1
|
Dóra F, Hajdu T, Renner É, Paál K, Alpár A, Palkovits M, Chinopoulos C, Dobolyi A. Reverse phase protein array-based investigation of mitochondrial genes reveals alteration of glutaminolysis in the parahippocampal cortex of people who died by suicide. Transl Psychiatry 2024; 14:479. [PMID: 39604371 PMCID: PMC11603240 DOI: 10.1038/s41398-024-03137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/29/2024] Open
Abstract
A moderating hub between resting state networks (RSNs) and the medial temporal lobe (MTL) is the parahippocampal cortex (PHC). Abnormal activity has been reported in depressed patients and suicide attempters in this region. Alterations in neuronal mitochondrial function may contribute to depression and suicidal behavior. However, little is known about the underlying molecular level changes in relevant structures. Specifically, expressional changes related to suicide have not been reported in the PHC. In this study, we compared the protein expression levels of genes encoding tricarboxylic acid (TCA) cycle enzymes in the PHC of adult individuals who died by suicide by reverse phase protein array (RPPA), which was corroborated by qRT-PCR at the mRNA level. Postmortem human brain samples were collected from 12 control and 10 suicidal individuals. The entorhinal cortex, which is topographically anterior to the PHC in the parahippocampal gyrus, and some other cortical brain regions were utilized for comparison. The results of the RPPA analysis revealed that the protein levels of DLD, OGDH, SDHB, SUCLA2, and SUCLG2 subunits were significantly elevated in the PHC but not in other cortical brain regions. In accordance with these findings, the mRNA levels of the respective subunits were also increased in the PHC. The subunits with altered levels are implicated in enzyme complexes involved in the oxidative decarboxylation branch of glutamine catabolism. These data suggest a potential role of glutaminolysis in the pathophysiology of suicidal behavior in the PHC.
Collapse
Affiliation(s)
- Fanni Dóra
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tamara Hajdu
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Éva Renner
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
| | - Krisztina Paál
- Department of Biochemistry and Molecular Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Alán Alpár
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
| | - Christos Chinopoulos
- Department of Biochemistry and Molecular Biology, Semmelweis University, Budapest, 1094, Hungary.
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary.
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Seoane S, van den Heuvel M, Acebes Á, Janssen N. The subcortical default mode network and Alzheimer's disease: a systematic review and meta-analysis. Brain Commun 2024; 6:fcae128. [PMID: 38665961 PMCID: PMC11043657 DOI: 10.1093/braincomms/fcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The default mode network is a central cortical brain network suggested to play a major role in several disorders and to be particularly vulnerable to the neuropathological hallmarks of Alzheimer's disease. Subcortical involvement in the default mode network and its alteration in Alzheimer's disease remains largely unknown. We performed a systematic review, meta-analysis and empirical validation of the subcortical default mode network in healthy adults, combined with a systematic review, meta-analysis and network analysis of the involvement of subcortical default mode areas in Alzheimer's disease. Our results show that, besides the well-known cortical default mode network brain regions, the default mode network consistently includes subcortical regions, namely the thalamus, lobule and vermis IX and right Crus I/II of the cerebellum and the amygdala. Network analysis also suggests the involvement of the caudate nucleus. In Alzheimer's disease, we observed a left-lateralized cluster of decrease in functional connectivity which covered the medial temporal lobe and amygdala and showed overlap with the default mode network in a portion covering parts of the left anterior hippocampus and left amygdala. We also found an increase in functional connectivity in the right anterior insula. These results confirm the consistency of subcortical contributions to the default mode network in healthy adults and highlight the relevance of the subcortical default mode network alteration in Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Seoane
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
| | - Martijn van den Heuvel
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Ángel Acebes
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Department of Basic Medical Sciences, University of La Laguna, Tenerife 38200, Spain
| | - Niels Janssen
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
- Department of Cognitive, Social and Organizational Psychology, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
3
|
Berger JI, Billig AJ, Sedley W, Kumar S, Griffiths TD, Gander PE. What is the role of the hippocampus and parahippocampal gyrus in the persistence of tinnitus? Hum Brain Mapp 2024; 45:e26627. [PMID: 38376166 PMCID: PMC10878198 DOI: 10.1002/hbm.26627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
The hippocampus and parahippocampal gyrus have been implicated as part of a tinnitus network by a number of studies. These structures are usually considered in the context of a "limbic system," a concept typically invoked to explain the emotional response to tinnitus. Despite this common framing, it is not apparent from current literature that this is necessarily the main functional role of these structures in persistent tinnitus. Here, we highlight a different role that encompasses their most commonly implicated functional position within the brain-that is, as a memory system. We consider tinnitus as an auditory object that is held in memory, which may be made persistent by associated activity from the hippocampus and parahippocampal gyrus. Evidence from animal and human studies implicating these structures in tinnitus is reviewed and used as an anchor for this hypothesis. We highlight the potential for the hippocampus/parahippocampal gyrus to facilitate maintenance of the memory of the tinnitus percept via communication with auditory cortex, rather than (or in addition to) mediating emotional responses to this percept.
Collapse
Affiliation(s)
- Joel I. Berger
- Department of NeurosurgeryUniversity of IowaIowa CityIowaUSA
| | | | | | | | | | - Phillip E. Gander
- Department of NeurosurgeryUniversity of IowaIowa CityIowaUSA
- Department of RadiologyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
4
|
Barnett AJ, Nguyen M, Spargo J, Yadav R, Cohn-Sheehy BI, Ranganath C. Hippocampal-cortical interactions during event boundaries support retention of complex narrative events. Neuron 2024; 112:319-330.e7. [PMID: 37944517 DOI: 10.1016/j.neuron.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
According to most memory theories, encoding involves continuous communication between the hippocampus and neocortex, but recent work has shown that key moments at the end of an event, called event boundaries, may be especially critical for memory formation. We sought to determine how communication between the hippocampus and neocortical regions during the encoding of naturalistic events related to subsequent retrieval of those events and whether this was particularly important at event boundaries. Participants encoded and recalled two cartoon movies during fMRI scanning. Higher functional connectivity between the hippocampus and the posterior medial network (PMN) at an event's offset is related to the subsequent successful recall of that event. Furthermore, hippocampal-PMN offset connectivity also predicted the amount of detail retrieved after a 2-day delay. These data demonstrate that the relationship between memory encoding and hippocampal-neocortical interaction is dynamic and biased toward boundaries.
Collapse
Affiliation(s)
| | - Mitchell Nguyen
- University of California, Davis, Center for Neuroscience, Davis, CA, USA
| | - James Spargo
- University of California, Davis, Department of Psychology, Davis, CA, USA
| | - Reesha Yadav
- University of California, Davis, Department of Psychology, Davis, CA, USA
| | | | - Charan Ranganath
- University of California, Davis, Center for Neuroscience, Davis, CA, USA; University of California, Davis, Department of Psychology, Davis, CA, USA
| |
Collapse
|
5
|
Groot JM, Miletic S, Isherwood SJS, Tse DHY, Habli S, Håberg AK, Forstmann BU, Bazin PL, Mittner M. Echoes from Intrinsic Connectivity Networks in the Subcortex. J Neurosci 2023; 43:6609-6618. [PMID: 37562962 PMCID: PMC10538587 DOI: 10.1523/jneurosci.1020-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in healthy adult males and females with a fully data-driven approach. We revealed that spontaneous neural activity in subcortical regions can be decomposed into multiple independent subsignals that correlate with, or "echo," the activity in functional networks across the cortex. Distinct subregions of the thalamus, striatum, claustrum, and hippocampus showed a varied pattern of echoes from attention, control, visual, somatomotor, and default mode networks, demonstrating evidence for a heterogeneous organization supportive of functional integration. Multiple network activity furthermore converged within the globus pallidus externa, substantia nigra, and ventral tegmental area but was specific to one subregion, while the amygdala and pedunculopontine nucleus preferentially affiliated with a single network, showing a more homogeneous topography. Subregional connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal gray, and locus coeruleus did not resemble patterns of cortical network activity. Together, these finding describe potential mechanisms through which the subcortex participates in integrated and segregated information processing and shapes the spontaneous cognitive dynamics during rest.SIGNIFICANCE STATEMENT Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional mapping of subcortical structures severely lags behind that of the cortex. Recent developments in subcortical atlasing and imaging at ultra-high field provide new avenues for studying the intricate functional architecture of the human subcortex. With a fully data-driven analysis, we reveal subregional connectivity profiles of a large set of noncortical structures, including those rarely studied in fMRI research. The results have implications for understanding how the functional organization of the subcortex facilitates integrative processing through cross-network information convergence, paving the way for future work aimed at improving our knowledge of subcortical contributions to intrinsic brain dynamics and spontaneous cognition.
Collapse
Affiliation(s)
- Josephine M Groot
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Steven Miletic
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Scott J S Isherwood
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Desmond H Y Tse
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sarah Habli
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, 8900, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, 8900, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, 7006, Norway
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Pierre-Louis Bazin
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Departments of Neurophysics and Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04303, Germany
| | - Matthias Mittner
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
6
|
Reznik D, Trampel R, Weiskopf N, Witter MP, Doeller CF. Dissociating distinct cortical networks associated with subregions of the human medial temporal lobe using precision neuroimaging. Neuron 2023; 111:2756-2772.e7. [PMID: 37390820 DOI: 10.1016/j.neuron.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Kulkarni M, Kent JS, Park K, Guell X, Anteraper S. Resting-state functional connectivity-based parcellation of the human dentate nucleus: new findings and clinical relevance. Brain Struct Funct 2023; 228:1799-1810. [PMID: 37439862 DOI: 10.1007/s00429-023-02665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
For years, the cerebellum was left out of functional magnetic resonance imaging (fMRI) studies due to technological limitations. The advent of novel data acquisition and reconstruction strategies (e.g., whole-brain simultaneous multi-slice imaging) employing multi-channel array coils has overcome such limitations, ushering unprecedented improvements in temporal signal-to-noise ratio and spatiotemporal resolution. Here, we aim to provide a brief report on the deep cerebellar nuclei, specifically focusing on the dentate nuclei, the primary output nuclei, situated within both cognitive and motor cerebello-cerebral circuits. We highlight the importance of functional parcellation in refining our understanding of broad resting-state functional connectivity (RSFC) in both health and disease. First, we review work relevant to the functional topography of the dentate nuclei, including recent advances in functional parcellation. Next, we review RSFC studies using the dentate nuclei as seed regions of interest in neurological and psychiatric populations and discuss the potential benefits of applying functionally defined subdivisions. Finally, we discuss recent technological advances and underscore ultrahigh-field neuroimaging as a tool to potentiate functionally parcellated RSFC analyses in clinical populations.
Collapse
Affiliation(s)
- Maitreyee Kulkarni
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jerillyn S Kent
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Katie Park
- University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Xavier Guell
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sheeba Anteraper
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 2201 Inwood Road, Dallas, TX, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, United States.
| |
Collapse
|
8
|
Teghil A, Bonavita A, Procida F, Giove F, Boccia M. Intrinsic hippocampal connectivity is associated with individual differences in retrospective duration processing. Brain Struct Funct 2023; 228:687-695. [PMID: 36695891 PMCID: PMC9944733 DOI: 10.1007/s00429-023-02612-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The estimation of incidentally encoded durations of time intervals (retrospective duration processing) is thought to rely on the retrieval of contextual information associated with a sequence of events, automatically encoded in medial temporal lobe regions. "Time cells" have been described in the hippocampus (HC), encoding the temporal progression of events and their duration. However, whether the HC supports explicit retrospective duration judgments in humans, and which neural dynamics are involved, is still poorly understood. Here we used resting-state fMRI to test the relation between variations in intrinsic connectivity patterns of the HC, and individual differences in retrospective duration processing, assessed using a novel task involving the presentation of ecological stimuli. Results showed that retrospective duration discrimination performance predicted variations in the intrinsic connectivity of the bilateral HC with the right precentral gyrus; follow-up exploratory analyses suggested a role of the CA1 and CA4/DG subfields in driving the observed pattern. Findings provide insights on neural networks associated with implicit processing of durations in the second range.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy. .,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Alessia Bonavita
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy ,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy ,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Federica Procida
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Federico Giove
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy ,MARBILab, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy ,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
9
|
Elvira UKA, Seoane S, Janssen J, Janssen N. Contributions of human amygdala nuclei to resting-state networks. PLoS One 2022; 17:e0278962. [PMID: 36576924 PMCID: PMC9797096 DOI: 10.1371/journal.pone.0278962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
The amygdala is a brain region with a complex internal structure that is associated with psychiatric disease. Methodological limitations have complicated the study of the internal structure of the amygdala in humans. In the current study we examined the functional connectivity between nine amygdaloid nuclei and existing resting-state networks using a high spatial-resolution fMRI dataset. Using data-driven analysis techniques we found that there were three main clusters inside the amygdala that correlated with the somatomotor, ventral attention and default mode networks. In addition, we found that each resting-state networks depended on a specific configuration of amygdaloid nuclei. Finally, we found that co-activity in the cortical-nucleus increased with the severity of self-rated fear in participants. These results highlight the complex nature of amygdaloid connectivity that is not confined to traditional large-scale divisions, implicates specific configurations of nuclei with certain resting-state networks and highlights the potential clinical relevance of the cortical-nucleus in future studies of the human amygdala.
Collapse
Affiliation(s)
- Uriel K. A. Elvira
- Department of Psychology, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Neurosciences, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Sara Seoane
- Department of Psychology, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Neurosciences, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Ciber del Área de Salud Mental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels Janssen
- Department of Psychology, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Neurosciences, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Department of Neurobiology and Behavior, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Seoane S, Ezama L, Janssen N. Daily-Life Physical Activity of Healthy Young Adults Associates With Function and Structure of the Hippocampus. Front Hum Neurosci 2022; 16:790359. [PMID: 35360290 PMCID: PMC8963905 DOI: 10.3389/fnhum.2022.790359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Previous research on Physical Activity (PA) has been highly valuable in elucidating how PA affects the structure and function of the hippocampus in elderly populations that take part in structured interventions. However, how PA affects the hippocampus in younger populations that perform PA during daily-life activities remains poorly understood. In addition, this research has not examined the impact of PA on the internal structure of the hippocampus. Here, we performed a cross-sectional exploration of the way structural and functional aspects of the hippocampus are associated with habitual PA performed during work, leisure time, and sports in the daily lives of healthy young adults (n = 30; 14 female; mean age = 23.9 y.o.; SD = 7.8 y.o.). We assessed PA in these three different contexts through a validated questionnaire. The results show that PA performed during work time correlated with higher subicular volumes. In addition, we found that PA changed functional connectivity (FC) between a location in the middle/posterior hippocampus and regions of the default mode network, and between a location in the anterior hippocampus and regions of the somatomotor network. No statistical effects of PA performed during leisure time and sports were found. The results generalize the impact of PA on younger populations and show how PA performed in daily-life situations correlates with the precise internal structure and functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Sara Seoane
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ezama
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Niels Janssen
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|