka T, Mochizuki T, Kawamata T, Taira T. Case Report: Deep Cerebellar Stimulation for Tremor and Dystonia. Front Neurol 2021; 12:642904. [PMID: 33746894 PMCID: PMC7973230 DOI: 10.3389/fneur.2021.642904] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The cerebellum plays an important role in the pathogenesis and pathophysiology of movement disorders, including tremor and dystonia. To date, there have been few reports on deep cerebellar stimulation. Case Report: The patient was a 35-year-old previously healthy man with no history of movement disorders. He developed a tremor and stiffness in his left hand at the age of 27 years, which was diagnosed as a dystonic tremor. We performed right thalamotomy, which resulted in a complete resolution of the tremor; however, the dystonia persisted. Subsequently, the patient developed left foot dystonia with inversion and a newly developed tremor in the right hand and foot. The patient underwent left ventralis intermedius (VIM) deep brain stimulation (VIM-DBS) and left pallidothalamic tract DBS (PTT-DBS). Left VIM-DBS completely resolved the right hand and foot tremor, and PTT-DBS significantly improved the left hand and foot dystonia. Three months postoperatively, the patient developed an infection and wound disruption at the surgical site. We performed palliative surgery for deep cerebellar stimulation via the posterior cranial region, which was not infected. The surgery was performed under general anesthesia with the patient lying in the prone position. Eight contact DBS electrodes were used. The placement of electrodes extended from the superior cerebellar peduncle to the dentate nucleus. Both the right hand and foot tremor improved with right cerebellar stimulation. Further, both the left hand and foot dystonia improved with left cerebellar stimulation. Right and left cerebellar stimulation led to no improvement in the left hand and foot dystonia and right hand and foot tremor, respectively. Stimulation-induced complications observed in the patient included dizziness, dysphagia, and dysarthria. After the surgery, the patient developed hypersalivation and hyperhidrosis in the left side of the body, both of which did not improve with adjustments of stimulation parameters. At the 6-month follow-up, the tremor and dystonia had almost completely resolved. Conclusion: Deep cerebellar stimulation deserves consideration as a potential treatment for tremor and dystonia.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Kotaro Kohara
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Taku Nonaka
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuki Mochizuki
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
28
|
Horisawa S, Miyao S, Hori T, Kohara K, Kawamata T, Taira T. Comorbid seizure reduction after pallidothalamic tractotomy for movement disorders: Revival of Jinnai's Forel-H-tomy. Epilepsia Open 2021; 6:225-229. [PMID: 33681665 PMCID: PMC7918322 DOI: 10.1002/epi4.12467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
Forel-H-tomy for intractable epilepsy was introduced by Dennosuke Jinnai in the 1960s. Recently, Forel-H-tomy was renamed to "pallidothalamic tractotomy" and revived for the treatment of Parkinson's disease and dystonia. Two of our patients with movement disorders and comorbid epilepsy experienced significant seizure reduction after pallidothalamic tractotomy, demonstrating the efficacy of this method. The first was a 29-year-old woman who had temporal lobe epilepsy with focal impaired awareness seizure once every three months and an aura 10-20 times daily, even with four antiseizure medicines. For the treatment of hand dyskinesia, she underwent left pallidothalamic tractotomy and her right-hand dyskinesia significantly improved. Fourteen months later, she had experienced no focal impaired awareness seizure and the aura decreased to one to three times per month. The second case was that of a 15-year-old boy diagnosed with progressive myoclonic epilepsy, who developed generalized tonic-clonic seizure, which manifested once every month, despite treatment with five antiseizure medicines. After surgery, myoclonic movements in his right hand slightly improved. A one-year follow-up revealed that he had not experienced a generalized tonic-clonic seizure. The lesion locations in the two cases were close to the vicinity of Jinnai's Forel-H-tomy. Forel's field H deserves reconsideration as a treatment target for intractable epilepsy.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of NeurosurgeryTokyo Women’s Medical UniversityTokyoJapan
| | - Satoru Miyao
- Department of NeurosurgeryTokyo Women’s Medical UniversityTokyoJapan
| | - Tomokatsu Hori
- Department of NeurosurgeryMoriyama Neurological Center HospitalTokyoJapan
| | - Kotaro Kohara
- Department of NeurosurgeryTokyo Women’s Medical UniversityTokyoJapan
| | - Takakazu Kawamata
- Department of NeurosurgeryTokyo Women’s Medical UniversityTokyoJapan
| | - Takaomi Taira
- Department of NeurosurgeryTokyo Women’s Medical UniversityTokyoJapan
| |
Collapse
|
29
|
Tsuboi T, Charbel M, Peterside DT, Rana M, Elkouzi A, Deeb W, Ramirez‐Zamora A, Lemos Melo Lobo Jofili Lopes J, Almeida L, Zeilman PR, Eisinger RS, Foote KD, Okromelidze L, Grewal SS, Okun MS, Middlebrooks EH. Pallidal Connectivity Profiling of Stimulation‐Induced Dyskinesia in Parkinson's Disease. Mov Disord 2020; 36:380-388. [DOI: 10.1002/mds.28324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Marc Charbel
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida Gainesville Florida USA
| | - David T. Peterside
- Department of Biological Engineering University of Florida Gainesville Florida USA
| | - Mohit Rana
- Institute of Medical Psychology and Behavioural Neurobiology University of Tübingen Tübingen Germany
| | - Ahmad Elkouzi
- Department of Neurology Southern Illinois University School of Medicine Springfield Illinois USA
| | - Wissam Deeb
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Adolfo Ramirez‐Zamora
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | | | - Leonardo Almeida
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Pamela R. Zeilman
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Robert S. Eisinger
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Kelly D. Foote
- Department of Neurosurgery Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | | | | | - Michael S. Okun
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Erik H. Middlebrooks
- Department of Radiology Mayo Clinic Jacksonville Florida USA
- Department of Neurosurgery Mayo Clinic Jacksonville Florida USA
| |
Collapse
|
30
|
Oishi K, Mori S, Troncoso JC, Lenz FA. Mapping tracts in the human subthalamic area by 11.7T ex vivo diffusion tensor imaging. Brain Struct Funct 2020; 225:1293-1312. [PMID: 32303844 PMCID: PMC7584118 DOI: 10.1007/s00429-020-02066-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The cortico-basal ganglia-thalamo-cortical feedback loops that consist of distinct white matter pathways are important for understanding in vivo imaging studies of functional and anatomical connectivity, and for localizing subthalamic white matter structures in surgical approaches for movement disorders, such as Parkinson's disease. Connectomic analysis in animals has identified fiber connections between the basal ganglia and thalamus, which pass through the fields of Forel, where other fiber pathways related to motor, sensory, and cognitive functions co-exist. We now report these pathways in the human brain on ex vivo mesoscopic (250 μm) diffusion tensor imaging and on tractography. The locations of the tracts were identified relative to the adjacent gray matter structures, such as the internal and external segments of the globus pallidus; the zona incerta; the subthalamic nucleus; the substantia nigra pars reticulata and compacta; and the thalamus. The connectome atlas of the human subthalamic region may serve as a resource for imaging studies and for neurosurgical planning.
Collapse
Affiliation(s)
- Kenichi Oishi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA.
| | - Susumu Mori
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick A Lenz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Meyer 8181 Neurosurgery, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
31
|
Matrov D, Imbeault S, Kanarik M, Shkolnaya M, Schikorra P, Miljan E, Shimmo R, Harro J. Comprehensive mapping of cytochrome c oxidase activity in the rat brain after sub-chronic ketamine administration. Acta Histochem 2020; 122:151531. [PMID: 32131979 DOI: 10.1016/j.acthis.2020.151531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Ketamine is a noncompetitive antagonist of glutamatergic N-methyl-d-aspartate receptors. Its acute effects on healthy volunteers and schizophrenia patients mimic some acute psychotic, but also cognitive and negative symptoms of schizophrenia, and subchronic treatment with ketamine has been used as an animal model of psychotic disorders. Glutamatergic neurotransmission is tightly coupled to oxidative metabolism in the brain. Quantitative histochemical mapping of cytochrome c oxidase (COX) activity, which reflect long-term energy metabolism, was carried out in rats that received a daily subanaesthetic dose (30 mg/kg) of ketamine for 10 days. In total, COX activity was measured in 190 brain regions to map out metabolic adaptations to the subchronic administration of ketamine. Ketamine treatment was associated with elevated COX activity in nine brain sub-regions in sensory thalamus, basal ganglia, cortical areas, hippocampus and superior colliculi. Changes in pairwise correlations between brain regions were studied with differential correlation analysis. Ketamine treatment was associated with the reduction of positive association between brain regions in 66 % of the significant comparisons. Different layers of the superior colliculi showed the strongest effects. Changes in other visual and auditory brain centres were also of note. The locus coeruleus showed opposite pattern of increased coupling to mainly limbic brain regions in ketamine-treated rats. Our study replicated commonly observed activating effects of ketamine in the hippocampus, cingulate cortex, and basal ganglia. The current study is the first to extensively map the oxidative metabolism in the CNS in the ketamine model of schizophrenia. It shows that ketamine treatment leads to the re-organization of activity in sensory and memory-related brain circuits.
Collapse
Affiliation(s)
- Denis Matrov
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Sophie Imbeault
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Marianna Shkolnaya
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Patricia Schikorra
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Ergo Miljan
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Ruth Shimmo
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jaanus Harro
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
32
|
The anatomo-functional organization of the hyperdirect cortical pathway to the subthalamic area using in vivo structural connectivity imaging in humans. Brain Struct Funct 2019; 225:551-565. [DOI: 10.1007/s00429-019-02012-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
|
33
|
Horisawa S, Fukui A, Tanaka Y, Wendong L, Yamahata H, Kawamata T, Taira T. Pallidothalamic Tractotomy (Forel's Field H1-tomy) for Dystonia: Preliminary Results. World Neurosurg 2019; 129:e851-e856. [DOI: 10.1016/j.wneu.2019.06.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022]
|
34
|
Pineda‐Pardo JA, Martínez‐Fernández R, Rodríguez‐Rojas R, Del‐Alamo M, Hernández F, Foffani G, Dileone M, Máñez‐Miró JU, De Luis‐Pastor E, Vela L, Obeso JA. Microstructural changes of the dentato-rubro-thalamic tract after transcranial MR guided focused ultrasound ablation of the posteroventral VIM in essential tremor. Hum Brain Mapp 2019; 40:2933-2942. [PMID: 30865338 PMCID: PMC6865586 DOI: 10.1002/hbm.24569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
Essential tremor is the most common movement disorder in adults. In patients who are not responsive to medical treatment, functional neurosurgery and, more recently, transcranial MR-guided focused ultrasound thalamotomy are considered effective therapeutic approaches. However, the structural brain changes following a thalamotomy that mediates the clinical improvement are still unclear. In here diffusion weighted images were acquired in a cohort of 24 essential tremor patients before and 3 months after unilateral transcranial MR-guided focused ultrasound thalamotomy targeting at the posteroventral part of the VIM. Microstructural changes along the DRTT were quantified by means of probabilistic tractography, and later related to the clinical improvement of the patients at 3-months and at 1-year after the intervention. In addition the changes along two neighboring tracts, that is, the corticospinal tract and the medial lemniscus, were assessed, as well as the relation between these changes and the presence of side effects. Thalamic lesions produced local and distant alterations along the trajectory of the DRTT, and each correlated with clinical improvement. Regarding side effects, gait imbalance after thalamotomy was associated with greater impact on the DRTT, whereas the presence of paresthesias was significantly related to a higher overlap between the lesion and the medial lemniscus. This work represents the largest series describing the microstructural changes following transcranial MR-guided focused ultrasound thalamotomy in essential tremor. These results suggest that clinical benefits are specific for the impact on the cerebello-thalamo-cortical pathway, thus reaffirming the potential of tractography to aid thalamotomy targeting.
Collapse
Affiliation(s)
- Jose A. Pineda‐Pardo
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| | - Raul Martínez‐Fernández
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| | - Rafael Rodríguez‐Rojas
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| | - Marta Del‐Alamo
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
| | - Frida Hernández
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
| | - Guglielmo Foffani
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Hospital Nacional de ParapléjicosToledoSpain
| | - Michele Dileone
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
| | - Jorge U. Máñez‐Miró
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
| | | | - Lydia Vela
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| | - José A. Obeso
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| |
Collapse
|
35
|
Neudorfer C, Hinzke M, Hunsche S, El Majdoub F, Lozano A, Maarouf M. Combined Deep Brain Stimulation of Subthalamic Nucleus and Ventral Intermediate Thalamic Nucleus in Tremor‐Dominant Parkinson's Disease Using a Parietal Approach. Neuromodulation 2019; 22:493-502. [DOI: 10.1111/ner.12943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/05/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Clemens Neudorfer
- Department of Stereotaxy and Functional Neurosurgery Cologne‐Merheim Medical Center (CMMC), University of Witten/Herdecke Cologne Germany
- Division of Neurosurgery, Department of Surgery University of Toronto Toronto ON Canada
| | - Markus Hinzke
- Department of Neurology Cologne‐Merheim Medical Center (CMMC), University of Witten/Herdecke Cologne Germany
| | - Stefan Hunsche
- Department of Stereotaxy and Functional Neurosurgery Cologne‐Merheim Medical Center (CMMC), University of Witten/Herdecke Cologne Germany
| | - Faycal El Majdoub
- Department of Stereotaxy and Functional Neurosurgery Cologne‐Merheim Medical Center (CMMC), University of Witten/Herdecke Cologne Germany
| | - Andres Lozano
- Division of Neurosurgery, Department of Surgery University of Toronto Toronto ON Canada
| | - Mohammad Maarouf
- Department of Stereotaxy and Functional Neurosurgery Cologne‐Merheim Medical Center (CMMC), University of Witten/Herdecke Cologne Germany
| |
Collapse
|
36
|
Abstract
INTRODUCTION Essential tremor is the most common form of pathologic tremor. Surgical therapies disrupt tremorogenic oscillation in the cerebellothalamocortical pathway and are capable of abolishing severe tremor that is refractory to available pharmacotherapies. Surgical methods are raspidly improving and are the subject of this review. Areas covered: A PubMed search on 18 January 2018 using the query essential tremor AND surgery produced 839 abstracts. 379 papers were selected for review of the methods, efficacy, safety and expense of stereotactic deep brain stimulation (DBS), stereotactic radiosurgery (SRS), focused ultrasound (FUS) ablation, and radiofrequency ablation of the cerebellothalamocortical pathway. Expert commentary: DBS and SRS, FUS and radiofrequency ablations are capable of reducing upper extremity tremor by more than 80% and are far more effective than any available drug. The main research questions at this time are: 1) the relative safety, efficacy, and expense of DBS, SRS, and FUS performed unilaterally and bilaterally; 2) the relative safety and efficacy of thalamic versus subthalamic targeting; 3) the relative safety and efficacy of atlas-based versus direct imaging tractography-based anatomical targeting; and 4) the need for intraoperative microelectrode recordings and macroelectrode stimulation in awake patients to identify the optimum anatomical target. Randomized controlled trials are needed.
Collapse
Affiliation(s)
- Rodger J Elble
- a Neuroscience Institute , Southern Illinois University School of Medicine , Springfield , Illinois , USA
| | - Ludy Shih
- b Department of Neurology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , Massachusetts USA
| | - Jeffrey W Cozzens
- a Neuroscience Institute , Southern Illinois University School of Medicine , Springfield , Illinois , USA
| |
Collapse
|
37
|
Nigrostriatal dopamine transporter availability in early Parkinson's disease. Mov Disord 2018; 33:592-599. [DOI: 10.1002/mds.27316] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 11/07/2022] Open
|