1
|
Wagner J, Zurlo A, Rusconi E. Individual differences in visual search: A systematic review of the link between visual search performance and traits or abilities. Cortex 2024; 178:51-90. [PMID: 38970898 DOI: 10.1016/j.cortex.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/08/2024]
Abstract
Visual search (VS) comprises a class of tasks that we typically perform several times during a day and requires intentionally scanning (with or without moving the eyes) the environment for a specific target (be it an object or a feature) among distractor stimuli. Experimental research in lab-based or real-world settings has offered insight into its underlying neurocognitive mechanisms from a nomothetic point of view. A lesser-known but rapidly growing body of quasi-experimental and correlational research has explored the link between individual differences and VS performance. This combines different research traditions and covers a wide range of individual differences in studies deploying a vast array of VS tasks. As such, it is a challenge to determine whether any associations highlighted in single studies are robust when considering the wider literature. However, clarifying such relationships systematically and comprehensively would help build more accurate models of VS, and it would highlight promising directions for future research. This systematic review provides an up to date and comprehensive synthesis of the existing literature investigating associations between common indices of performance in VS tasks and measures of individual differences mapped onto four categories of cognitive abilities (short-term working memory, fluid reasoning, visual processing and processing speed) and seven categories of traits (Big Five traits, trait anxiety and autistic traits). Consistent associations for both traits (in particular, conscientiousness, autistic traits and trait anxiety - the latter limited to emotional stimuli) and cognitive abilities (particularly visual processing) were identified. Overall, however, informativeness of future studies would benefit from checking and reporting the reliability of all measurement tools, applying multiplicity correction, using complementary techniques, study preregistration and testing why, rather than only if, a robust relation between certain individual differences and VS performance exists.
Collapse
Affiliation(s)
- Jennifer Wagner
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | - Adriana Zurlo
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | - Elena Rusconi
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy; Centre of Security and Crime Sciences, University of Trento - University of Verona, Trento, Italy.
| |
Collapse
|
2
|
Kraft JN, Hausman HK, Hardcastle C, Albizu A, O'Shea A, Evangelista ND, Boutzoukas EM, Van Etten EJ, Bharadwaj PK, Song H, Smith SG, DeKosky S, Hishaw GA, Wu S, Marsiske M, Cohen R, Alexander GE, Porges E, Woods AJ. Task-based functional connectivity of the Useful Field of View (UFOV) fMRI task. GeroScience 2023; 45:293-309. [PMID: 35948860 PMCID: PMC9886714 DOI: 10.1007/s11357-022-00632-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 02/03/2023] Open
Abstract
Declines in processing speed performance occur in aging and are a critical marker of functional independence in older adults. Numerous studies suggest that Useful Field of View (UFOV) training may ameliorate cognitive decline in older adults. Despite its efficacy, little is known about the neural correlates of this task. The current study is the first to investigate the coherence of functional connectivity during UFOV task completion. A total of 336 participants completed the UFOV task while undergoing task-based functional magnetic resonance imaging (fMRI). Ten spherical regions of interest (ROIs), selected a priori, were created based on regions with the greatest peak BOLD activation patterns in the UFOV fMRI task and regions that have been shown to significantly relate to UFOV fMRI task performance. We used a weighted ROI-to-ROI connectivity analysis to model task-specific functional connectivity strength between these a priori selected ROIs. We found that our UFOV fMRI network was functionally connected during task performance and was significantly associated to UFOV fMRI task performance. Within-network connectivity of the UFOV fMRI network showed comparable or better predictive power in accounting for UFOV accuracy compared to 7 resting state networks, delineated by Yeo and colleagues. Finally, we demonstrate that the within-network connectivity of UFOV fMRI task accounted for scores on a measure of "near transfer", the Double Decision task, better than the aforementioned resting state networks. Our data elucidate functional connectivity patterns of the UFOV fMRI task. This may assist in future targeted interventions that aim to improve synchronicity within the UFOV fMRI network.
Collapse
Affiliation(s)
- Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Emily J Van Etten
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Gainesville, FL, USA
| | - Pradyumna K Bharadwaj
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Gainesville, FL, USA
| | - Hyun Song
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Gainesville, FL, USA
| | - Samantha G Smith
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Gainesville, FL, USA
| | - Steven DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, USA
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Manouchehri V, Albonico A, Hemström J, Djouab S, Kim H, Barton JJS. The impact of simulated hemianopia on visual search for faces, words, and cars. Exp Brain Res 2022; 240:2835-2846. [PMID: 36069920 DOI: 10.1007/s00221-022-06457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Tests of visual search can index the effects of perceptual load and compare the processing efficiency for different object types, particularly when one examines the set-size effect, the increase in search time for each additional stimulus in an array. Previous studies have shown that the set-size effect is increased by manoeuvres that impede object processing, and in patients with object processing impairments. In this study, we examine how the low-level visual impairment of hemianopia affects visual search for complex objects, using a virtual paradigm. Forty-two healthy subjects performed visual search for faces, words, or cars with full-viewing as well as gaze-contingent simulations of complete left or right hemianopia. Simulated hemianopia lowered accuracy and discriminative power and increased response times and set-size effects, similarly for faces, words and cars. A comparison of set-size effects between target absent and target present trials did not show a difference between full-view and simulated hemianopic conditions, and a model of decision-making suggested that simulated hemianopia reduced the rate of accumulation of perceptual data, but did not change decision thresholds. We conclude that simulated hemianopia reduces the efficiency of visual search for complex objects, and that such impairment should be considered when interpreting results from high-level object processing deficits.
Collapse
Affiliation(s)
- Vahideh Manouchehri
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
- Department of Ophthalmology, Nikookari Eye Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Andrea Albonico
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
| | - Jennifer Hemström
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
- Faculty of Medicine, Linköping, Sweden
| | - Sarra Djouab
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
- Faculty of Medicine, University of Auvergne, Clermont-Ferrand, France
| | - Hyeongmin Kim
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada
| | - Jason J S Barton
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada.
| |
Collapse
|
4
|
Gallina J, Zanon M, Mikulan E, Pietrelli M, Gambino S, Ibáñez A, Bertini C. Alterations in resting-state functional connectivity after brain posterior lesions reflect the functionality of the visual system in hemianopic patients. Brain Struct Funct 2022; 227:2939-2956. [PMID: 35585290 DOI: 10.1007/s00429-022-02502-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Emerging evidence suggests a role of the posterior cortices in regulating alpha oscillatory activity and organizing low-level processing in non-alpha frequency bands. Therefore, posterior brain lesions, which damage the neural circuits of the visual system, might affect functional connectivity patterns of brain rhythms. To test this hypothesis, eyes-closed resting state EEG signal was acquired from patients with hemianopia with left and right posterior lesions, patients without hemianopia with more anterior lesions and healthy controls. Left-lesioned hemianopics showed reduced intrahemispheric connectivity in the range of upper alpha only in the lesioned hemisphere, whereas right-lesioned hemianopics exhibited reduced intrahemispheric alpha connectivity in both hemispheres. In terms of network topology, these impairments were characterized by reduced local functional segregation, with no associated change in global functional integration. This suggests a crucial role of posterior cortices in promoting functional connectivity in the range of alpha. Right-lesioned hemianopics revealed also additional impairments in the theta range, with increased connectivity in this frequency band, characterized by both increased local segregated activity and decreased global integration. This indicates that lesions to right posterior cortices lead to stronger impairments in alpha connectivity and induce additional alterations in local and global low-level processing, suggesting a specialization of the right hemisphere in generating alpha oscillations and in coordinating complex interplays with lower frequency bands. Importantly, hemianopic patient's visual performance in the blind field was linked to alpha functional connectivity, corroborating the notion that alpha oscillatory patterns represent a biomarker of the integrity and the functioning of the underlying visual system.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy.,Department of Psychology, University of Bologna, Bologna, Italy
| | - Marco Zanon
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy.,Department of Psychology, University of Bologna, Bologna, Italy.,Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ezequiel Mikulan
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mattia Pietrelli
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy.,Department of Psychology, University of Bologna, Bologna, Italy.,Department of Psychiatry, University of WI-Madison, Wisconsin, USA
| | - Silvia Gambino
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy.,Department of Psychology, University of Bologna, Bologna, Italy
| | - Agustín Ibáñez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, USA.,Trinity College Dublin, Dublin, Ireland
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy. .,Department of Psychology, University of Bologna, Bologna, Italy.
| |
Collapse
|
5
|
Machner B, Braun L, Imholz J, Koch PJ, Münte TF, Helmchen C, Sprenger A. Resting-State Functional Connectivity in the Dorsal Attention Network Relates to Behavioral Performance in Spatial Attention Tasks and May Show Task-Related Adaptation. Front Hum Neurosci 2022; 15:757128. [PMID: 35082607 PMCID: PMC8784839 DOI: 10.3389/fnhum.2021.757128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Between-subject variability in cognitive performance has been related to inter-individual differences in functional brain networks. Targeting the dorsal attention network (DAN) we questioned (i) whether resting-state functional connectivity (FC) within the DAN can predict individual performance in spatial attention tasks and (ii) whether there is short-term adaptation of DAN-FC in response to task engagement. Twenty-seven participants first underwent resting-state fMRI (PRE run), they subsequently performed different tasks of spatial attention [including visual search (VS)] and immediately afterwards received another rs-fMRI (POST run). Intra- and inter-hemispheric FC between core hubs of the DAN, bilateral intraparietal sulcus (IPS) and frontal eye field (FEF), was analyzed and compared between PRE and POST. Furthermore, we investigated rs-fMRI-behavior correlations between the DAN-FC in PRE/POST and task performance parameters. The absolute DAN-FC did not change from PRE to POST. However, different significant rs-fMRI-behavior correlations were revealed for intra-/inter-hemispheric connections in the PRE and POST run. The stronger the FC between left FEF and IPS before task engagement, the better was the learning effect (improvement of reaction times) in VS (r = 0.521, p = 0.024). And the faster the VS (mean RT), the stronger was the FC between right FEF and IPS after task engagement (r = −0.502, p = 0.032). To conclude, DAN-FC relates to the individual performance in spatial attention tasks supporting the view of functional brain networks as priors for cognitive ability. Despite a high inter- and intra-individual stability of DAN-FC, the change of FC-behavior correlations after task performance possibly indicates task-related adaptation of the DAN, underlining that behavioral experiences may shape intrinsic brain activity. However, spontaneous state fluctuations of the DAN-FC over time cannot be fully ruled out as an alternative explanation.
Collapse
Affiliation(s)
- Björn Machner
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- *Correspondence: Björn Machner, ; orcid.org/0000-0001-7981-2906
| | - Lara Braun
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jonathan Imholz
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Philipp J. Koch
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Thomas F. Münte
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Christoph Helmchen
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Andreas Sprenger
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Gallina J, Pietrelli M, Zanon M, Bertini C. Hemispheric differences in altered reactivity of brain oscillations at rest after posterior lesions. Brain Struct Funct 2021; 227:709-723. [PMID: 33895865 PMCID: PMC8844183 DOI: 10.1007/s00429-021-02279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/10/2021] [Indexed: 01/11/2023]
Abstract
A variety of evidence supports the dominance of the right hemisphere in perceptual and visuo-spatial processing. Although growing evidence shows a strong link between alpha oscillations and the functionality of the visual system, asymmetries in alpha oscillatory patterns still need to be investigated. Converging findings indicate that the typical alpha desynchronization occurring in the transition from the eyes-closed to the eyes-open resting state might represent an index of reactivity of the visual system. Thus, investigating hemispheric asymmetries in EEG reactivity at the opening of the eyes in brain-lesioned patients may shed light on the contribution of specific cortical sites and each hemisphere in regulating the oscillatory patterns reflecting the functionality of the visual system. To this aim, EEG signal was recorded during eyes-closed and eyes-open resting state in hemianopic patients with posterior left or right lesions, patients without hemianopia with anterior lesions and healthy controls. Hemianopics with both left and right posterior lesions showed a reduced alpha reactivity at the opening of the eyes, suggesting that posterior cortices have a pivotal role in the functionality of alpha oscillations. However, right-lesioned hemianopics showed a greater dysfunction, demonstrated by a reactivity reduction more distributed over the scalp, compared to left-lesioned hemianopics. Moreover, they also revealed impaired reactivity in the theta range. This favors the hypothesis of a specialized role of the right hemisphere in orchestrating oscillatory patterns, both coordinating widespread alpha oscillatory activity and organizing focal processing in the theta range, to support visual processing at the opening of the eyes.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521, Cesena, Italy.,Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy
| | - Mattia Pietrelli
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521, Cesena, Italy.,Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy.,Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA
| | - Marco Zanon
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521, Cesena, Italy.,Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy.,Neuroscience Area, International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521, Cesena, Italy. .,Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy.
| |
Collapse
|