1
|
Ocklenburg S, El Basbasse Y, Ströckens F, Müller-Alcazar A. Hemispheric asymmetries and brain size in mammals. Commun Biol 2023; 6:521. [PMID: 37188844 PMCID: PMC10185570 DOI: 10.1038/s42003-023-04894-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Hemispheric asymmetries differ considerably across species, but the neurophysiological base of this variation is unclear. It has been suggested that hemispheric asymmetries evolved to bypass interhemispheric conduction delay when performing time-critical tasks. This implies that large brains should be more asymmetric. We performed preregistered cross-species meta-regressions with brain mass and neuron number as predictors for limb preferences, a behavioral marker of hemispheric asymmetries, in mammals. Brain mass and neuron number showed positive associations with rightward limb preferences but negative associations with leftward limb preferences. No significant associations were found for ambilaterality. These results are only partly in line with the idea that conduction delay is the critical factor that drives the evolution of hemispheric asymmetries. They suggest that larger-brained species tend to shift towards more right-lateralized individuals. Therefore, the need for coordination of lateralized responses in social species needs to be considered in the context of the evolution of hemispheric asymmetries.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany.
- Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
- Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Yasmin El Basbasse
- Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Anett Müller-Alcazar
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Sokołowska B. Impact of Virtual Reality Cognitive and Motor Exercises on Brain Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4150. [PMID: 36901160 PMCID: PMC10002333 DOI: 10.3390/ijerph20054150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Innovative technologies of the 21st century have an extremely significant impact on all activities of modern humans. Among them, virtual reality (VR) offers great opportunities for scientific research and public health. The results of research to date both demonstrate the beneficial effects of using virtual worlds, and indicate undesirable effects on bodily functions. This review presents interesting recent findings related to training/exercise in virtual environments and its impact on cognitive and motor functions. It also highlights the importance of VR as an effective tool for assessing and diagnosing these functions both in research and modern medical practice. The findings point to the enormous future potential of these rapidly developing innovative technologies. Of particular importance are applications of virtual reality in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Beata Sokołowska
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Oka N, Sakoh M, Hirayama M, Niiyama M, Gjedde A. Relationship between manual dexterity and left-right asymmetry of anatomical and functional properties of corticofugal tracts revealed by T2-weighted brain images. Sci Rep 2023; 13:2738. [PMID: 36792678 PMCID: PMC9932061 DOI: 10.1038/s41598-023-29557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The corticofugal tracts (CFT) are key agents of upper limb motor function. Although the tracts form high-intensity regions relative to surrounding tissue in T2-weighted magnetic resonance images (T2WI), the precise relations of signal intensities of the left and right CFT regions to hand function are unknown. Here, we tested the hypothesis that the different signal intensities between the left and right CFT signify clinically important differences of hand motor function. Eleven right-handed and eleven left-handed healthy volunteers participated in the study. Based on horizontal T2WI estimates, we confirmed the relationship between the signal intensity ratios of the peak values of each CFT in the posterior limbs of the internal capsules (right CFT vs. left CFT). The ratios included the asymmetry indices of the hand motor functions, including grip and pinch strength, as well as the target test (TT) that expressed the speed and accuracy of hitting a target ([right-hand score - left-hand score]/[right-hand score + left-hand score]), using simple linear regression. The signal intensity ratios of each CFT structure maintained significant linear relations with the asymmetry index of the speed (R2 = 0.493, P = 0.0003) and accuracy (R2 = 0.348, P = 0.004) of the TT. We found no significant association between left and right CFT structures for grip or pinch strengths. The findings are consistent with the hypothesis that the different signal intensities of the left and right CFT images captured by T2WI serve as biological markers that reflect the dominance of manual dexterity.
Collapse
Affiliation(s)
- Noriyuki Oka
- Convalescent Rehabilitation Center, Nerima Ken-Ikukai Hospital, 7-3-28, Ooizumigakuen-chou, Nerima-ku, Tokyo, 178-0061, Japan.
| | - Masaharu Sakoh
- Convalescent Rehabilitation Center, Nerima Ken-Ikukai Hospital, 7-3-28, Ooizumigakuen-chou, Nerima-ku, Tokyo, 178-0061 Japan ,grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET Center, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Misato Hirayama
- Convalescent Rehabilitation Center, Nerima Ken-Ikukai Hospital, 7-3-28, Ooizumigakuen-chou, Nerima-ku, Tokyo, 178-0061 Japan
| | - Mayu Niiyama
- Convalescent Rehabilitation Center, Nerima Ken-Ikukai Hospital, 7-3-28, Ooizumigakuen-chou, Nerima-ku, Tokyo, 178-0061 Japan
| | - Albert Gjedde
- grid.7048.b0000 0001 1956 2722Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Universitetsbyen 13, Building 2B, 8000 Aarhus C, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Neuroscience, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen, Denmark ,grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Center, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
4
|
Rockland KS. A brief sketch across multiscale and comparative neuroanatomical features. Front Neuroanat 2023; 17:1108363. [PMID: 36861111 PMCID: PMC9968756 DOI: 10.3389/fnana.2023.1108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
|
5
|
Introducing Structural Symmetry and Asymmetry Implications in Development of Recent Pharmacy and Medicine. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Structural symmetry, anti-symmetry, or asymmetry represent a foundational property that, for chemical compounds, often determines their chemical and biological activity [...]
Collapse
|