1
|
Johansen H, Rusten EH, Westerhausen R. No Incidental Memory Advantage for Mixed Handed vs. Consistent Right Handed Participants: Conflicting Results From Earlier Research. Percept Mot Skills 2024; 131:2049-2068. [PMID: 39394770 PMCID: PMC11575099 DOI: 10.1177/00315125241291266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
Individuals who vary their preferred hand when performing different types of manual activities, so-called mixed handers (MH), have been frequently reported to outperform individuals with a consistent (right) hand preference (cRH) on tasks assessing declarative-memory functions. For example, in one influential study, this MH advantage extended to incidental learning from presumed "deep" semantic processing of verbal stimuli but not from "shallow" phonemic or structural processing. In the present study, we aimed to replicate this research finding in two separate participant samples. First, in a pre-registered and sample-size planned experiment we confronted 49 participants (23 MH; 26 cRH) with "phonemic" and "semantic" word evaluation tasks (using a within design), followed by a surprise delayed recognition test. In a second experiment, we repeated the same procedure with 65 other participants (31 MH, 34 cRH). A mixed-effect analyses of variance found a significant main effect of Encoding Condition (phonemic vs. semantic tasks) in both experiments (effect size: ηp2 = .81 to .85), indicating the classical level-of processing effect with higher recognition hits and sensitivity (d') for words that followed semantic versus phonemic encoding. However, the predicted interaction effect of Encoding Condition with Handedness Group was not statistically significant for either sample (all ηp2 < .03), nor was the main effect of Handedness Group. Thus, our findings conflicted with those of the original study in two independent samples. As we had sufficient statistical power to be confident in our failure to detect a genuine group difference, we cannot confirm the previously reported MH over cRH advantage in incidental learning of verbal material. We discuss possible reasons for these contradictory results and the theoretical implications of this discovery.
Collapse
|
2
|
Della Vedova G, Proverbio AM. Neural signatures of imaginary motivational states: desire for music, movement and social play. Brain Topogr 2024; 37:806-825. [PMID: 38625520 PMCID: PMC11393278 DOI: 10.1007/s10548-024-01047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
The literature has demonstrated the potential for detecting accurate electrical signals that correspond to the will or intention to move, as well as decoding the thoughts of individuals who imagine houses, faces or objects. This investigation examines the presence of precise neural markers of imagined motivational states through the combining of electrophysiological and neuroimaging methods. 20 participants were instructed to vividly imagine the desire to move, listen to music or engage in social activities. Their EEG was recorded from 128 scalp sites and analysed using individual standardized Low-Resolution Brain Electromagnetic Tomographies (LORETAs) in the N400 time window (400-600 ms). The activation of 1056 voxels was examined in relation to the 3 motivational states. The most active dipoles were grouped in eight regions of interest (ROI), including Occipital, Temporal, Fusiform, Premotor, Frontal, OBF/IF, Parietal, and Limbic areas. The statistical analysis revealed that all motivational imaginary states engaged the right hemisphere more than the left hemisphere. Distinct markers were identified for the three motivational states. Specifically, the right temporal area was more relevant for "Social Play", the orbitofrontal/inferior frontal cortex for listening to music, and the left premotor cortex for the "Movement" desire. This outcome is encouraging in terms of the potential use of neural indicators in the realm of brain-computer interface, for interpreting the thoughts and desires of individuals with locked-in syndrome.
Collapse
Affiliation(s)
- Giada Della Vedova
- Cognitive Electrophysiology lab, Dept. of Psychology, University of Milano, Bicocca, Italy
| | - Alice Mado Proverbio
- Cognitive Electrophysiology lab, Dept. of Psychology, University of Milano, Bicocca, Italy.
- NeuroMI, Milan Center for Neuroscience, Milan, Italy.
- Department of Psychology of University of Milano-Bicocca, Piazza dell'Ateneo nuovo 1, Milan, 20162, Italy.
| |
Collapse
|
3
|
Alsemari A, Boscarino JJ. Neuropsychological and neuroanatomical underpinnings of the face pareidolia errors on the noise pareidolia test in patients with mild cognitive impairment and dementia due to Lewy bodies. J Clin Exp Neuropsychol 2024; 46:588-598. [PMID: 38949538 DOI: 10.1080/13803395.2024.2372876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE Prior research on the Noise Pareidolia Test (NPT) has demonstrated its clinical utility in detecting patients with mild cognitive impairment and dementia due to Lewy Body Disease (LBD). However, few studies to date have investigated the neuropsychological factors underlying pareidolia errors on the NPT across the clinical spectrum of LBD. Furthermore, to our knowledge, no research has examined the relationship between cortical thickness using MRI data and NPT subscores. As such, this study sought to explore the neuropsychological and neuroanatomical factors influencing performance on the NPT utilizing the National Alzheimer's Coordinating Center Lewy Body Dementia Module. METHODS Our sample included participants with normal cognition (NC; n = 56), LBD with mild cognitive impairment (LBD-MCI; n = 97), and LBD with dementia (LBD-Dementia; n = 94). Archival data from NACC were retrospectively analyzed for group differences in neuropsychological test scores and cognitive and psychiatric predictors of NPT scores. Clinicoradiological correlates between NPT subscores and a small subsample of the above LBD participants were also examined. RESULTS Analyses revealed significant differences in NPT scores among groups. Regression analysis demonstrated that dementia severity, attention, and visuospatial processing contributed approximately 24% of NPT performance in LBD groups. Clinicoradiological analysis suggests a potential contribution of the right fusiform gyrus, but not the inferior occipital gyrus, to NPT pareidolia error scores. CONCLUSIONS Our findings highlight the interplay of attention and visuoperceptual functions in complex pareidolia in LBD. Further investigation is needed to refine the utility of NPT scores in clinical settings, including identifying patients at risk for visual illusions and hallucinations.
Collapse
Affiliation(s)
- Ahmad Alsemari
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio OH, USA
| | - Joseph J Boscarino
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida FL, USA
| |
Collapse
|
4
|
Proverbio AM, Cesati F. Neural correlates of recalled sadness, joy, and fear states: a source reconstruction EEG study. Front Psychiatry 2024; 15:1357770. [PMID: 38638416 PMCID: PMC11024723 DOI: 10.3389/fpsyt.2024.1357770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction The capacity to understand the others' emotional states, particularly if negative (e.g. sadness or fear), underpins the empathic and social brain. Patients who cannot express their emotional states experience social isolation and loneliness, exacerbating distress. We investigated the feasibility of detecting non-invasive scalp-recorded electrophysiological signals that correspond to recalled emotional states of sadness, fear, and joy for potential classification. Methods The neural activation patterns of 20 healthy and right-handed participants were studied using an electrophysiological technique. Analyses were focused on the N400 component of Event-related potentials (ERPs) recorded during silent recall of subjective emotional states; Standardized weighted Low-resolution Electro-magnetic Tomography (swLORETA) was employed for source reconstruction. The study classified individual patterns of brain activation linked to the recollection of three distinct emotional states into seven regions of interest (ROIs). Results Statistical analysis (ANOVA) of the individual magnitude values revealed the existence of a common emotional circuit, as well as distinct brain areas that were specifically active during recalled sad, happy and fearful states. In particular, the right temporal and left superior frontal areas were more active for sadness, the left limbic region for fear, and the right orbitofrontal cortex for happy affective states. Discussion In conclusion, this study successfully demonstrated the feasibility of detecting scalp-recorded electrophysiological signals corresponding to internal and subjective affective states. These findings contribute to our understanding of the emotional brain, and have potential applications for future BCI classification and identification of emotional states in LIS patients who may be unable to express their emotions, thus helping to alleviate social isolation and sense of loneliness.
Collapse
Affiliation(s)
- Alice Mado Proverbio
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Milan, Italy
- NEURO-MI Milan Center for Neuroscience, Milan, Italy
| | - Federico Cesati
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
5
|
Spagna A, Heidenry Z, Miselevich M, Lambert C, Eisenstadt BE, Tremblay L, Liu Z, Liu J, Bartolomeo P. Visual mental imagery: Evidence for a heterarchical neural architecture. Phys Life Rev 2024; 48:113-131. [PMID: 38217888 DOI: 10.1016/j.plrev.2023.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
Theories of Visual Mental Imagery (VMI) emphasize the processes of retrieval, modification, and recombination of sensory information from long-term memory. Yet, only few studies have focused on the behavioral mechanisms and neural correlates supporting VMI of stimuli from different semantic domains. Therefore, we currently have a limited understanding of how the brain generates and maintains mental representations of colors, faces, shapes - to name a few. Such an undetermined scenario renders unclear the organizational structure of neural circuits supporting VMI, including the role of the early visual cortex. We aimed to fill this gap by reviewing the scientific literature of five semantic domains: visuospatial, face, colors, shapes, and letters imagery. Linking theory to evidence from over 60 different experimental designs, this review highlights three main points. First, there is no consistent activity in the early visual cortex across all VMI domains, contrary to the prediction of the dominant model. Second, there is consistent activity of the frontoparietal networks and the left hemisphere's fusiform gyrus during voluntary VMI irrespective of the semantic domain investigated. We propose that these structures are part of a domain-general VMI sub-network. Third, domain-specific information engages specific regions of the ventral and dorsal cortical visual pathways. These regions partly overlap with those found in visual perception studies (e.g., fusiform face area for faces imagery; lingual gyrus for color imagery). Altogether, the reviewed evidence suggests the existence of domain-general and domain-specific mechanisms of VMI selectively engaged by stimulus-specific properties (e.g., colors or faces). These mechanisms would be supported by an organizational structure mixing vertical and horizontal connections (heterarchy) between sub-networks for specific stimulus domains. Such a heterarchical organization of VMI makes different predictions from current models of VMI as reversed perception. Our conclusions set the stage for future research, which should aim to characterize the spatiotemporal dynamics and interactions among key regions of this architecture giving rise to visual mental images.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA.
| | - Zoe Heidenry
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA
| | | | - Chloe Lambert
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA
| | | | - Laura Tremblay
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California; Department of Neurology, VA Northern California Health Care System, Martinez, California
| | - Zixin Liu
- Department of Human Development, Teachers College, Columbia University, NY, 10027, USA
| | - Jianghao Liu
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, Paris 10027, France; Dassault Systèmes, Vélizy-Villacoublay, France
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, Paris 10027, France
| |
Collapse
|
6
|
Khatin-Zadeh O, Farsani D, Eskandari Z. Embodiment of infinity in mathematics. Front Psychol 2024; 14:1321940. [PMID: 38327503 PMCID: PMC10847238 DOI: 10.3389/fpsyg.2023.1321940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024] Open
Abstract
In this article, we discuss the embodiment of infinity as one of fundamental concepts in mathematics. In contrast to the embodiment of many other mathematical concepts, the embodiment of infinity is an endless dynamic process. In embodying +∞, an object moves rightward toward a previously-set limit and passes it. Then, a new limit is set on the right side of the moving object. The moving object continues its movement and passes it as well. The moving object can pass any limit. In other words, there is no impassable limit for it. In embodying -∞, a similar process happens but the movement is leftward. Embodiment of infinitely small quantities has a basic similarity to the embodiment of infinitely large quantities, although it is different in some respects. We call the embodiment of infinity as iterative embodiment. It is iterative because the process of setting a new limit and passing it is repeated endlessly. Finally, it is suggested that in the process of embodying infinitely large and infinitely small quantities, the visual system and the motor system play important roles, as this process involves spatial concepts and movement.
Collapse
Affiliation(s)
- Omid Khatin-Zadeh
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| | - Danyal Farsani
- Department of Teacher Education, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zahra Eskandari
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Bartolomeo P, Liu J, Spagna A. Colors in the mind's eye. Cortex 2024; 170:26-31. [PMID: 37926612 DOI: 10.1016/j.cortex.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
The famous "Piazza del Duomo" paper, published in Cortex in 1978, inspired a considerable amount of research on visual mental imagery in brain-damaged patients. As a consequence, single-case reports featuring dissociations between perceptual and imagery abilities challenged the prevailing model of visual mental imagery. Here we focus on mental imagery for colors. A case study published in Cortex showed perfectly preserved color imagery in a patient with acquired achromatopsia after bilateral lesions at the borders between the occipital and temporal cortex. Subsequent neuroimaging findings in healthy participants extended and specified this result; color imagery elicited activation in both a domain-general region located in the left fusiform gyrus and the anterior color-biased patch within the ventral temporal cortex, but not in more posterior color-biased patches. Detailed studies of individual neurological patients, as those often published in Cortex, are still critical to inspire and constrain neurocognitive research and its theoretical models.
Collapse
Affiliation(s)
- Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | - Jianghao Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Corporate Research, Dassault Systèmes, Vélizy-Villacoublay, France
| | - Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, NY, USA
| |
Collapse
|
8
|
Blomkvist A, Marks DF. Defining and 'diagnosing' aphantasia: Condition or individual difference? Cortex 2023; 169:220-234. [PMID: 37948876 DOI: 10.1016/j.cortex.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Research into the newly-coined 'condition' of 'aphantasia', an individual difference involving the self-reported absence of voluntary visual imagery, has taken off in recent years, and more and more people are 'self-diagnosing' as aphantasic. Yet, there is no consensus on whether aphantasia should really be described as a 'condition', and there is no battery of psychometric instruments to detect or 'diagnose' aphantasia. Instead, researchers currently rely on the Vividness of Visual Imagery Questionnaire (VVIQ) to 'diagnose' aphantasia. We review here fundamental and methodological problems affecting aphantasia research stemming from an inadequate focus on how we should define aphantasia, whether aphantasia is a pathological condition, and the extensive use of VVIQ as a 'diagnostic test' for aphantasia. Firstly, we draw attention to 'literature blindness' for visual imagery research from the 1960s-1990s concerning individual differences in visual imagery vividness. Secondly, despite aphantasia being defined as a 'condition' where voluntary visual imagery is absent as indicated by the lowest score on the VVIQ, aphantasia studies inconsistently employ samples comprised of a mixture of participants with no visual imagery and low visual imagery, and we argue that this hinders the uncovering of the underlying cause of aphantasia. Thirdly, the scores used to designate the boundary between aphantasia and non-aphantasia are arbitrary and differ between studies, compromising the possibility for cross-study comparison of results. Fourthly, the problems of 'diagnosing' aphantasia are not limited to the academic sphere, as one can 'self-diagnose' online, for example by using the variant-VVIQ on the Aphantasia Network website. However, the variant-VVIQ departs from the original in ways likely to impact validity and accuracy, which could lead people to falsely believe they have been 'diagnosed' with aphantasia by a scientifically-validated measure. Fifthly, we discuss the hypothesis that people who believe they have been 'diagnosed' with aphantasia might be vulnerable to health anxiety, distress, and stigma. We conclude with a discussion about some fundamental aspects of how to classify a disorder, and suggest the need for a new psychometric measure of aphantasia.
Collapse
Affiliation(s)
- Andrea Blomkvist
- Centre for Philosophy of Natural and Social Sciences, Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK.
| | - David F Marks
- 13200 Arles, Bouches-du-Rhône, Provence-Alpes-Côte d'Azur, France
| |
Collapse
|
9
|
Hu Y, Yu Q. Spatiotemporal dynamics of self-generated imagery reveal a reverse cortical hierarchy from cue-induced imagery. Cell Rep 2023; 42:113242. [PMID: 37831604 DOI: 10.1016/j.celrep.2023.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Visual imagery allows for the construction of rich internal experience in our mental world. However, it has remained poorly understood how imagery experience derives volitionally as opposed to being cue driven. Here, using electroencephalography and functional magnetic resonance imaging, we systematically investigate the spatiotemporal dynamics of self-generated imagery by having participants volitionally imagining one of the orientations from a learned pool. We contrast self-generated imagery with cue-induced imagery, where participants imagined line orientations based on associative cues acquired previously. Our results reveal overlapping neural signatures of cue-induced and self-generated imagery. Yet, these neural signatures display substantially differential sensitivities to the two types of imagery: self-generated imagery is supported by an enhanced involvement of the anterior cortex in representing imagery contents. By contrast, cue-induced imagery is supported by enhanced imagery representations in the posterior visual cortex. These results jointly support a reverse cortical hierarchy in generating and maintaining imagery contents in self-generated versus externally cued imagery.
Collapse
Affiliation(s)
- Yiheng Hu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Liu J, Bartolomeo P. Probing the unimaginable: The impact of aphantasia on distinct domains of visual mental imagery and visual perception. Cortex 2023; 166:338-347. [PMID: 37481856 DOI: 10.1016/j.cortex.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
Different individuals experience varying degrees of vividness in their visual mental images. The distribution of these variations across different imagery domains, such as object shape, color, written words, faces, and spatial relationships, remains unknown. To address this issue, we conducted a study with 117 healthy participants who reported different levels of imagery vividness. Of these participants, 44 reported experiencing absent or nearly absent visual imagery, a condition known as "aphantasia". These individuals were compared to those with typical (N = 42) or unusually vivid (N = 31) imagery ability. We used an online version of the French-language Battérie Imagination-Perception (eBIP), which consists of tasks tapping each of the above-mentioned domains, both in visual imagery and in visual perception. We recorded the accuracy and response times (RTs) of participants' responses. Aphantasic participants reached similar levels of accuracy on all tasks compared to the other groups (Bayesian repeated measures ANOVA, BF = .02). However, their RTs were slower in both imagery and perceptual tasks (BF = 266), and they had lower confidence in their responses on perceptual tasks (BF = 7.78e5). A Bayesian regression analysis revealed that there was an inverse correlation between subjective vividness and RTs for the entire participant group: higher levels of vividness were associated with faster RTs. The pattern was similar in all the explored domains. The findings suggest that individuals with congenital aphantasia experience a slowing in processing visual information in both imagery and perception, but the precision of their processing remains unaffected. The observed performance pattern lends support to the hypotheses that congenital aphantasia is primarily a deficit of phenomenal consciousness, or that it employs alternative strategies other than visualization to access preserved visual information.
Collapse
Affiliation(s)
- Jianghao Liu
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; Dassault Systèmes, Vélizy-Villacoublay, France.
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
11
|
Proverbio AM, Pischedda F. Measuring brain potentials of imagination linked to physiological needs and motivational states. Front Hum Neurosci 2023; 17:1146789. [PMID: 37007683 PMCID: PMC10050745 DOI: 10.3389/fnhum.2023.1146789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionWhile EEG signals reflecting motor and perceptual imagery are effectively used in brain computer interface (BCI) contexts, little is known about possible indices of motivational states. In the present study, electrophysiological markers of imagined motivational states, such as craves and desires were investigated.MethodsEvent-related potentials (ERPs) were recorded in 31 participants during perception and imagery elicited by the presentation of 360 pictograms. Twelve micro-categories of needs, subdivided into four macro-categories, were considered as most relevant for a possible BCI usage, namely: primary visceral needs (e.g., hunger, linked to desire of food); somatosensory thermal and pain sensations (e.g., cold, linked to desire of warm), affective states (e.g., fear: linked to desire of reassurance) and secondary needs (e.g., desire to exercise or listen to music). Anterior N400 and centroparietal late positive potential (LPP) were measured and statistically analyzed.ResultsN400 and LPP were differentially sensitive to the various volition stats, depending on their sensory, emotional and motivational poignancy. N400 was larger to imagined positive appetitive states (e.g., play, cheerfulness) than negative ones (sadness or fear). In addition, N400 was of greater amplitude during imagery of thermal and nociceptive sensations than other motivational or visceral states. Source reconstruction of electromagnetic dipoles showed the activation of sensorimotor areas and cerebellum for movement imagery, and of auditory and superior frontal areas for music imagery.DiscussionOverall, ERPs were smaller and more anteriorly distributed during imagery than perception, but showed some similarity in terms of lateralization, distribution, and category response, thus indicating some overlap in neural processing, as also demonstrated by correlation analyses. In general, anterior frontal N400 provided clear markers of subjects’ physiological needs and motivational states, especially cold, pain, and fear (but also sadness, the urgency to move, etc.), than can signal life-threatening conditions. It is concluded that ERP markers might potentially allow the reconstruction of mental representations related to various motivational states through BCI systems.
Collapse
|
12
|
Khatin-Zadeh O, Farsani D, Hu J, Eskandari Z, Banaruee H. Gestural Embodiment of Intensifiers in Iconic, Metaphoric, and Beat Gestures. Behav Sci (Basel) 2023; 13:bs13020174. [PMID: 36829403 PMCID: PMC9952557 DOI: 10.3390/bs13020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
This study aimed to examine the gestural embodiment of intensifiers in iconic and metaphoric gestures when these words are used with literal and metaphoric statements. We asked a group of Persian native speakers to listen to and then retell a set of Persian stories. In these stories, a number of intensifiers were used with literal and metaphoric sentences. The results showed that when an intensifier was used with a literal sentence, there was a higher probability of using an iconic or beat gesture than when there was no intensifier in the sentence. Also, when an intensifier was used with a metaphoric sentence, there was a higher probability of using a metaphoric or beat gesture than when the sentence contained no intensifier. These results suggested that an intensifier in a literal or metaphoric sentence can strengthen the mental simulation and the embodiment of objects, ideas, or situations. When an intensifier is used with a literal or metaphoric sentence, the strength of activation in the premotor areas may be amplified and spread to motor areas. In contrast, when no such intensifier is used in a literal or metaphoric sentence, there is a higher probability of simulation in premotor areas without spreading to the primary motor areas. The production of an internal force and expressing emphasis are two other possibilities that may explain the higher use of gestures with intensifiers.
Collapse
Affiliation(s)
- Omid Khatin-Zadeh
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Danyal Farsani
- Department of Teacher Education, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence:
| | - Jiehui Hu
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zahra Eskandari
- Department of English, Chabahar Maritime University, Chabahar 99717-56499, Iran
| | - Hassan Banaruee
- Department of English, American, and Celtic Studies, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
13
|
The Impact of Manner Adverb on the Gestural Embodiment of Actions Described by Literal and Metaphoric Sentences. Behav Sci (Basel) 2023; 13:bs13020155. [PMID: 36829384 PMCID: PMC9952255 DOI: 10.3390/bs13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The aim of this study was to examine the impact of manner adverbs on the gestural embodiment of actions that are described by literal and metaphoric sentences. We asked a group of participants to read and then orally retell four stories. Each story had two versions. In one version, literal and metaphoric sentences describing literal and metaphorical actions did not include manner adverbs. In the other version of each story, the same sentences included a manner adverb that provided more information about literal or metaphoric actions. Participants' reproductions of stories were recorded with a camera and were analyzed to make a comparison between gestures that accompanied sentences that included a manner adverb and sentences that did not include a manner adverb. The results showed that when literal and metaphoric sentences included a manner adverb, there was a higher probability of using a gesture than when these sentences were used without a manner adverb. In other words, using a manner adverb increases the probability of using a gesture with literal and metaphorical sentences. Therefore, it is suggested that adding a manner adverb to a literal or metaphoric sentence can strengthen the process of embodiment of the action described in that sentence. We present two explanations for this observation.
Collapse
|
14
|
Kubon J, Romagnano V, Sokolov AN, Fallgatter AJ, Braun C, Pavlova MA. Neural circuits underpinning face tuning in male depression. Cereb Cortex 2022; 33:3827-3839. [PMID: 35989312 DOI: 10.1093/cercor/bhac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Reading bodies and faces is essential for efficient social interactions, though it may be thought-provoking for individuals with depression. Yet aberrations in the face sensitivity and underwriting neural circuits are not well understood, in particular, in male depression. Here, we use cutting-edge analyses of time course and dynamic topography of gamma oscillatory neuromagnetic cortical activity during administration of a task with Arcimboldo-like images. No difference in face tuning was found between individuals with depression and their neurotypical peers. Furthermore, this behavioral outcome nicely dovetails with magnetoencephalographic data: at early processing stages, the gamma oscillatory response to images resembling a face was rather similar in patients and controls. These bursts originated primarily from the right medioventral occipital cortex and lateral occipital cortex. At later processing stages, however, its topography altered remarkably in depression with profound engagement of the frontal circuits. Yet the primary difference in depressive individuals as compared with their neurotypical peers occurred over the left middle temporal cortices, a part of the social brain, engaged in feature integration and meaning retrieval. The outcome suggests compensatory recruitment of neural resources in male depression.
Collapse
Affiliation(s)
- Julian Kubon
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Christoph Braun
- MEG Center, Medical School and University Hospital, Eberhard Karls University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| |
Collapse
|
15
|
The connectional anatomy of visual mental imagery: evidence from a patient with left occipito-temporal damage. Brain Struct Funct 2022; 227:3075-3083. [PMID: 35622159 DOI: 10.1007/s00429-022-02505-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023]
Abstract
Most of us can use our "mind's eye" to mentally visualize things that are not in our direct line of sight, an ability known as visual mental imagery. Extensive left temporal damage can impair patients' visual mental imagery experience, but the critical locus of lesion is unknown. Our recent meta-analysis of 27 fMRI studies of visual mental imagery highlighted a well-delimited region in the left lateral midfusiform gyrus, which was consistently activated during visual mental imagery, and which we called the Fusiform Imagery Node (FIN). Here, we describe the connectional anatomy of FIN in neurotypical participants and in RDS, a right-handed patient with an extensive occipito-temporal stroke in the left hemisphere. The stroke provoked right homonymous hemianopia, alexia without agraphia, and color anomia. Despite these deficits, RDS had normal subjective experience of visual mental imagery and reasonably preserved behavioral performance on tests of visual mental imagery of object shape, object color, letters, faces, and spatial relationships. We found that the FIN was spared by the lesion. We then assessed the connectional anatomy of the FIN in the MNI space and in the patient's native space, by visualizing the fibers of the inferior longitudinal fasciculus (ILF) and of the arcuate fasciculus (AF) passing through the FIN. In both spaces, the ILF connected the FIN with the anterior temporal lobe, and the AF linked it with frontal regions. Our evidence is consistent with the hypothesis that the FIN is a node of a brain network dedicated to voluntary visual mental imagery. The FIN could act as a bridge between visual information and semantic knowledge processed in the anterior temporal lobe and in the language circuits.
Collapse
|
16
|
Imai A, Matsuoka T, Kato Y, Narumoto J. Diagnostic performance and neural basis of the combination of free- and pre-drawn Clock Drawing Test. Int J Geriatr Psychiatry 2022; 37. [PMID: 35278001 DOI: 10.1002/gps.5699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES This study aimed to clarify the diagnostic performance and neural basis of the Clock Drawing Test (CDT) combining free- and pre-drawn methods. METHODS This retrospective study included 165 participants (91 with Alzheimer disease [AD], 52 with amnestic mild cognitive impairment [aMCI], and 22 healthy controls [HC]), who were divided into four groups according to their free- and pre-drawn CDT scores: group 1, could do both; group 2, impaired in both; group 3, impaired in pre-drawn CDT; and group 4, impaired in free-drawn CDT. The diagnostic performances of the free-drawn, pre-drawn, and combination methods were compared using receiver operating characteristics analysis; in voxel-based morphometry analysis, the gray matter (GM) volume of groups 2-4 were compared with that of group 1. RESULTS The area under the curve of the combination method was greater than that of the free- or pre-drawn method alone when comparing AD with HC or aMCI. Group 2 had a significantly smaller GM volume in the bilateral temporal lobes than group 1. Group 3 had a trend toward smaller GM volumes in the right temporal lobe when a liberal threshold was applied. Group 4 had significantly smaller GM volumes in the left temporal lobe than group 1. CONCLUSIONS This study suggests that the combination method may be able to screen for a wider range of brain dysfunction. Combined use of free- and pre-drawn CDT may be useful for screening for AD and its early detection and treatment.
Collapse
Affiliation(s)
- Ayu Imai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuka Kato
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Asymmetry of brain structure and function: 40 years after Sperry's Nobel Prize. Brain Struct Funct 2021; 227:421-424. [PMID: 34779912 DOI: 10.1007/s00429-021-02426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Keogh R, Wicken M, Pearson J. Visual working memory in aphantasia: Retained accuracy and capacity with a different strategy. Cortex 2021; 143:237-253. [PMID: 34482017 DOI: 10.1016/j.cortex.2021.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
Visual working memory paradigms involve retaining and manipulating visual information in mind over a period of seconds. Evidence suggests that visual imagery (sensory recruitment) is a strategy used by many to retain visual information during such tasks, leading some researchers to propose that visual imagery and visual working memory may be one and the same. If visual imagery is essential to visual working memory task performance there should be large ramifications for a special population of individuals who do not experience visual imagery, aphantasia. Here we assessed visual working memory task performance in this population using a number of different lab and clinical working memory tasks. We found no differences in capacity limits for visual, general number or spatial working memory for aphantasic individuals compared to controls. Further, aphantasic individuals showed no significant differences in performance on visual components of clinical working memory tests as compared to verbal components. However, there were significant differences in the reported strategies used by aphantasic individuals across all memory tasks. Additionally, aphantasic individual's visual memory accuracy did not demonstrate a significant oblique orientation effect, which is proposed to occur due to sensory recruitment, further supporting their non-visual imagery strategy reports. Taken together these data demonstrate that aphantasic individuals are not impaired on visual working memory tasks, suggesting visual imagery and working memory are not one and the same, with imagery (and sensory recruitment) being just one of the tools that can be used to solve visual working memory tasks.
Collapse
Affiliation(s)
- Rebecca Keogh
- University of New South Wales, School of Psychology, Australia; Macquarie University, Department of Cognitive Sciences, Australia.
| | - Marcus Wicken
- University of New South Wales, School of Psychology, Australia
| | - Joel Pearson
- University of New South Wales, School of Psychology, Australia
| |
Collapse
|
19
|
Neurofunctional Symmetries and Asymmetries during Voluntary out-of- and within-Body Vivid Imagery Concurrent with Orienting Attention and Visuospatial Detection. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We explored whether two visual mental imagery experiences may be differentiated by electroencephalographic (EEG) and performance interactions with concurrent orienting external attention (OEA) to stimulus location and subsequent visuospatial detection. We measured within-subject (N = 10) event-related potential (ERP) changes during out-of-body imagery (OBI)—vivid imagery of a vertical line outside of the head/body—and within-body imagery (WBI)—vivid imagery of the line within one’s own head. Furthermore, we measured ERP changes and line offset Vernier acuity (hyperacuity) performance concurrent with those imagery, compared to baseline detection without imagery. Relative to OEA baseline, OBI yielded larger N200 and P300, whereas WBI yielded larger P50, P100, N400, and P800. Additionally, hyperacuity dropped significantly when concurrent with both imagery types. Partial least squares analysis combined behavioural performance, ERPs, and/or event-related EEG band power (ERBP). For both imagery types, hyperacuity reduction correlated with opposite frontal and occipital ERP amplitude and polarity changes. Furthermore, ERP modulation and ERBP synchronizations for all EEG frequencies correlated inversely with hyperacuity. Dipole Source Localization Analysis revealed unique generators in the left middle temporal gyrus (WBI) and in the right frontal middle gyrus (OBI), whereas the common generators were in the left precuneus and middle occipital cortex (cuneus). Imagery experiences, we conclude, can be identified by symmetric and asymmetric combined neurophysiological-behavioural patterns in interactions with the width of attentional focus.
Collapse
|