1
|
Yee JL, Strelow LI, White JA, Rosenthal AN, Barry PA. Horizontal transmission of endemic viruses among rhesus macaques (Macaca mulatta): Implications for human cytomegalovirus vaccine/challenge design. J Med Primatol 2023; 52:53-63. [PMID: 36151734 PMCID: PMC9825633 DOI: 10.1111/jmp.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Rhesus macaques are natural hosts to multiple viruses including rhesus cytomegalovirus (RhCMV), rhesus rhadinovirus (RRV), and Simian Foamy Virus (SFV). While viral infections are ubiquitous, viral transmissions to uninfected animals are incompletely defined. Management procedures of macaque colonies include cohorts that are Specific Pathogen Free (SPF). Greater understanding of viral transmission would augment SPF protocols. Moreover, vaccine/challenge studies of human viruses would be enhanced by leveraging transmission of macaque viruses to recapitulate expected challenges of human vaccine trials. MATERIALS AND METHODS This study characterizes viral transmissions to uninfected animals following inadvertent introduction of RhCMV/RRV/SFV-infected adults to a cohort of uninfected juveniles. Following co-housing with virus-positive adults, juveniles were serially evaluated for viral infection. RESULTS Horizontal viral transmission was rapid and absolute, reaching 100% penetrance between 19 and 78 weeks. CONCLUSIONS This study provides insights into viral natural histories with implications for colony management and modeling vaccine-mediated immune protection studies.
Collapse
Affiliation(s)
- JoAnn L Yee
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Lisa I Strelow
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
- Center for Immunology and Infectious Diseases, Davis, California, USA
| | - Jessica A White
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Ann N Rosenthal
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Peter A Barry
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
- Center for Immunology and Infectious Diseases, Davis, California, USA
| |
Collapse
|
2
|
Bukar AM, Jesse FFA, Abdullah CAC, Noordin MM, Lawan Z, Mangga HK, Balakrishnan KN, Azmi MLM. Immunomodulatory Strategies for Parapoxvirus: Current Status and Future Approaches for the Development of Vaccines against Orf Virus Infection. Vaccines (Basel) 2021; 9:1341. [PMID: 34835272 PMCID: PMC8624149 DOI: 10.3390/vaccines9111341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orf virus (ORFV), the prototype species of the parapoxvirus genus, is the causative agent of contagious ecthyma, an extremely devastating skin disease of sheep, goats, and humans that causes enormous economic losses in livestock production. ORFV is known for its ability to repeatedly infect both previously infected and vaccinated sheep due to several immunomodulatory genes encoded by the virus that temporarily suppress host immunity. Therefore, the development of novel, safe and effective vaccines against ORFV infection is an important priority. Although, the commercially licensed live-attenuated vaccines have provided partial protection against ORFV infections, the attenuated viruses have been associated with major safety concerns. In addition to safety issues, the persistent reinfection of vaccinated animals warrants the need to investigate several factors that may affect vaccine efficacy. Perhaps, the reason for the failure of the vaccine is due to the long-term adaptation of the virus in tissue culture. In recent years, the development of vaccines against ORFV infection has achieved great success due to technological advances in recombinant DNA technologies, which have opened a pathway for the development of vaccine candidates that elicit robust immunity. In this review, we present current knowledge on immune responses elicited by ORFV, with particular attention to the effects of the viral immunomodulators on the host immune system. We also discuss the implications of strain variation for the development of rational vaccines. Finally, the review will also aim to demonstrate future strategies for the development of safe and efficient vaccines against ORFV infections.
Collapse
Affiliation(s)
- Alhaji Modu Bukar
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
- Department of Science Laboratory Technology, School Agriculture and Applied Sciences, Ramat Polytechnic Maiduguri, Maiduguri 1070, Borno, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | | - Mustapha M. Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Zaharaddeen Lawan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Hassana Kyari Mangga
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Krishnan Nair Balakrishnan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Mohd-Lila Mohd Azmi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| |
Collapse
|
3
|
Patro ARK. Subversion of Immune Response by Human Cytomegalovirus. Front Immunol 2019; 10:1155. [PMID: 31244824 PMCID: PMC6575140 DOI: 10.3389/fimmu.2019.01155] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common cause of congenital infections and is an important pathogen in immunocompromised individuals. Despite a robust host immune system, HCMV able to replicate, evade host defenses, establish latency for life. A significant portion of HCMV genome dedicated to encode gene products for modulation of host immune response. Growing number of HCMV gene products are being recognized to play role in immune evasion. Information on viral immune evasion mechanisms by which HCMV persists in host will be useful in devising antiviral intervention strategies and development of new vaccines. This minireview provides a brief overview of immune evasion strategy adapted by HCMV by utilizing its gene products in modulation of host immune response.
Collapse
Affiliation(s)
- A Raj Kumar Patro
- Infectious Disease Biology Group, Institute of Life Sciences (ILS), Bhubaneswar, India
| |
Collapse
|
4
|
Britt WJ. Maternal Immunity and the Natural History of Congenital Human Cytomegalovirus Infection. Viruses 2018; 10:v10080405. [PMID: 30081449 PMCID: PMC6116058 DOI: 10.3390/v10080405] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) is the most common viral infection of the developing fetus, and a significant cause of neurodevelopmental abnormalities in infants and children. Congenital HCMV infections account for an estimated 25% of all cases of hearing loss in the US. It has long been argued that maternal adaptive immune responses to HCMV can modify both the likelihood of intrauterine transmission of HCMV, and the severity of fetal infection and risk of long term sequelae in infected infants. Over the last two decades, multiple studies have challenged this paradigm, including findings that have demonstrated that the vast majority of infants with congenital HCMV infections in most populations are born to women with established immunity prior to conception. Furthermore, the incidence of clinically apparent congenital HCMV infection in infants born to immune and non-immune pregnant women appears to be similar. These findings from natural history studies have important implications for the design, development, and testing of prophylactic vaccines and biologics for this perinatal infection. This brief overview will provide a discussion of existing data from human natural history studies and animal models of congenital HCMV infections that have described the role of maternal immunity in the natural history of this perinatal infection.
Collapse
Affiliation(s)
- William J Britt
- Departments of Pediatrics, Microbiology, and Neurobiology, University of Alabama School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Liu G, Hai R, Liu F. Detection of congenital cytomegalovirus in newborns using nucleic acid amplification techniques and its public health implications. Virol Sin 2017; 32:376-386. [PMID: 29116590 DOI: 10.1007/s12250-017-4055-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/23/2017] [Indexed: 11/28/2022] Open
Abstract
Human cytomegalovirus (HCMV), a herpesvirus, is an important human pathogen that causes asymptomatic infections in healthy or immunocompetent individuals but can lead to severe and potentially life-threatening complications in immune-immature individuals such as neonates or immune-compromised patients such as organ-transplant recipients and HIV-positive individuals. Congenital HCMV infection represents a significant public health issue and poses substantial healthcare and economic burden to society. This virus causes the most common viral congenital infection worldwide, and is the leading non-genetic cause of sensorineural hearing loss in children in developed countries. Congenital HCMV infection is believed to fulfill the criteria of the American College of Medical Genetics to be considered as a condition targeted for a newborn screening program. This is because congenital HCMV infection can be identified during a time (within 2 days after birth) at which it would not ordinarily be detected clinically, and there are demonstrated benefits of early detection, timely intervention, and efficacious treatment of the condition. Recent progresses in developing polymerase chain reaction-based approaches to detect HCMV in samples obtained from newborns have generated much excitement in the field. In this review, we highlight the recent progress in diagnostic techniques that could potentially be used for the detection of HCMV infection in neonates and its direct implications in public health settings for diagnosing congenital HCMV infection.
Collapse
Affiliation(s)
- Guoyu Liu
- School of Public Health, University of California, Berkeley, 94720, USA.,Berkeley Community College, Berkeley, 94704, USA
| | - Rong Hai
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, 94720, USA.
| |
Collapse
|
6
|
Intrauterine therapy of cytomegalovirus infection with valganciclovir: review of the literature. Med Microbiol Immunol 2017; 206:347-354. [PMID: 28733760 DOI: 10.1007/s00430-017-0512-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022]
Abstract
Congenital cytomegalovirus (CMV) infection is the leading cause for sensorineural hearing loss and mental retardation in children without genetic diseases worldwide. There is little evidence guiding therapeutic strategies during pregnancy when intrauterine fetal CMV infection is confirmed. We provide a systematic review of the use of ganciclovir (GCV) or VGCV during pregnancy discussing safety of its use for mother and fetus and describe two cases of intrauterine therapy of fetal CMV infection with valganciclovir (VGCV). A PubMed database search was done up to November 16, 2016 without any restrictions of publication date or journal, using the following keywords: "valganciclovir" or "ganciclovir" and "pregnan*". Furthermore, citations were searched and expert references were obtained. Reported cases were considered if therapy was in humans and initiation of treatment of the CMV infection was during pregnancy. In total, seven case reports were retrieved which described GCV or VGCV use during pregnancy for fetal or maternal CMV infection. In the four cases of treatment for maternal CMV infection, no negative effects on the fetus were reported. Three cases of GCV administration to pregnant woman with the intention of fetal treatment after proven fetal infection were found. We additionally present two cases of VGCV treatment in pregnancy from our center of tertiary care. VGCV seems to be a safe treatment for congenital CMV infection for the mother and the fetus. Therapeutic concentrations can be achieved in the fetus by oral intake of the mother and CMV replication can be suppressed. Larger studies are needed to evaluate this therapeutic intervention and the long-term effects.
Collapse
|
7
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res 2016; 44:9530-9554. [PMID: 27694307 PMCID: PMC5175367 DOI: 10.1093/nar/gkw875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - S Gillemot
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| |
Collapse
|
8
|
Prospects of a vaccine for the prevention of congenital cytomegalovirus disease. Med Microbiol Immunol 2016; 205:537-547. [PMID: 27519596 DOI: 10.1007/s00430-016-0472-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection is one leading cause of childhood disabilities. Prevention of congenital HCMV disease by vaccination has consequently been identified as a priority public healthcare goal. Several vaccine candidates have been introduced in the past that aimed at the prevention of primary HCMV infection in pregnancy. None of these has provided complete protection, and no licensed vaccine is thus far available. An additional level of complexity has been reached by recent studies indicating that the burden of HCMV transmission and disease following non-primary infections in pregnancy may be higher than previously anticipated. Substantial progress in our understanding of the immunobiology of HCMV infection in pregnancy has fostered studies to test revised or novel vaccine strategies. Preventing HCMV transmission has been identified a surrogate endpoint, rendering the conduction of vaccine studies feasible with reasonable effort. Identification of the glycoprotein complex gH/gL/UL128-131 as a mediator of HCMV host cell tropism and evaluation of that complex as a major target of the neutralizing antibody response made manufacturers consider vaccine candidates that include these proteins. Detailed structural analyses of the neutralizing determinants on HCMV glycoprotein B (gB) have revived interest in using this protein in its pre-fusion conformation for vaccine purposes. Studies in pregnant women and in animal models have provided evidence that addressing the T lymphocyte response by vaccination may be crucial to prevent HCMV transmission to the offspring. CD4 T lymphocytes may be of particular importance in this respect. A simultaneous targeting of both the humoral and cellular immune response against HCMV by vaccination thus appears warranted in order to prevent congenital HCMV infection. There is, however, still need for further research to be able to define an immunological correlate of protection against HCMV transmission during pregnancy. This brief review will highlight recent developments in our understanding of the natural history and immunobiology of HCMV infection in pregnancy and their possible impact on the strategies for the development of an HCMV vaccine.
Collapse
|