1
|
Goldenkoff ER, Deluisi JA, Lee TG, Hampstead BM, Taylor SF, Polk TA, Vesia M. Repeated spaced cortical paired associative stimulation promotes additive plasticity in the human parietal-motor circuit. Clin Neurophysiol 2024; 166:202-210. [PMID: 39182339 DOI: 10.1016/j.clinph.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Repeated spaced sessions of repetitive transcranial magnetic stimulation (TMS) to the human primary motor cortex can lead to dose-dependent increases in motor cortical excitability. However, this has yet to be demonstrated in a defined cortical circuit. We aimed to examine the effects of repeated spaced cortical paired associative stimulation (cPAS) on excitability in the motor cortex. METHODS cPAS was delivered to the primary motor cortex (M1) and posterior parietal cortex (PPC) with two coils. In the multi-dose condition, three sessions of cPAS were delivered 50-min apart. The single-dose condition had one session of cPAS, followed by two sessions of a control cPAS protocol. Motor-evoked potentials were evaluated before and up to 40 min after each cPAS session as a measure of cortical excitability. RESULTS Compared to a single dose of cPAS, motor cortical excitability significantly increased after multi-dose cPAS. Increasing the number of cPAS sessions resulted in a cumulative, dose-dependent effect on excitability in the motor cortex, with each successive cPAS session leading to notable increases in potentiation. CONCLUSION Repeated spaced cPAS sessions summate to increase motor cortical excitability induced by single cPAS. SIGNIFICANCE Repeated spaced cPAS could potentially restore abilities lost due to disorders like stroke.
Collapse
Affiliation(s)
| | | | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
2
|
Cai G, Xu J, Ding Q, Lin T, Chen H, Wu M, Li W, Chen G, Xu G, Lan Y. Electroencephalography oscillations can predict the cortical response following theta burst stimulation. Brain Res Bull 2024; 208:110902. [PMID: 38367675 DOI: 10.1016/j.brainresbull.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Continuous theta burst stimulation and intermittent theta burst stimulation are clinically popular models of repetitive transcranial magnetic stimulation. However, they are limited by high variability between individuals in cortical excitability changes following stimulation. Although electroencephalography oscillations have been reported to modulate the cortical response to transcranial magnetic stimulation, their association remains unclear. This study aims to explore whether machine learning models based on EEG oscillation features can predict the cortical response to transcranial magnetic stimulation. METHOD Twenty-three young, healthy adults attended two randomly assigned sessions for continuous and intermittent theta burst stimulation. In each session, ten minutes of resting-state electroencephalography were recorded before delivering brain stimulation. Participants were classified as responders or non-responders based on changes in resting motor thresholds. Support vector machines and multi-layer perceptrons were used to establish predictive models of individual responses to transcranial magnetic stimulation. RESULT Among the evaluated algorithms, support vector machines achieved the best performance in discriminating responders from non-responders for intermittent theta burst stimulation (accuracy: 91.30%) and continuous theta burst stimulation (accuracy: 95.66%). The global clustering coefficient and global characteristic path length in the beta band had the greatest impact on model output. CONCLUSION These findings suggest that EEG features can serve as markers of cortical response to transcranial magnetic stimulation. They offer insights into the association between neural oscillations and variability in individuals' responses to transcranial magnetic stimulation, aiding in the optimization of individualized protocols.
Collapse
Affiliation(s)
- Guiyuan Cai
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Jiayue Xu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Qian Ding
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China; Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 519041 China
| | - Tuo Lin
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Hongying Chen
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Manfeng Wu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Wanqi Li
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Gengbin Chen
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China; Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, 510500 China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 519041 China.
| | - Yue Lan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China; Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou 510013, China.
| |
Collapse
|
3
|
Mariner J, Loetscher T, Hordacre B. Parietal Cortex Connectivity as a Marker of Shift in Spatial Attention Following Continuous Theta Burst Stimulation. Front Hum Neurosci 2021; 15:718662. [PMID: 34566602 PMCID: PMC8455944 DOI: 10.3389/fnhum.2021.718662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Non-invasive brain stimulation is a useful tool to probe brain function and provide therapeutic treatments in disease. When applied to the right posterior parietal cortex (PPC) of healthy participants, it is possible to temporarily shift spatial attention and mimic symptoms of spatial neglect. However, the field of brain stimulation is plagued by issues of high response variability. The aim of this study was to investigate baseline functional connectivity as a predictor of response to an inhibitory brain stimulation paradigm applied to the right PPC. In fourteen healthy adults (9 female, aged 24.8 ± 4.0 years) we applied continuous theta burst stimulation (cTBS) to suppress activity in the right PPC. Resting state functional connectivity was quantified by recording electroencephalography and assessing phase consistency. Spatial attention was assessed before and after cTBS with the Landmark Task. Finally, known determinants of response to brain stimulation were controlled for to enable robust investigation of the influence of resting state connectivity on cTBS response. We observed significant inter-individual variability in the behavioral response to cTBS with 53.8% of participants demonstrating the expected rightward shift in spatial attention. Baseline high beta connectivity between the right PPC, dorsomedial pre-motor region and left temporal-parietal region was strongly associated with cTBS response (R2 = 0.51). Regression analysis combining known cTBS determinants (age, sex, motor threshold, physical activity, stress) found connectivity between the right PPC and left temporal-parietal region was the only significant variable (p = 0.011). These results suggest baseline resting state functional connectivity is a strong predictor of a shift in spatial attention following cTBS. Findings from this study help further understand the mechanism by which cTBS modifies cortical function and could be used to improve the reliability of brain stimulation protocols.
Collapse
Affiliation(s)
- Jessica Mariner
- Innovation, IMPlementation And Clinical Translation in Health (IIMPACT in Health), Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Tobias Loetscher
- Behavior-Brain-Body Research Center, Justice and Society, University of South Australia, Adelaide, SA, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation And Clinical Translation in Health (IIMPACT in Health), Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|