1
|
Yu Y, Yu J, Wu B, Wang Y, Li Y, Yang Y, Yu Y, Feng J. Enriched environment mitigates cognitive impairment in pre-adolescent mice following repeated neonatal sevoflurane exposure by reducing TTBK1 expression and Tau phosphorylation. Neuropharmacology 2025; 268:110327. [PMID: 39892471 DOI: 10.1016/j.neuropharm.2025.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Enriched environment (EE) is a living setting that provides visual, olfactory, tactile, and cognitive stimulation and has demonstrated potential treatment results in neurodevelopmental diseases. We aimed to elucidate whether the neurodevelopmental toxicity of sevoflurane is linked to TTBK1 and Tau phosphorylation, as well as to evaluate the neuroprotective mechanism of EE on mice following sevoflurane exposure. Female mice were anesthetized at postnatal day 6 (P6) or P60 with 3% sevoflurane for 2 h daily for three days. P6 mice received intraperitoneal injections of the TTBK1 inhibitor WHI-180 before anesthesia. The EE exposure was 2 h daily from P9 to P29. Cognitive function was assessed using the Morris water maze and novel object recognition tests. Hippocampal and cerebral cortical tissues were collected to measure levels of TTBK1, Tau-PS422, AT8, T22, and total Tau. Co-localization of TTBK1 and Tau-PS422 was identified via immunofluorescence. The dendritic spine count and shape classification were analyzed by Golgi staining. The results indicated elevated levels of TTBK1, phosphorylated Tau-PS422, and AT8 in neonatal mice compared to adults. Sevoflurane increased the levels of TTBK1 and Tau phosphorylation, causing cognitive impairment. Both TTBK1 inhibitor and EE reversed the sevoflurane-induced increase in TTBK1 and phosphorylated Tau levels, decrease in dendritic spine density and maturity, and cognitive impairment. In conclusion, the overexpression of TTBK1 and phosphorylated Tau in neonatal mice brain contributed to cognitive dysfunction after repeated sevoflurane anesthesia. EE played a cerebro-protective role by inhibiting the TTBK1/Tau pathway and promoting the development of dendritic spines after sevoflurane anesthesia.
Collapse
Affiliation(s)
- Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Jiafeng Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Banglin Wu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, 444300, PR China
| | - Yuanlin Wang
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Yun Li
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Yongyan Yang
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China.
| | - Jingyu Feng
- Department of Anesthesia, Tianjin Medical University General Hospital, PR China; Tianjin Institute of Anesthesiology, Tianjin, 300052, PR China.
| |
Collapse
|
2
|
Laroy M, Emsell L, Vandenbulcke M, Bouckaert F. Mapping Electroconvulsive Therapy Induced Neuroplasticity: Towards a Multilevel Understanding of the Available Clinical Literature - A Scoping Review. Neurosci Biobehav Rev 2025:106143. [PMID: 40222573 DOI: 10.1016/j.neubiorev.2025.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Since its introduction in 1938, the precise mechanism underlying the efficacy of electroconvulsive therapy (ECT) in treating severe psychiatric disorders remains elusive. This paper presents a comprehensive scoping review aimed to collate and summarize findings from clinical studies on neuroplastic changes induced by ECT. The review categorizes neuroplasticity into molecular, structural, and functional domains, offering a multilevel view of current research and its limitations. Molecular findings detail the varied responses of neurotrophic factors and neurotransmitters post-ECT, highlighting inconsistent evidence on their clinical relevance. Structural neuroplasticity is explored through changes in brain volume, cortical thickness, and white matter properties, presenting ECT as a potent stimulator of brain architecture alterations. Functional plasticity examines ECT's impact on brain function through diverse neuroimaging techniques, suggesting significant yet complex modifications in brain network connectivity and activity. The review emphasizes the multilevel nature of these neuroplasticity levels and their collective role in ECT's therapeutic outcomes. Methodological considerations-including sample size, patient heterogeneity, and variability in assessment timing-emerge as recurring themes in the literature, underscoring the need for more consistent and rigorous research designs. By outlining a cohesive framework of changes in neuroplasticity due to ECT, this review provides initial steps towards a deeper comprehension of ECT's mechanisms.
Collapse
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000 Leuven, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium.
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000 Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000 Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000 Leuven, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000 Leuven, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
3
|
Wang K, Wei H, Yang L, Zhang S, Cheng Y, Li C, Jia P, Zhang Y, Zhang Y, Fan P, Wang N, Lu H, Chen X, Liu Y, Zhang P. Pretreatment with tetramethylpyrazine alleviated the impairment of learning and memory induced by sevoflurane exposure in neonatal rats. Neuroscience 2025; 565:457-467. [PMID: 39542344 DOI: 10.1016/j.neuroscience.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Sevoflurane impairs learning and memory of the developing brain. However, strategies to mitigate these detrimental effects have been scarce. Herein, we investigated whether tetramethylpyrazine pretreatment could alleviate the impairment of learning and memory and its underlying mechanism in sevoflurane-exposed neonatal rats. Postnatal 7-day Sprague-Dawley (SD) rats or primary hippocampal neurons were pretreated with tetramethylpyrazine and then exposed to sevoflurane. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and lactate dehydrogenase (LDH) assays were used to detect neuronal injury. Learning and memory function were evaluated by novel object recognition and Morris water maze tests. Long-term potentiation (LTP) was recorded to evaluate synaptic plasticity electrophysiologically in the hippocampal slices. Golgi-Cox staining or PSD95 immunochemistry was used to detect the morphology of dendritic spines. Western blotting was employed to assess the expressions of cleaved Caspase-3, PSD95, N-methyl-D-aspartate receptor (NMDAR) subunits NMDAR1, NMDAR2A and NMDAR2B in the hippocampus or cultured neurons. It was found that neonatal exposure of sevoflurane impaired learning and memory, increased neuronal apoptosis, altered the morphology of dendritic spines, upregulated the expressions of NMDAR2A and PSD95, and induced LTP deficits. Pretreatment with tetramethylpyrazine not only alleviated impairment of learning and memory, but also improved sevoflurane-induced changes in neuronal damage, dendritic spine morphology, NMDAR2A and PSD95 expressions, as well as LTP. These findings indicated that pretreatment with tetramethylpyrazine alleviated the impairment of learning and memory induced by sevoflurane through improvement of hippocampal synaptic plasticity in neonatal rats.
Collapse
Affiliation(s)
- Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Liufei Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shuyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yiqin Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Chen Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pei Fan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
4
|
Albadawi EA. Structural and functional changes in the hippocampus induced by environmental exposures. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2025; 30:5-19. [PMID: 39800422 PMCID: PMC11753596 DOI: 10.17712/nsj.2025.1.20240052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors. It examines changes in volume, architecture, neurogenesis, synaptic plasticity, and gene expression and highlights critical periods of vulnerability to environmental influences impacting cognition and behavior. It also investigates underlying mechanisms such as glucocorticoid signaling, epigenetic alterations, and neural circuit adaptations. Understanding how the HC reacts to various environmental exposures is vital for developing strategies to enhance cognitive resilience and mitigate negative effects on this crucial brain region. Further research is needed to identify protective and risk factors and create effective interventions.
Collapse
Affiliation(s)
- Emad A. Albadawi
- From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Shi Q, Wang X, Pradhan AK, Fenzl T, Rammes G. The Effects of Sevoflurane and Aβ Interaction on CA1 Dendritic Spine Dynamics and MEGF10-Related Astrocytic Synapse Engulfment. Int J Mol Sci 2024; 25:7393. [PMID: 39000499 PMCID: PMC11242502 DOI: 10.3390/ijms25137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
General anesthetics may accelerate the neuropathological changes related to Alzheimer's disease (AD), of which amyloid beta (Aβ)-induced toxicity is one of the main causes. However, the interaction of general anesthetics with different Aβ-isoforms remains unclear. In this study, we investigated the effects of sevoflurane (0.4 and 1.2 maximal alveolar concentration (MAC)) on four Aβ species-induced changes on dendritic spine density (DSD) in hippocampal brain slices of Thy1-eGFP mice and multiple epidermal growth factor-like domains 10 (MEGF10)-related astrocyte-mediated synaptic engulfment in hippocampal brain slices of C57BL/6 mice. We found that both sevoflurane and Aβ downregulated CA1-dendritic spines. Moreover, compared with either sevoflurane or Aβ alone, pre-treatment with Aβ isoforms followed by sevoflurane application in general further enhanced spine loss. This enhancement was related to MEGF10-related astrocyte-dependent synaptic engulfment, only in AβpE3 + 1.2 MAC sevoflurane and 3NTyrAβ + 1.2 MAC sevoflurane condition. In addition, removal of sevoflurane alleviated spine loss in Aβ + sevoflurane. In summary, these results suggest that both synapses and astrocytes are sensitive targets for sevoflurane; in the presence of 3NTyrAβ, 1.2 MAC sevoflurane alleviated astrocyte-mediated synaptic engulfment and exerted a lasting effect on dendritic spine remodeling.
Collapse
Affiliation(s)
- Qinfang Shi
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Arpit Kumar Pradhan
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
- Graduate School of Systemic Neuroscience, Ludwig Maximilian University of Munich, 82152 Munich, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (Q.S.); (A.K.P.); (T.F.)
| |
Collapse
|
6
|
Truglia B, Carbone N, Ghadre I, Vallero S, Zito M, Zizzi EA, Deriu MA, Tuszynski JA. An In Silico Investigation of the Molecular Interactions between Volatile Anesthetics and Actin. Pharmaceuticals (Basel) 2023; 17:37. [PMID: 38256871 PMCID: PMC10819646 DOI: 10.3390/ph17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Sara Vallero
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | | | | | | | - J. A. Tuszynski
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
7
|
Dubey V, Roy A, Dixit AB, Tripathi M, Pandey S, Jain S, Chandra PS, Banerjee J. Dendritic reorganization in the hippocampus, anterior temporal lobe, and frontal neocortex of lithium-pilocarpine induced Status Epilepticus (SE). J Chem Neuroanat 2023; 133:102329. [PMID: 37659616 DOI: 10.1016/j.jchemneu.2023.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Status Epilepticus (SE) is a distributed network disorder, which involves the hippocampus and extra-hippocampal structures. Epileptogenesis in SE is tightly associated with neurogenesis, plastic changes and neural network reorganization facilitating hyper-excitability. On the other hand, dendritic spines are known to be the excitatory synapse in the brain. Therefore, dendritic spine dynamics could play an intricate role in these network alterations. However, the exact reason behind these structural changes in SE are elusive. In the present study, we have investigated the aforementioned hypothesis in the lithium-pilocarpine treated rat model of SE. We have examined cytoarchitectural and morphological changes using hematoxylin-eosin and Golgi-Cox staining in three different brain regions viz. CA1 pyramidal layer of the dorsal hippocampus, layer V pyramidal neurons of anterior temporal lobe (ATL), and frontal neocortex of the same animals. We observed macrostructural and layer-wise alteration of the pyramidal layer mainly in the hippocampus and ATL of SE rats, which is associated with sclerosis in the hippocampus. Sholl analysis exhibited partial dendritic plasticity in apical and basal dendrites of pyramidal cells as compared to the saline-treated weight-/age-matched control group. These findings indicate that region-specific alterations in dendritogenesis may contribute to the development of independent epileptogenic networks in the hippocampus, ATL, and frontal neocortex of SE rats.
Collapse
Affiliation(s)
- Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Avishek Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shivam Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Bárez-López S, Gadd GJ, Pauža AG, Murphy D, Greenwood MP. Isoflurane Rapidly Modifies Synaptic and Cytoskeletal Phosphoproteomes of the Supraoptic Nucleus of the Hypothalamus and the Cortex. Neuroendocrinology 2023; 113:1008-1023. [PMID: 37271138 DOI: 10.1159/000531352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Despite the widespread use of general anaesthetics, the mechanisms mediating their effects are still not understood. Although suppressed in most parts of the brain, neuronal activity, as measured by FOS activation, is increased in the hypothalamic supraoptic nucleus (SON) by numerous general anaesthetics, and evidence points to this brain region being involved in the induction of general anaesthesia (GA) and natural sleep. Posttranslational modifications of proteins, including changes in phosphorylation, enable fast modulation of protein function which could be underlying the rapid effects of GA. In order to identify potential phosphorylation events in the brain-mediating GA effects, we have explored the phosphoproteome responses in the rat SON and compared these to cingulate cortex (CC) which displays no FOS activation in response to general anaesthetics. METHODS Adult Sprague-Dawley rats were treated with isoflurane for 15 min. Proteins from the CC and SON were extracted and processed for nano-LC mass spectrometry (LC-MS/MS). Phosphoproteomic determinations were performed by LC-MS/MS. RESULTS We found many changes in the phosphoproteomes of both the CC and SON in response to 15 min of isoflurane exposure. Pathway analysis indicated that proteins undergoing phosphorylation adaptations are involved in cytoskeleton remodelling and synaptic signalling events. Importantly, changes in protein phosphorylation appeared to be brain region specific suggesting that differential phosphorylation adaptations might underlie the different neuronal activity responses to GA between the CC and SON. CONCLUSION In summary, these data suggest that rapid posttranslational modifications in proteins involved in cytoskeleton remodelling and synaptic signalling events might mediate the central mechanisms mediating GA.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - George J Gadd
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
- Translational Cardio-Respiratory Research Group, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Granak S, Tuckova K, Kutna V, Vojtechova I, Bajkova L, Petrasek T, Ovsepian SV. Developmental effects of constitutive mTORC1 hyperactivity and environmental enrichment on structural synaptic plasticity and behaviour in a rat model of autism spectrum disorder. Eur J Neurosci 2023; 57:17-31. [PMID: 36380588 DOI: 10.1111/ejn.15864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition causing a range of social and communication impairments. Although the role of multiple genes and environmental factors has been reported, the effects of the interplay between genes and environment on the onset and progression of the disease remains elusive. We housed wild-type (Tsc2+/+) and tuberous sclerosis 2 deficient (Tsc2+/-) Eker rats (ASD model) in individually ventilated cages or enriched conditions and conducted a series of behavioural tests followed by the histochemical analysis of dendritic spines and plasticity in three age groups (days 45, 90 and 365). The elevated plus-maze test revealed a reduction of anxiety by enrichment, whereas the mobility of young and adult Eker rats in the open field was lower compared to the wild type. In the social interaction test, an enriched environment reduced social contact in the youngest group and increased anogenital exploration in 90- and 365-day-old rats. Self-grooming was increased by environmental enrichment in young and adult rats and decreased in aged Eker rats. Dendritic spine counts revealed an increased spine density in the cingulate gyrus in adult Ekers irrespective of housing conditions, whereas spine density in hippocampal pyramidal neurons was comparable across all genotypes and groups. Morphometric analysis of dendritic spines revealed age-related changes in spine morphology and density, which were responsive to animal genotype and environment. Taken together, our findings suggest that under TSC2 haploinsufficiency and mTORC1 hyperactivity, the expression of behavioural signs and neuroplasticity in Eker rats can be differentially influenced by the developmental stage and environment.
Collapse
Affiliation(s)
- Simon Granak
- National Institute of Mental Health, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Klecany, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Viera Kutna
- National Institute of Mental Health, Klecany, Czech Republic
| | - Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic.,Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Laura Bajkova
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic.,Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Saak V Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, UK
| |
Collapse
|
10
|
Heck N, Santos MD. Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights. ADVANCES IN NEUROBIOLOGY 2023; 34:311-348. [PMID: 37962799 DOI: 10.1007/978-3-031-36159-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The central nervous system is composed of neural ensembles, and their activity patterns are neural correlates of cognitive functions. Those ensembles are networks of neurons connected to each other by synapses. Most neurons integrate synaptic signal through a remarkable subcellular structure called spine. Dendritic spines are protrusions whose diverse shapes make them appear as a specific neuronal compartment, and they have been the focus of studies for more than a century. Soon after their first description by Ramón y Cajal, it has been hypothesized that spine morphological changes could modify neuronal connectivity and sustain cognitive abilities. Later studies demonstrated that changes in spine density and morphology occurred in experience-dependent plasticity during development, and in clinical cases of mental retardation. This gave ground for the assumption that dendritic spines are the particular locus of cerebral plasticity. With the discovery of synaptic long-term potentiation, a research program emerged with the aim to establish whether dendritic spine plasticity could explain learning and memory. The development of live imaging methods revealed on the one hand that dendritic spine remodeling is compatible with learning process and, on the other hand, that their long-term stability is compatible with lifelong memories. Furthermore, the study of the mechanisms of spine growth and maintenance shed new light on the rules of plasticity. In behavioral paradigms of memory, spine formation or elimination and morphological changes were found to correlate with learning. In a last critical step, recent experiments have provided evidence that dendritic spines play a causal role in learning and memory.
Collapse
Affiliation(s)
- Nicolas Heck
- Laboratory Neurosciences Paris Seine, Sorbonne Université, Paris, France.
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Beta-Site Amyloid Precursor Protein-Cleaving Enzyme Inhibition Partly Restores Sevoflurane-Induced Deficits on Synaptic Plasticity and Spine Loss. Int J Mol Sci 2022; 23:ijms23126637. [PMID: 35743082 PMCID: PMC9223703 DOI: 10.3390/ijms23126637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Evidence indicates that inhalative anesthetics enhance the β-site amyloid precursor protein (APP)-cleaving enzyme (BACE) activity, increase amyloid beta 1-42 (Aβ1–42) aggregation, and modulate dendritic spine dynamics. However, the mechanisms of inhalative anesthetics on hippocampal dendritic spine plasticity and BACE-dependent APP processing remain unclear. In this study, hippocampal slices were incubated with equipotent isoflurane (iso), sevoflurane (sevo), or xenon (Xe) with/without pretreatment of the BACE inhibitor LY2886721 (LY). Thereafter, CA1 dendritic spine density, APP processing-related molecule expressions, nectin-3 levels, and long-term potentiation (LTP) were tested. The nectin-3 downregulation on LTP and dendritic spines were evaluated. Sevo treatment increased hippocampal mouse Aβ1–42 (mAβ1–42), abolished CA1-LTP, and decreased spine density and nectin-3 expressions in the CA1 region. Furthermore, CA1-nectin-3 knockdown blocked LTP and reduced spine density. Iso treatment decreased spine density and attenuated LTP. Although Xe blocked LTP, it did not affect spine density, mAβ1–42, or nectin-3. Finally, antagonizing BACE activity partly restored sevo-induced deficits. Taken together, our study suggests that sevo partly elevates BACE activity and interferes with synaptic remodeling, whereas iso mildly modulates synaptic changes in the CA1 region of the hippocampus. On the other hand, Xe does not alternate dendritic spine remodeling.
Collapse
|