1
|
Nasraoui N, Moussa MLB, Ayedi Y, Mastouri M, Trabelsi A, Raies A, Wölfel R, Moussa MB. A sero-epidemiological investigation of West Nile virus among patients without any records of their symptoms from three different hospitals from Tunisia. Acta Trop 2023; 242:106905. [PMID: 36948235 DOI: 10.1016/j.actatropica.2023.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
West Nile virus is one of the most known arboviruses around the world, along with Dengue virus, Toscana virus, Chikungunya (CHIK). In Tunisia, many epidemics of WNV had occurred in the past. The last one dated from 2018. The aim of our work was to perform a sero-epidemiological investigation on WNV without any records of their symptoms from three different hospitals from Tunisia. Patients without any records of their symptoms of the infection of West Nile Virus (WNV) infection were included in the period from October 2017 to January 2020 from three different Virology departments in the country (the Military Hospital in Tunis, Fattouma Bourguiba Hospital in Monastir and Sahloul Hospital in Sousse). A venous blood sample was taken from all patients at the bend of the elbow using a sterile syringe under aseptic conditions. Serological investigation for WNV was conducted through ELISA and IFI assays. RT-PCR was used to confirm the infection. The study included 353 patients. Twenty-eighty percent (28.8%) of the population were tested positive for IgM antibodies, males were having less positive antibodies than women (24.6% vs. 36.3%, p<0.05). In the city of Sousse, positive IgM were found more than in the other cities. As for IgG, 19.2% of the patients were having positive antibodies. No significant association was found between genders (p>0.05). One quarter of the IgM antibodies were tested positive using IFI technique, with no difference between genders (p>0.05). Only 9.2% of the samples were positive by PCR. Our results highlight the importance of establishing sustainable entomological systems and effective clinical ones and of promoting appropriate biological control strategies to optimize the limitation of the circulation of WNV as well as other arboviruses to inhibit their harmful effects on health.
Collapse
Affiliation(s)
- Nadya Nasraoui
- Department of Medical Virology, Military Hospital of Tunis, Tunisia
| | | | - Yosr Ayedi
- Department of Epidemiology and Biostatistics, Abderrahmane Mami Hospital, Ariana, Tunisia.
| | - Maha Mastouri
- Department of Medical Microbiology, Fatouma Bourguiba Hospital, Monastir, Tunisia
| | | | - Ali Raies
- Laboratory of Active Microorganisms and Biomolecules, Faculty of Sciences, Tunis
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | |
Collapse
|
2
|
Longet S, Leggio C, Bore JA, Key S, Tipton T, Hall Y, Koundouno FR, Bower H, Bhattacharyya T, Magassouba N, Günther S, Henao-Restrapo AM, Rossman JS, Konde MK, Fornace K, Carroll MW. Influence of Landscape Patterns on Exposure to Lassa Fever Virus, Guinea. Emerg Infect Dis 2023; 29:304-313. [PMID: 36692336 PMCID: PMC9881776 DOI: 10.3201/eid2902.212525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lassa fever virus (LASV) is the causative agent of Lassa fever, a disease endemic in West Africa. Exploring the relationships between environmental factors and LASV transmission across ecologically diverse regions can provide crucial information for the design of appropriate interventions and disease monitoring. We investigated LASV exposure in 2 ecologically diverse regions of Guinea. Our results showed that exposure to LASV was heterogenous between and within sites. LASV IgG seropositivity was 11.9% (95% CI 9.7%-14.5%) in a coastal study site in Basse-Guinée, but it was 59.6% (95% CI 55.5%-63.5%) in a forested study site located in Guinée Forestière. Seropositivity increased with age in the coastal site. We also found significant associations between exposure risk for LASV and landscape fragmentation in coastal and forested regions. Our study highlights the potential link between environmental change and LASV emergence and the urgent need for research on land management practices that reduce disease risks.
Collapse
|
3
|
Struck NS, Lorenz E, Deschermeier C, Eibach D, Kettenbeil J, Loag W, Brieger SA, Ginsbach AM, Obirikorang C, Maiga-Ascofare O, Sarkodie YA, Boham EEA, Adu EA, Asare G, Amoako-Adusei A, Yawson A, Boakye AO, Deke J, Almoustapha NS, Adu-Amoah L, Duah IK, Ouedraogo TA, Boudo V, Rushton B, Ehmen C, Fusco D, Gunga L, Benke D, Höppner Y, Rasolojaona ZT, Rasamoelina T, Rakotoarivelo RA, Rakotozandrindrainy R, Coulibaly B, Sié A, Awuah AAA, Amuasi JH, Souares A, May J. High seroprevalence of SARS-CoV-2 in Burkina-Faso, Ghana and Madagascar in 2021: a population-based study. BMC Public Health 2022; 22:1676. [PMID: 36064368 PMCID: PMC9441841 DOI: 10.1186/s12889-022-13918-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The current COVID-19 pandemic affects the entire world population and has serious health, economic and social consequences. Assessing the prevalence of COVID-19 through population-based serological surveys is essential to monitor the progression of the epidemic, especially in African countries where the extent of SARS-CoV-2 spread remains unclear. METHODS A two-stage cluster population-based SARS-CoV-2 seroprevalence survey was conducted in Bobo-Dioulasso and in Ouagadougou, Burkina Faso, Fianarantsoa, Madagascar and Kumasi, Ghana between February and June 2021. IgG seropositivity was determined in 2,163 households with a specificity improved SARS-CoV-2 Enzyme-linked Immunosorbent Assay. Population seroprevalence was evaluated using a Bayesian logistic regression model that accounted for test performance and age, sex and neighbourhood of the participants. RESULTS Seroprevalence adjusted for test performance and population characteristics were 55.7% [95% Credible Interval (CrI) 49·0; 62·8] in Bobo-Dioulasso, 37·4% [95% CrI 31·3; 43·5] in Ouagadougou, 41·5% [95% CrI 36·5; 47·2] in Fianarantsoa, and 41·2% [95% CrI 34·5; 49·0] in Kumasi. Within the study population, less than 6% of participants performed a test for acute SARS-CoV-2 infection since the onset of the pandemic. CONCLUSIONS High exposure to SARS-CoV-2 was found in the surveyed regions albeit below the herd immunity threshold and with a low rate of previous testing for acute infections. Despite the high seroprevalence in our study population, the duration of protection from naturally acquired immunity remains unclear and new virus variants continue to emerge. This highlights the importance of vaccine deployment and continued preventive measures to protect the population at risk.
Collapse
Affiliation(s)
- Nicole S Struck
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Heidelberg, Germany.
| | - Eva Lorenz
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Heidelberg, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Daniel Eibach
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Heidelberg, Germany
| | - Jenny Kettenbeil
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
| | - Wibke Loag
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
| | - Steven A Brieger
- University of Sussex Business School, University of Sussex, Falmer, UK
| | - Anna M Ginsbach
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
| | - Christian Obirikorang
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Oumou Maiga-Ascofare
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Adu Sarkodie
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eric Ebenezer Amprofi Boham
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evans Asamoah Adu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gracelyn Asare
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Amos Amoako-Adusei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alfred Yawson
- Department of Community Health, University of Ghana, Accra, Ghana
| | - Alexander Owusu Boakye
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - James Deke
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nana Safi Almoustapha
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Louis Adu-Amoah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ibrahim Kwaku Duah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Valentin Boudo
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Ben Rushton
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christa Ehmen
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Daniela Fusco
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Heidelberg, Germany
| | - Leonard Gunga
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
| | - Dominik Benke
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
| | - Yannick Höppner
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | - Boubacar Coulibaly
- German Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Heidelberg, Germany
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Ali Sié
- German Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Heidelberg, Germany
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
- Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Anthony Afum-Adjei Awuah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John H Amuasi
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Global and International Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Aurélia Souares
- German Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Heidelberg, Germany
- Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jürgen May
- Infectious Disease Epidemiology, Bernhard Nocht Insitute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, Heidelberg, Germany
- Department of Tropical Medicine I, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
4
|
Fcγ-Receptor-Based Enzyme-Linked Immunosorbent Assays for Sensitive, Specific, and Persistent Detection of Anti-SARS-CoV-2 Nucleocapsid Protein IgG Antibodies in Human Sera. J Clin Microbiol 2022; 60:e0007522. [PMID: 35574677 PMCID: PMC9199419 DOI: 10.1128/jcm.00075-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sensitive and specific serological tests are mandatory for epidemiological studies evaluating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence as well as coronavirus disease 2019 (COVID-19) morbidity and mortality rates. The accuracy of results is challenged by antibody waning after convalescence and by cross-reactivity induced by previous infections with other pathogens. By employing a patented platform technology based on capturing antigen-antibody complexes with a solid-phase-bound Fcγ receptor (FcγR) and truncated nucleocapsid protein as the antigen, two SARS-CoV-2 IgG enzyme-linked immunosorbent assays (ELISAs), featuring different serum and antigen dilutions, were developed. Validation was performed using a serum panel comprising 213 longitudinal samples from 35 COVID-19 patients and a negative-control panel consisting of 790 pre-COVID-19 samples from different regions of the world. While both assays show similar diagnostic sensitivities in the early convalescent phase, ELISA 2 (featuring a higher serum concentration) enables SARS-CoV-2 IgG antibody detection for a significantly longer time postinfection (≥15 months). Correspondingly, analytical sensitivity referenced to indirect immunofluorescence testing (IIFT) is significantly higher for ELISA 2 in samples with a titer of ≤1:640; for high-titer samples, a prozone effect is observed for ELISA 2. The specificities of both ELISAs were excellent not only for pre-COVID-19 serum samples from Europe, Asia, and South America but also for several challenging African sample panels. The SARS-CoV-2 IgG FcγR ELISAs, methodically combining antigen-antibody binding in solution and isotype-specific detection of immune complexes, are valuable tools for seroprevalence studies requiring the (long-term) detection of anti-SARS-CoV-2 IgG antibodies in populations with a challenging immunological background and/or in which spike-protein-based vaccine programs have been rolled out.
Collapse
|
5
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Emmerich P, Murawski C, Ehmen C, von Possel R, Pekarek N, Oestereich L, Duraffour S, Pahlmann M, Struck N, Eibach D, Krumkamp R, Amuasi J, Maiga-Ascofaré O, Rakotozandrindrainy R, Asogun D, Ighodalo Y, Kann S, May J, Tannich E, Deschermeier C. Limited specificity of commercially available SARS-CoV-2 IgG ELISAs in serum samples of African origin. Trop Med Int Health 2021; 26:621-631. [PMID: 33666297 PMCID: PMC8014856 DOI: 10.1111/tmi.13569] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Specific serological tests are mandatory for reliable SARS-CoV-2 diagnostics and seroprevalence studies. Here, we assess the specificities of four commercially available SARS-CoV-2 IgG ELISAs in serum/plasma panels originating from Africa, South America, and Europe. METHODS 882 serum/plasma samples collected from symptom-free donors before the COVID-19 pandemic in three African countries (Ghana, Madagascar, Nigeria), Colombia, and Germany were analysed with three nucleocapsid-based ELISAs (Euroimmun Anti-SARS-CoV-2-NCP IgG, EDI™ Novel Coronavirus COVID-19 IgG, Mikrogen recomWell SARS-CoV-2 IgG), one spike/S1-based ELISA (Euroimmun Anti-SARS-CoV-2 IgG), and in-house common cold CoV ELISAs. RESULTS High specificity was confirmed for all SARS-CoV-2 IgG ELISAs for Madagascan (93.4-99.4%), Colombian (97.8-100.0%), and German (95.9-100.0%) samples. In contrast, specificity was much lower for the Ghanaian and Nigerian serum panels (Ghana: NCP-based assays 77.7-89.7%, spike/S1-based assay 94.3%; Nigeria: NCP-based assays 39.3-82.7%, spike/S1-based assay 90.7%). 15 of 600 African sera were concordantly classified as positive in both the NCP-based and the spike/S1-based Euroimmun ELISA, but did not inhibit spike/ACE2 binding in a surrogate virus neutralisation test. IgG antibodies elicited by previous infections with common cold CoVs were found in all sample panels, including those from Madagascar, Colombia, and Germany and thus do not inevitably hamper assay specificity. Nevertheless, high levels of IgG antibodies interacting with OC43 NCP were found in all 15 SARS-CoV-2 NCP/spike/S1 ELISA positive sera. CONCLUSIONS Depending on the chosen antigen and assay protocol, SARS-CoV-2 IgG ELISA specificity may be significantly reduced in certain populations probably due to interference of immune responses to endemic pathogens like other viruses or parasites.
Collapse
Affiliation(s)
- Petra Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Carolin Murawski
- Department for Infectious Disease Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christa Ehmen
- Department for Infectious Disease Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ronald von Possel
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Neele Pekarek
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lisa Oestereich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Hamburg - Lübeck - Borstel - Riems, Germany
| | - Sophie Duraffour
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Hamburg - Lübeck - Borstel - Riems, Germany
| | - Meike Pahlmann
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Hamburg - Lübeck - Borstel - Riems, Germany
| | - Nicole Struck
- German Center for Infection Research, Hamburg - Lübeck - Borstel - Riems, Germany.,Department for Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Daniel Eibach
- German Center for Infection Research, Hamburg - Lübeck - Borstel - Riems, Germany.,Department for Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ralf Krumkamp
- German Center for Infection Research, Hamburg - Lübeck - Borstel - Riems, Germany.,Department for Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John Amuasi
- Global Health and Infectious Disease Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Oumou Maiga-Ascofaré
- German Center for Infection Research, Hamburg - Lübeck - Borstel - Riems, Germany.,Infectious Disease Epidemiology Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | | | - Danny Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Yemisi Ighodalo
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Simone Kann
- Medical Mission Institute, Würzburg, Germany
| | - Jürgen May
- Department for Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Egbert Tannich
- Department for Infectious Disease Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,National Reference Centre for Tropical Pathogens, Hamburg, Germany
| | - Christina Deschermeier
- Department for Infectious Disease Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
7
|
Discovery and genetic characterization of a novel orthonairovirus in Ixodes ricinus ticks from Danube Delta. INFECTION GENETICS AND EVOLUTION 2021; 88:104704. [PMID: 33418146 DOI: 10.1016/j.meegid.2021.104704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Different arthropod species are vectors of a wide array of arboviruses (arthropod-borne viruses) and have likely been central to viral evolution. To better understand the extent of arthropod-borne pathogens, as well as their origin and evolutionary history, it is crucial to uncover the full range of microbial agents, including viruses associated with arthropods. In this study, a collection of ticks obtained in 2016 directly from mammal and bird hosts from several rural and natural sites of Danube Delta was subjected to transcriptome sequencing and amplification assays. Vector surveillance revealed the presence of a novel orthonairovirus species, designated Sulina virus, in Ixodes ricinus ticks. Phylogenetic clustering of each viral protein consistently placed the new virus in the Orthonairovirus genus as a new genogroup closely related to Tamdy orthonairovirus, a genogroup comprising both pathogenic and tick-associated orthonairoviruses. The serological testing of engorged ticks and blood of infected hosts, along with the inoculation of vertebrate cells and mice found no specific antibodies or viral replication, suggesting that Sulina virus is an orthonairovirus associated with the virome of Ixodes ricinus. Finally, the characterization of a novel orthonairovirus identified using high throughput sequencing will advance our knowledge of interactions between viruses and tick vectors, expanding our perspective on fundamental questions regarding orthonairovirus evolution, diversity, ecology and potential of emergence as pathogens.
Collapse
|
8
|
Ehmen C, Medialdea-Carrera R, Brown D, de Filippis AMB, de Sequeira PC, Nogueira RMR, Brasil P, Calvet GA, Blessmann J, Mallmann AM, Sievertsen J, Rackow A, Schmidt-Chanasit J, Emmerich P, Schmitz H, Deschermeier C, Mika A. Accurate detection of Zika virus IgG using a novel immune complex binding ELISA. Trop Med Int Health 2020; 26:89-101. [PMID: 33012038 DOI: 10.1111/tmi.13505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Accurate serological assays are urgently needed to support public health responses to Zika virus (ZIKV) infection with its potential to cause foetal damage during pregnancy. Current flavivirus serology for ZIKV infections lacks specificity due to cross-reacting antibodies from closely related other flaviviruses. In this study, we evaluated novel serological tests for accurate ZIKV IgG detection. METHODS Our ELISAs are based on immune complex binding. The high specificity is achieved by the simultaneous incubation of labelled ZIKV antigen and unlabelled flavivirus homolog protein competitors. Two assays were validated with a panel of 406 human samples from PCR-confirmed ZIKV patients collected in Brazil (n = 154), healthy blood donors and other infections from Brazil, Europe, Canada and Colombia (n = 252). RESULTS The highest specificity (100% [252/252, 95% confidence interval (CI) 98.5-100.0]) was shown by the ZIKV ED3 ICB ELISA using the ED3 antigen of the ZIKV envelope. A similar test using the NS1 antigen (ZIKV NS1 ICB ELISA) was slightly less specific (92.1% [232/252, 95% CI 88.0-95.1]). The commercial Euroimmun ZIKV ELISA had a specificity of only 82.1% (207/252, 95% CI 76.8-86.7). Sensitivity was high (93-100%) from day 12 after onset of symptoms in all three tests. Seroprevalence of ZIKV IgG was analysed in 87 samples from Laos (Asia) confirming that the ED3 ELISA showed specific reactions in other populations. CONCLUSIONS The novel ED3 ICB ELISA will be useful for ZIKV-specific IgG detection for seroepidemiological studies and serological diagnosis for case management in travellers and in countries where other flavivirus infections are co-circulating.
Collapse
Affiliation(s)
- C Ehmen
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - R Medialdea-Carrera
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - D Brown
- Flavivirus Reference Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - R M Ribeiro Nogueira
- Flavivirus Reference Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - P Brasil
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - G A Calvet
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - J Blessmann
- Department for Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - A-M Mallmann
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J Sievertsen
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - A Rackow
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J Schmidt-Chanasit
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - P Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - H Schmitz
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - C Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - A Mika
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
9
|
Blessmann J, Winkelmann Y, Keoviengkhone L, Sopraseuth V, Kann S, Hansen J, El Halas H, Emmerich P, Schmidt-Chanasit J, Schmitz H, Mika A, Deschermeier C. Assessment of diagnostic and analytic performance of the SD Bioline Dengue Duo test for dengue virus (DENV) infections in an endemic area (Savannakhet province, Lao People's Democratic Republic). PLoS One 2020; 15:e0230337. [PMID: 32182271 PMCID: PMC7077838 DOI: 10.1371/journal.pone.0230337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 11/18/2022] Open
Abstract
Background Rapid tests detecting both dengue virus (DENV) NS1 antigen and anti-DENV IgM and IgG antibodies facilitate diagnosis of dengue fever (DF) in resource-poor settings. Methodology/principal findings 92 acute phase serum samples from patients with a PCR-confirmed DENV infection collected in Lao People’s Democratic Republic (Lao PDR) in 2013 and 2015 were analyzed with the SD Bioline Dengue Duo test. A subset of 74 samples was additionally tested with the Platelia NS1 antigen test, the Panbio DENV μ-capture ELISA and the Panbio DENV IgG ELISA. IgM seroconversion was assayed using follow-up samples of 35 patients collected in the convalescent phase. 57.6%, 22.8% and 44.6% of acute phase serum samples tested positive in the SD Bioline Dengue Duo NS1, IgM, and IgG test, respectively. Diagnostic sensitivity of the SD Bioline Dengue Duo NS1 test strongly correlated with viral load, decreased rapidly over the acute phase of the disease, and was significantly reduced in presence of high anti-DENV IgG antibody titers resulting from secondary DENV infection. While a good concordance (Cohen’s kappa 0.78) was found between the SD Bioline Dengue Duo NS1 test and the Platelia NS1 antigen ELISA, both the SD Bioline Dengue Duo IgM and IgG test displayed a significantly lower sensitivity than the corresponding ELISA tests. Conclusions/significance The SD Bioline Dengue Duo test is a valuable tool for diagnosis of DENV infections especially when analyzing early acute phase samples with high viral load. Nevertheless, in endemic areas, where secondary flavivirus infections are common, diagnostic sensitivity of the NS1 and IgM test components may be compromised.
Collapse
Affiliation(s)
- Jörg Blessmann
- Department for Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yvonne Winkelmann
- Department for Infectious Disease Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Simone Kann
- Missionsärztliches Institut, Würzburg, Germany
| | - Jessica Hansen
- Department for Infectious Disease Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Petra Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Jonas Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Herbert Schmitz
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Angela Mika
- Department for Infectious Disease Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christina Deschermeier
- Department for Infectious Disease Diagnostics, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Rackow A, Ehmen C, von Possel R, Medialdea-Carrera R, Brown D, Bispo de Filippis AM, Carvalho de Sequeira P, Ribeiro Nogueira RM, Halili B, Jakupi X, Berisha L, Ahmeti S, Sherifi K, Schmidt-Chanasit J, Schmitz H, Mika A, Emmerich P, Deschermeier C. Immunoglobulin-like Domain of HsFcμR as a Capture Molecule for Detection of Crimean-Congo Hemorrhagic Fever Virus- and Zika Virus-Specific IgM Antibodies. Clin Chem 2019; 65:451-461. [PMID: 30709812 DOI: 10.1373/clinchem.2018.294819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/07/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND The cellular surface molecule HsTOSO/FAIM3/HsFcμR has been identified as an IgM-specific Fc receptor expressed on lymphocytes. Here, we show that its extracellular immunoglobulin-like domain (HsFcμR-Igl) specifically binds to IgM/antigen immune complexes (ICs) and exploit this property for the development of novel detection systems for IgM antibodies directed against Crimean-Congo hemorrhagic fever virus (CCHFV) and Zika virus (ZIKV). METHODS His-tagged HsFcμR-Igl was expressed in Escherichia coli and purified by affinity chromatography, oxidative refolding, and size-exclusion chromatography. Specific binding of HsFcμR-Igl to IgM/antigen ICs was confirmed, and 2 prototypic ELISAs for the detection of anti-CCHFV and anti-ZIKV IgM antibodies were developed. Thereby, patient sera and virus-specific recombinant antigens directly labeled with horseradish peroxidase (HRP) were coincubated on HsFcμR-Igl-coated ELISA plates. Bound ICs were quantified by measuring turnover of a chromogenic HRP substrate. RESULTS Assay validation was performed using paired serum samples from 15 Kosovar patients with a PCR-confirmed CCHFV infection and 28 Brazilian patients with a PCR-confirmed ZIKV infection, along with a panel of a priori CCHFV/ZIKV-IgM-negative serum samples. Both ELISAs were highly reproducible. Sensitivity and specificity were comparable with or even exceeded in-house gold standard testing and commercial kits. Furthermore, latex beads coated with HsFcμR-Igl aggregated upon coincubation with an IgM-positive serum and HRP-labeled antigen but not with either component alone, revealing a potential for use of HsFcμR-Igl as a capture molecule in aggregation-based rapid tests. CONCLUSIONS Recombinant HsFcμR-Igl is a versatile capture molecule for IgM/antigen ICs of human and animal origin and can be applied for the development of both plate- and bead-based serological tests.
Collapse
Affiliation(s)
- Anne Rackow
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christa Ehmen
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ronald von Possel
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Raquel Medialdea-Carrera
- National Institute for Health Research/Institute of Infections and Global Health, University of Liverpool, Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - David Brown
- Instituto Oswaldo Cruz/Fiocruz, Laboratório de Flavivirus, Rio de Janeiro, Brazil
| | | | | | | | - Barie Halili
- University Clinical Center of Kosovo, Infectious Diseases Clinic, Pristhina, Kosovo
| | - Xhevat Jakupi
- Department of Microbiology, National Institute for Public Health of Kosova, Prishtina, Kosovo
| | - Lindita Berisha
- University Clinical Center of Kosovo, Infectious Diseases Clinic, Pristhina, Kosovo
| | - Salih Ahmeti
- University of Prishtina "Hasan Prishtina," Medical Faculty and University Clinical Center of Kosovo, Infectious Diseases Clinic, Prishtina, Kosovo
| | - Kurtesh Sherifi
- Faculty of Agricultural and Veterinary Medicine, University of Pristhina "Hasan Prishtina," Pristhina, Kosovo
| | - Jonas Schmidt-Chanasit
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Herbert Schmitz
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Angela Mika
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Petra Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany;
| |
Collapse
|
11
|
Li YC, Hu Y, Wu XY, Huo NF, Li J, Zhang S, Jiang T, Kang XP. A Sensitive Nano Luciferase Immune Complex Assay System for Highly Sensitive and Specific Detection of Antibodies Against Tick-Borne Encephalitis Virus. Vector Borne Zoonotic Dis 2018; 19:365-369. [PMID: 30431406 DOI: 10.1089/vbz.2018.2330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) can cause fever, headache, neurological disorders, and/or peripheral flaccid paralysis; therefore, it is a major threat to public health. A rapid, sensitive, and simple method for detecting anti-TBEV antibodies is needed urgently to determine infection and for vaccine evaluation. Here, a luciferase-based immunocomplex assay system (Luc-IC) was developed to detect TBEV antibodies. The system is based on a reporter Nano luciferase (NLuc) that is co-expressed as a fusion protein with viral envelope domain III (ED3) in COS7 cells. The cell supernatant was used directly to detect antigen without the need for a purification step. This simple procedure effectively improved the sensitivity of the assay. Sera from 50 patients with an acute tick-borne encephalitis infection were tested to determine the sensitivity of the NLuc-IC assay. Furthermore, 62 sera from individuals infected with Japanese encephalitis virus, West Nile virus, yellow fever virus, dengue virus, or Zika virus were also tested to determine specificity. The results demonstrated that the assay was 100% sensitive and 100% specific for TBEV antibodies. Thus, this very simple NLuc-IC assay is potentially useful for rapid and accurate diagnosis of TBEV infection in both humans and animals.
Collapse
Affiliation(s)
- Yu-Chang Li
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi Hu
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Yan Wu
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nai-Fan Huo
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jing Li
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Sen Zhang
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Jiang
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,2 Graduate School, Anhui Medical University, Hefei, China
| | - Xiao-Ping Kang
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
12
|
Development and evaluation of antibody-capture immunoassays for detection of Lassa virus nucleoprotein-specific immunoglobulin M and G. PLoS Negl Trop Dis 2018; 12:e0006361. [PMID: 29596412 PMCID: PMC5892945 DOI: 10.1371/journal.pntd.0006361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/10/2018] [Accepted: 03/02/2018] [Indexed: 11/19/2022] Open
Abstract
Background The classical method for detection of Lassa virus-specific antibodies is the immunofluorescence assay (IFA) using virus-infected cells as antigen. However, IFA requires laboratories of biosafety level 4 for assay production and an experienced investigator to interpret the fluorescence signals. Therefore, we aimed to establish and evaluate enzyme-linked immunosorbent assays (ELISA) using recombinant Lassa virus nucleoprotein (NP) as antigen. Methodology/Principal findings The IgM ELISA is based on capturing IgM antibodies using anti-IgM, and the IgG ELISA is based on capturing IgG antibody–antigen complexes using rheumatoid factor or Fc gamma receptor CD32a. Analytical and clinical evaluation was performed with 880 sera from Lassa fever endemic (Nigeria) and non-endemic (Ghana and Germany) areas. Using the IFA as reference method, we observed 91.5–94.3% analytical accuracy of the ELISAs in detecting Lassa virus-specific antibodies. Evaluation of the ELISAs for diagnosis of Lassa fever on admission to hospital in an endemic area revealed a clinical sensitivity for the stand-alone IgM ELISA of 31% (95% CI 25–37) and for combined IgM/IgG detection of 26% (95% CI 21–32) compared to RT-PCR. The specificity of IgM and IgG ELISA was estimated at 96% (95% CI 93–98) and 100% (95% CI 99–100), respectively, in non-Lassa fever patients from non-endemic areas. In patients who seroconverted during follow-up, Lassa virus-specific IgM and IgG developed simultaneously rather than sequentially. Consistent with this finding, isolated IgM reactivity, i.e. IgM in the absence of IgG, had no diagnostic value. Conclusions/Significance The ELISAs are not equivalent to RT-PCR for early diagnosis of Lassa fever; however, they are of value in diagnosing patients at later stage. The IgG ELISA may be useful for epidemiological studies and clinical trials due its high specificity, and the higher throughput rate and easier operation compared to IFA. Lassa fever is endemic in several West African countries. However, only few hospitals and laboratories in the region have the capacity to conduct molecular or serological Lassa fever diagnostics. One reason is that the classical serological technique for Lassa fever—the immunofluorescence assay (IFA)—requires biosafety level 4 laboratories, which are not available in the Lassa fever endemic countries. In addition, IFA does not feature an objective read-out. Therefore, we established enzyme-linked immunosorbent assays (ELISA) for detection of Lassa virus-specific IgM and IgG in 96-well format, which do not require expensive equipment and can be implemented in diagnostic laboratories in West Africa. The ELISAs are based on recombinant antigen facilitating future production according to industry standards. In our evaluation, the ELISAs have shown a performance comparable to IFA. They allow in particular the diagnosis of Lassa fever patients at later stages of the acute illness. In addition, reliable serological assays, such as those described here, are urgently needed to conduct large-scale epidemiological investigations to better understand the epidemiology of Lassa fever across West Africa as well as for clinical trials evaluating novel medical countermeasures including vaccines and drugs.
Collapse
|
13
|
Emmerich P, Mika A, von Possel R, Rackow A, Liu Y, Schmitz H, Günther S, Sherifi K, Halili B, Jakupi X, Berisha L, Ahmeti S, Deschermeier C. Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)-Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in μ-capture and IgG immune complex (IC) ELISA tests. PLoS Negl Trop Dis 2018; 12:e0006366. [PMID: 29579040 PMCID: PMC5892944 DOI: 10.1371/journal.pntd.0006366] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 03/05/2018] [Indexed: 11/22/2022] Open
Abstract
As the most widespread tick-borne arbovirus causing infections in numerous countries in Asia, Africa and Europe, Crimean-Congo Hemorrhagic Fever Virus (CCHFV, family Nairoviridae) was included in the WHO priority list of emerging pathogens needing urgent Research & Development attention. To ensure preparedness for potential future outbreak scenarios, reliable diagnostic tools for identification of acute cases as well as for performance of seroprevalence studies are necessary. Here, the CCHFV ortholog of the major bunyavirus antigen, the nucleoprotein (NP), was recombinantly expressed in E.coli, purified and directly labeled with horseradish peroxidase (HRP). Employing this antigen, two serological tests, a μ-capture ELISA for the detection of CCHFV-specific IgM antibodies (BLACKBOX CCHFV IgM) and an IgG immune complex (IC) ELISA for the detection of CCHFV-specific IgG antibodies (BLACKBOX CCHFV IgG), were developed. Test performance was evaluated and compared with both in-house gold standard testing by IgM/IgG indirect immunofluorescence (IIF) and commercially available ELISA tests (VectoCrimean-CHF-IgM/IgG, Vector-Best, Russia) using a serum panel comprising paired samples collected in Kosovo during the years 2013–2016 from 15 patients with an acute, RT-PCR-confirmed CCHFV infection, and 12 follow-up sera of the same patients collected approximately one year after having overcome the infection. Reliably detecting IgM antibodies in all acute phase sera collected later than day 4 after onset of symptoms, both IgM ELISAs displayed excellent diagnostic and analytical sensitivity (100%, 95% confidence interval (CI): 85.2%–100.0%). While both IgG ELISAs readily detected the high IgG titers present in convalescent patients approximately one year after having overcome the infection (sensitivity 100%, 95% CI: 73.5%–100.0%), the newly developed BLACKBOX CCHFV IgG ELISA was superior to the commercial IgG ELISA in detecting the rising IgG titers during the acute phase of the disease. While all samples collected between day 11 and 19 after onset of symptoms tested positive in both the in-house gold standard IIFT and the BLACKBOX CCHFV IgG ELISA (sensitivity 100%, 95% CI: 71.5%–100.0%), only 27% (95% CI: 6.0%–61.0%) of those samples were tested positive in the commercial IgG ELISA. No false positive signals were observed in either IgM/IgG ELISA when analyzing a priori CCHFV IgM/IgG negative serum samples from healthy blood donors, malaria patients and flavivirus infected patients as well as CCHFV IgM/IgG IIFT negative serum samples from healthy Kosovar blood donors (for BLACKBOX CCHFV IgM/IgG: n = 218, 100% specificity, 95% CI: 98.3%–100.0%, for VectoCrimean-CHF-IgM/IgG: n = 113, 100% specificity, 95% CI: 96.8%–100.0%). Being endemic in several countries in Asia, Africa, the Middle East and Southeastern Europe, the Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is the geographically most widespread tick-borne arbovirus. As evidenced by the recent occurrence of an autochthonous CCHFV infection in Spain, it possesses also a significant potential to spread to as yet non-endemic regions. Due to the severity of the disease caused by this bunyavirus, the lack of specific prophylactic and therapeutic measures and the infection’s epidemic potential, CCHFV was included in the WHO priority list of diseases needing urgent R&D attention, in particular the development and improvement of diagnostic tools. Here we present the development and validation of two novel ELISAs (BLACKBOX CCHFV IgM, BLACKBOX CCHFV IgG) for the detection of CCHFV-specific IgM and IgG antibodies employing recombinant CCHFV nucleoprotein (NP) as antigen. Test performance in comparison to both in-house gold standard testing (CCHFV IgM/IgG immunofluorescence test (IIFT)) and commercial ELISA kits (VectoCrimean-CHF-IgM/IgG; Vector-Best) was evaluated using a thoroughly characterized serum panel that was obtained from 15 Kosovar patients with an RT-PCR-confirmed CCHFV-infection collected during the years 2013–2016 and that comprised samples from both the acute and convalescent phase of the disease. While both IgM ELISAs, like the CCHFV IgM IIFT, detected CCHFV-specific IgM antibodies in all sera collected during the acute phase of the disease on day 5 after onset of symptoms or later, the BLACKBOX CCHFV IgG ELISA and the CCHFV IgG IIFT were found to be significantly more sensitive than the VectoCrimean-CHF-IgG ELISA in detecting the rising IgG antibody titers in samples collected between days 11 and 19 after onset of symptoms.
Collapse
Affiliation(s)
- Petra Emmerich
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Angela Mika
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ronald von Possel
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anne Rackow
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yang Liu
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Herbert Schmitz
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Department for Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kurtesh Sherifi
- Faculty of Agricultural and Veterinary Medicine, University of Pristhina “Hasan Prishtina”, Pristhina, Kosovo
| | - Barie Halili
- University Clinical Center of Kosovo, Infectious Diseases Clinic, Pristhina, Kosovo
| | - Xhevat Jakupi
- Department of Microbiology, National Institute for Public Health of Kosova, Prishtina, Kosovo
| | - Lindita Berisha
- University Clinical Center of Kosovo, Infectious Diseases Clinic, Pristhina, Kosovo
| | - Salih Ahmeti
- University of Prishtina “Hasan Prishtina”, Medical Faculty & University Clinical Center of Kosovo, Infectious Diseases Clinic, Prishtina, Kosovo
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Rönnberg B, Gustafsson Å, Vapalahti O, Emmerich P, Lundkvist Å, Schmidt-Chanasit J, Blomberg J. Compensating for cross-reactions using avidity and computation in a suspension multiplex immunoassay for serotyping of Zika versus other flavivirus infections. Med Microbiol Immunol 2017; 206:383-401. [PMID: 28852878 PMCID: PMC5599479 DOI: 10.1007/s00430-017-0517-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
Abstract
The recent spread of Zika virus (ZIKV) in the Americas and Asia necessitates an increased preparedness for improved maternal and perinatal health and blood safety. However, serological cross-reactions, especially to Dengue virus (DENV), complicate ZIKV antibody serodiagnosis. A novel “pan-Flavi” suspension multiplex immunoassay (PFSMIA) using 25 antigens, whole virus (WV), non-structural protein 1 (NS1), and envelope (E) proteins, from 7 zoonotic flaviviruses for specific detection of ZIKV and DENV IgM and IgG was developed. Patterns of antibody cross-reactivity, avidity, and kinetics were established in 104 sera from returning travelers with known ZIKV and DENV infections. PFSMIA gave IgM- and IgG-sensitivities for both viruses of 96–100%, compared to an immunofluorescence assay. Main IgM cross-reactions were to NS1, for IgG to the E and WV antigens. Infecting virus yielded reactivity to several antigens of the homologous virus, while cross-reactions tended to occur only to a single antigen from heterologous virus(es). A specificity-enhancing computer procedure took into account antibody isotype, number of antibody-reactive antigens per virus, avidity, average degree of cross-reactivity to heterologous flavivirus antigens, and reactivity changes in serial sera. It classified all 50 cases correctly. Applied to sera from 200 pregnant women and 173 blood donors from Sweden, one blood donor was found ZIKV NS1 IgM positive, and another as ZIKV NS1 IgG positive. These samples did not react with other ZIKV antigens and were thereby judged as false-positives. PFSMIA provided sensitive and specific ZIKV and DENV serology, warranting high-throughput serological surveillance and a minimized need for laborious and expensive virus neutralization assays.
Collapse
Affiliation(s)
- Bengt Rönnberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala Academic Hospital, Uppsala University, 751 85, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Åke Gustafsson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Olli Vapalahti
- Department of Veterinary Biosciences and Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petra Emmerich
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.,Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057, Rostock, Germany
| | - Åke Lundkvist
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala Academic Hospital, Uppsala University, 751 85, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Jonas Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.,German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Jonas Blomberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala Academic Hospital, Uppsala University, 751 85, Uppsala, Sweden. .,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Detection of serotype-specific antibodies to the four dengue viruses using an immune complex binding (ICB) ELISA. PLoS Negl Trop Dis 2013; 7:e2580. [PMID: 24386498 PMCID: PMC3873247 DOI: 10.1371/journal.pntd.0002580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 10/29/2013] [Indexed: 02/02/2023] Open
Abstract
Background Dengue virus (DENV) infections are preferentially diagnosed by detection of specific IgM antibodies, DENV NS1 antigen assays or by amplification of viral RNA in serum samples of the patients. The type-specific immunity to the four worldwide circulating DENV serotypes can be determined by neutralization assays. An alternative to the complicated neutralization assays would be helpful to study the serotype-specific immune response in people in DENV hyperendemic areas but also in subjects upon DENV vaccination. Methods In consecutive samples of patients with DENV-1- 4 infection type-specific antibodies were detected using an immune complex binding (ICB) ELISA. During incubation of serum samples and enzyme- labeled recombinant envelope domain III (EDIII) antigens immune complexes (ICs) are formed, which are simultaneously bound to a solid phase coated with an Fc–receptor (CD32). After a single washing procedure the bound labeled ICs can be determined. To further improve type-specific reactions high concentrations of competing heterologous unlabeled ED III proteins were added to the labeled antigens. Results Follow-up serum samples of 64 patients with RT-PCR confirmed primary DENV-1, -2, -3 or -4 infections were tested against four enzyme-labeled recombinant DENV EDIII antigens. Antibodies to the EDIII antigens were found in 55 patients (sensitivity 86%). A complete agreement between the serotype detected by PCR in early samples and the serotype-specific antibody in later samples was found. Type-specific anti-EDIII antibodies were first detected 9–20 days after onset of the disease. In 21% of the samples collected from people in Vietnam secondary infections with antibodies to two serotypes could be identified. Conclusions The data obtained with the ICB-ELISA show that after primary DENV infection the corresponding type-specific antibodies are detected in almost all samples collected at least two weeks after onset of the disease. The method will be of value to determine the distribution of the various type-specific anti–DENV antibodies in DENV endemic areas. Infections with four different dengue viruses are threatening 2.5 billion people in tropical countries. Since most antibodies to these four viruses are cross-reacting, a type-specific ELISA would be valuable to study the immune response to the circulating viruses in patients but also in healthy subjects in endemic counties. Therefore a novel DENV immune complex binding (ICB) ELISA was developed to detect serotype-specific antibodies to all four dengue virus serotypes in human serum samples. The tests use labeled recombinant EDIII antigens of the four DENV strains. Numerous samples of patients with RT-PCR confirmed dengue fever were assessed by the new method. In samples of 55 patients with primary dengue fever full agreement between the serotype detected by RT-PCR and the serotype-specific antibody based on the ICB ELISA was obtained. The type-specific antibodies were not observed before the second week of illness. Our data suggest that using the ICB ELISA in healthy adult subjects in an endemic region (Vietnam) both primary and secondary infections can be identified. The method may help to analyze the distribution of the four dengue viruses in the tropics.
Collapse
|
16
|
Sambri V, Capobianchi MR, Cavrini F, Charrel R, Donoso-Mantke O, Escadafal C, Franco L, Gaibani P, Gould EA, Niedrig M, Papa A, Pierro A, Rossini G, Sanchini A, Tenorio A, Varani S, Vázquez A, Vocale C, Zeller H. Diagnosis of west nile virus human infections: overview and proposal of diagnostic protocols considering the results of external quality assessment studies. Viruses 2013; 5:2329-48. [PMID: 24072061 PMCID: PMC3814591 DOI: 10.3390/v5102329] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 01/14/2023] Open
Abstract
West Nile virus, genus Flavivirus, is transmitted between birds and occasionally other animals by ornithophilic mosquitoes. This virus also infects humans causing asymptomatic infections in about 85% of cases and <1% of clinical cases progress to severe neuroinvasive disease. The virus also presents a threat since most infections remain unapparent. However, the virus contained in blood and organs from asymptomatically infected donors can be transmitted to recipients of these infectious tissues. This paper reviews the presently available methods to achieve the laboratory diagnosis of West Nile virus infections in humans, discussing the most prominent advantages and disadvantages of each in light of the results obtained during four different External Quality Assessment studies carried out by the European Network for ‘Imported’ Viral Diseases (ENIVD).
Collapse
Affiliation(s)
- Vittorio Sambri
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-331-8687352
| | - Maria R. Capobianchi
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome 00149, Italy; E-Mail:
| | - Francesca Cavrini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Rémi Charrel
- UMR_D 190 “Emergence des Pathologies Virales”, APHM Public Hospitals of Marseille, EHESP French School of Public Health & IHU Mediterranee Infection, IRD French Institute of Research for Development, Aix Marseille University, 13005, Marseille, France; E-Mail: (R.C.)
| | - Olivier Donoso-Mantke
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Camille Escadafal
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Leticia Franco
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Paolo Gaibani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Ernest A. Gould
- UMR_D 190 “Emergence des Pathologies Virales”, APHM Public Hospitals of Marseille, EHESP French School of Public Health & IHU Mediterranee Infection, IRD French Institute of Research for Development, Aix Marseille University, 13005, Marseille, France; E-Mail: (R.C.)
- NERC Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, UK; E-Mail: (E.A.G.)
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-Mail:
| | - Anna Pierro
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Giada Rossini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Andrea Sanchini
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm 171 83, Sweden
| | - Antonio Tenorio
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Stefania Varani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Ana Vázquez
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Caterina Vocale
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Herve Zeller
- European Centre for Disease Prevention and Control, Stockholm 171 83, Sweden; E-Mail:
| |
Collapse
|