1
|
Bonavita CM, White TM, Francis J, Farrell HE, Davis-Poynter NJ, Cardin RD. The Viral G-Protein-Coupled Receptor Homologs M33 and US28 Promote Cardiac Dysfunction during Murine Cytomegalovirus Infection. Viruses 2023; 15:711. [PMID: 36992420 PMCID: PMC10054303 DOI: 10.3390/v15030711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis. To understand the viral mechanisms involved in CMV-induced heart dysfunction, we further characterized cardiac function in response to MCMV and examined virally encoded G-protein-coupled receptor homologs (vGPCRs) US28 and M33 as potential factors that promote infection in the heart. We hypothesized that the CMV-encoded vGPCRs could exacerbate cardiovascular damage and dysfunction. Three viruses were used to evaluate the role of vGPCRs in cardiac dysfunction: wild-type MCMV, a M33-deficient virus (∆M33), and a virus with the M33 open reading frame (ORF) replaced with US28, an HCMV vGPCR (i.e., US28+). Our in vivo studies revealed that M33 plays a role in promoting cardiac dysfunction by increasing viral load and heart rate during acute infection. During latency, ΔM33-infected mice demonstrated reduced calcification, altered cellular gene expression, and less cardiac hypertrophy compared with wild-type MCMV-infected mice. Ex vivo viral reactivation from hearts was less efficient in ΔM33-infected animals. HCMV protein US28 expression restored the ability of the M33-deficient virus to reactivate from the heart. US28+ MCMV infection caused damage to the heart comparable with wild-type MCMV infection, suggesting that the US28 protein is sufficient to complement the function of M33 in the heart. Altogether, these data suggest a role for vGPCRs in viral pathogenesis in the heart and thus suggest that vGPCRs promote long-term cardiac damage and dysfunction.
Collapse
Affiliation(s)
- Cassandra M. Bonavita
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Timothy M. White
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joseph Francis
- Department of Comparative Biological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Helen E. Farrell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | | | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
3
|
Davis-Poynter N, Farrell HE. Constitutive Signaling by the Human Cytomegalovirus G Protein Coupled Receptor Homologs US28 and UL33 Enables Trophoblast Migration In Vitro. Viruses 2022; 14:v14020391. [PMID: 35215985 PMCID: PMC8879092 DOI: 10.3390/v14020391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes four homologs of G protein coupled receptors (vGPCRs), of which two, designated UL33 and US28, signal constitutively. UL33 and US28 are also conserved with chemokine receptors: US28 binds numerous chemokine classes, including the membrane bound chemokine, fractalkine; whereas UL33 remains an orphan receptor. There is emerging data that UL33 and US28 each contribute to HCMV associated disease, although no studies to date have reported their potential contribution to aberrant placental physiology that has been detected with HCMV congenital infection. We investigated the signaling repertoire of UL33 and US28 and their potential to enable trophoblast mobilization in vitro. Results demonstrate the constitutive activation of CREB by each vGPCR in ACIM-88 and HTR-8SVneo trophoblasts; constitutive NF-kB activation was detected for US28 only. Constitutive signaling by each vGPCR enabled trophoblast migration. For US28, fractalkine exhibited inverse agonist activity and dampened trophoblast migration. UL33 stimulated expression of both p38 mitogen activated (MAP) and Jun N-terminal (JNK) kinases; while p38 MAP kinase stimulated CREB, JNK was inhibitory, suggesting that UL33 dependent CREB activation was regulated by p38/JNK crosstalk. Given that chemokines and their receptors are important for placental development, these data point to the potential of HCMV UL33 and US28 to interfere with trophoblast responses which are important for normal placental development.
Collapse
Affiliation(s)
- Nicholas Davis-Poynter
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia;
- Centre for Child Health Research, The University of Queensland, Brisbane 4000, Australia
| | - Helen E. Farrell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia;
- Centre for Child Health Research, The University of Queensland, Brisbane 4000, Australia
- Correspondence:
| |
Collapse
|
4
|
Tsutsumi N, Maeda S, Qu Q, Vögele M, Jude KM, Suomivuori CM, Panova O, Waghray D, Kato HE, Velasco A, Dror RO, Skiniotis G, Kobilka BK, Garcia KC. Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. SCIENCE ADVANCES 2022; 8:eabl5442. [PMID: 35061538 PMCID: PMC8782444 DOI: 10.1126/sciadv.abl5442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/29/2021] [Indexed: 05/12/2023]
Abstract
Human cytomegalovirus (HCMV) encodes G protein-coupled receptors (GPCRs) US28 and US27, which facilitate viral pathogenesis through engagement of host G proteins. Here we report cryo-electron microscopy structures of US28 and US27 forming nonproductive and productive complexes with Gi and Gq, respectively, exhibiting unusual features with functional implications. The "orphan" GPCR US27 lacks a ligand-binding pocket and has captured a guanosine diphosphate-bound inactive Gi through a tenuous interaction. The docking modes of CX3CL1-US28 and US27 to Gi favor localization to endosome-like curved membranes, where US28 and US27 can function as nonproductive Gi sinks to attenuate host chemokine-dependent Gi signaling. The CX3CL1-US28-Gq/11 complex likely represents a trapped intermediate during productive signaling, providing a view of a transition state in GPCR-G protein coupling for signaling. Our collective results shed new insight into unique G protein-mediated HCMV GPCR structural mechanisms, compared to mammalian GPCR counterparts, for subversion of host immunity.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Vögele
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hideaki E. Kato
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Velasco
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ron O. Dror
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
The mouse cytomegalovirus G protein-coupled receptor homolog, M33, coordinates key features of in vivo infection via distinct components of its signalling repertoire. J Virol 2021; 96:e0186721. [PMID: 34878888 DOI: 10.1128/jvi.01867-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Common to all cytomegalovirus (CMV) genomes analysed to date is the presence of G protein-coupled receptors (GPCR). Animal models of CMV provide insights into their role in viral fitness. The mouse cytomegalovirus (MCMV) GPCR, M33, facilitates dendritic cell (DC)-dependent viremia, the extravasation of blood-borne infected DC to the salivary gland and the frequency of reactivation events from latently-infected tissue explants. Constitutive G protein-coupled M33 signalling is required for these phenotypes, although the contribution of distinct biochemical pathways activated by M33 is unknown. M33 engages Gq/11 to constitutively activate phospholipase C β (PLCβ) and downstream cyclic AMP response-element binding protein (CREB) in vitro. Identification of a MCMV M33 mutant (M33ΔC38) for which CREB signalling was disabled, but PLCβ activation was preserved, provided the opportunity to investigate their relevance in vivo. Following intranasal infection with MCMV M33ΔC38, the absence of M33 CREB Gq/11-dependent signalling correlated with reduced mobilisation of lytically-infected DC to draining lymph node high endothelial venules (HEVs) and reduced viremia compared with wild type MCMV. In contrast, M33ΔC38-infected DC within the vascular compartment extravasated to the salivary glands via a pertussis toxin-sensitive, Gi/o-dependent and CREB-independent mechanism. In the context of MCMV latency, spleen explants from M33ΔC38-infected mice were markedly attenuated for reactivation. Taken together, these data demonstrate that key features of the MCMV lifecycle are coordinated in diverse tissues by distinct pathways of the M33 signalling repertoire. IMPORTANCE G protein-coupled receptors (GPCRs) act as cell surface molecular "switches" which regulate the cellular response to environmental stimuli. All cytomegalovirus (CMV) genomes analysed to date possess GPCR homologs with phylogenetic evidence for independent gene capture events, signifying important in vivo roles. The mouse CMV (MCMV) GPCR homolog, designated M33, is important for cell-associated virus spread and for the establishment and/or reactivation of latent MCMV infection. The signalling repertoire of M33 is distinct from cellular GPCRs and little is known of the relevance of component signalling pathways for in vivo M33 function. In this report, we show temporal and tissue-specific M33 signalling is required facilitating in vivo infection. Understanding the relevance of the viral GPCR signalling profiles for in vivo function will provide opportunities for future targeted interventions.
Collapse
|
6
|
Sequencing Directly from Clinical Specimens Reveals Genetic Variations in HCMV-Encoded Chemokine Receptor US28 That May Influence Antibody Levels and Interactions with Human Chemokines. Microbiol Spectr 2021; 9:e0002021. [PMID: 34704798 PMCID: PMC8549752 DOI: 10.1128/spectrum.00020-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ∼80% of the world’s population. Acute infections are asymptomatic in healthy individuals but generate diverse syndromes in neonates, solid organ transplant recipients, and HIV-infected individuals. The HCMV gene US28 encodes a homolog of a human chemokine receptor that is able to bind several chemokines and HIV gp120. Deep sequencing technologies were used to sequence US28 directly from 60 clinical samples from Indonesian HIV patients and Australian renal transplant recipients, healthy adults, and neonates. Molecular modeling approaches were used to predict whether nine nonsynonymous mutations in US28 may alter protein binding to a panel of six chemokines and two variants of HIV gp120. Ninety-two percent of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous mutation. Carriage of these variants differed between neonates and adults, Australian and Indonesian samples, and saliva samples and blood leukocytes. Two nonsynonymous mutations (N170D and R267K) were associated with increased levels of immediate early protein 1 (IE-1) and glycoprotein B (gB) HCMV-reactive antibodies, suggesting a higher viral burden. Seven of the nine mutations were predicted to alter binding of at least one ligand. Overall, HCMV variants are common in all populations and have the potential to affect US28 interactions with human chemokines and/or gp120 and alter responses to the virus. The findings relied on deep sequencing technologies applied directly to clinical samples, so the variants exist in vivo. IMPORTANCE Human cytomegalovirus (HCMV) is a common viral pathogen of solid organ transplant recipients, neonates, and HIV-infected individuals. HCMV encodes homologs of several host genes with the potential to influence viral persistence and/or pathogenesis. Here, we present deep sequencing of an HCMV chemokine receptor homolog, US28, acquired directly from clinical specimens. Carriage of these variants differed between patient groups and was associated with different levels of circulating HCMV-reactive antibodies. These features are consistent with a role for US28 in HCMV persistence and pathogenesis. This was supported by in silico analyses of the variant sequences demonstrating altered ligand-binding profiles. The data delineate a novel approach to understanding the pathogenesis of HCMV and may impact the development of an effective vaccine.
Collapse
|
7
|
Tang J, Frascaroli G, Zhou X, Knickmann J, Brune W. Cell Fusion and Syncytium Formation in Betaherpesvirus Infection. Viruses 2021; 13:v13101973. [PMID: 34696402 PMCID: PMC8537622 DOI: 10.3390/v13101973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell–cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell–cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell–cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell–cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.
Collapse
Affiliation(s)
- Jiajia Tang
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Center for Single-Cell Omics, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Xuan Zhou
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Jan Knickmann
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Correspondence:
| |
Collapse
|
8
|
Hanka I, Stamminger T, Ramsperger-Gleixner M, Kuckhahn AV, Müller R, Weyand M, Heim C. Role of CMV chemokine receptor M33 in airway graft rejection in a mouse transplant model. Transpl Immunol 2021; 67:101415. [PMID: 34033867 DOI: 10.1016/j.trim.2021.101415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a risk factor for bronchiolitis obliterans (BO), one form of chronic lung allograft dysfunction (CLAD). The viral chemokine receptor M33 is essential for successful spread of murine CMV to host salivary glands. In the present study we investigated the impact of M33 on chronic airway rejection. METHODS MHC I-mismatched tracheas of C·B10-H2b/LilMcdJ mice were transplanted into BALB/c (H2d) recipients and infected at different dates with wild type (WT) or M33-deleted (delM33) MCMV representing clinical settings of viral recipient (R)-donor (D)-serostatus: (D-/R+) or (D+/R-). Grafts were recovered for gene expression and histological / immunofluorescence analysis, respectively. RESULTS Evaluations showed significantly increased signs of chronic rejection in WT-infected mice compared to uninfected allografts seen in lower epithelium/lamina propria-ratio (ELR) (ELR 0.46 ± 0.07 [WT post] vs. ELR 0.66 ± 0.10 [non-inf.]; p < 0.05). The rejection in delM33-infected groups was significantly reduced vs. WT-infected groups (0.67 ± 0.04 [delM33 post]; vs. WT post p < 0.05). Furthermore, decreased rejection was observed in WT pre-infected compared to post-infected groups (0.56 ± 0.08 [WT pre]; vs. WT post p < 0.05). CD8+ T cell infiltration was significantly higher in WT-post compared to the delM33 infected or non-infected allografts. CONCLUSIONS These data support the role of the CMV in accelerating CLAD. The deletion of chemokine receptor M33 leads to attenuated rejection.
Collapse
Affiliation(s)
- Isabella Hanka
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institute for Virology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martina Ramsperger-Gleixner
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany
| | - Annika V Kuckhahn
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany
| | - Regina Müller
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
10
|
Krishna BA, Wass AB, Dooley AL, O'Connor CM. CMV-encoded GPCR pUL33 activates CREB and facilitates its recruitment to the MIE locus for efficient viral reactivation. J Cell Sci 2021; 134:jcs254268. [PMID: 33199520 PMCID: PMC7860128 DOI: 10.1242/jcs.254268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) establishes life-long latent infection in hematopoietic progenitor cells and circulating monocytes in infected individuals. Myeloid differentiation coupled with immune dysregulation leads to viral reactivation, which can cause severe disease and mortality. Reactivation of latent virus requires chromatin reorganization and the removal of transcriptional repressors in exchange for transcriptional activators. While some factors involved in these processes are identified, a complete characterization of the viral and cellular factors involved in their upstream regulation remains elusive. Herein, we show the HCMV-encoded G protein-coupled receptor (GPCR), UL33, is expressed during latency. Although this viral GPCR is not required to maintain latent infection, our data reveal UL33-mediated signaling is important for efficient viral reactivation. Additionally, UL33 signaling induces cellular cyclic AMP response element binding protein (CREB1, referred to here as CREB) phosphorylation, a transcription factor that promotes reactivation when recruited to the major immediate early (MIE) enhancer/promoter. Finally, targeted pharmacological inhibition of CREB activity reverses the reactivation phenotype of the UL33 signaling-deficient mutant. In sum, our data reveal UL33-mediated signaling functions to activate CREB, resulting in successful viral reactivation.
Collapse
Affiliation(s)
- Benjamin A Krishna
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amanda B Wass
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abigail L Dooley
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
11
|
Pang J, Slyker JA, Roy S, Bryant J, Atkinson C, Cudini J, Farquhar C, Griffiths P, Kiarie J, Morfopoulou S, Roxby AC, Tutil H, Williams R, Gantt S, Goldstein RA, Breuer J. Mixed cytomegalovirus genotypes in HIV-positive mothers show compartmentalization and distinct patterns of transmission to infants. eLife 2020; 9:e63199. [PMID: 33382036 PMCID: PMC7806273 DOI: 10.7554/elife.63199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) is the commonest cause of congenital infection and particularly so among infants born to HIV-infected women. Studies of congenital CMV infection (cCMVi) pathogenesis are complicated by the presence of multiple infecting maternal CMV strains, especially in HIV-positive women, and the large, recombinant CMV genome. Using newly developed tools to reconstruct CMV haplotypes, we demonstrate anatomic CMV compartmentalization in five HIV-infected mothers and identify the possibility of congenitally transmitted genotypes in three of their infants. A single CMV strain was transmitted in each congenitally infected case, and all were closely related to those that predominate in the cognate maternal cervix. Compared to non-transmitted strains, these congenitally transmitted CMV strains showed statistically significant similarities in 19 genes associated with tissue tropism and immunomodulation. In all infants, incident superinfections with distinct strains from breast milk were captured during follow-up. The results represent potentially important new insights into the virologic determinants of early CMV infection.
Collapse
Affiliation(s)
- Juanita Pang
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Jennifer A Slyker
- Departments of Global Health and Epidemiology, University of WashingtonSeattleUnited States
| | - Sunando Roy
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Josephine Bryant
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Claire Atkinson
- Institute of Immunology and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Juliana Cudini
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Carey Farquhar
- Departments of Global Health, Epidemiology, Medicine (Div. Allergy and Infectious Diseases), University of WashingtonSeattleUnited States
| | - Paul Griffiths
- Institute of Immunology and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - James Kiarie
- University of Nairobi, Department of Obstetrics and Gynaecology, World Health OrganizationNairobiKenya
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Alison C Roxby
- Departments of Global Health, Epidemiology, Medicine (Div. Allergy and Infectious Diseases), University of WashingtonSeattleUnited States
| | - Helena Tutil
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Rachel Williams
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Soren Gantt
- Research Centre of the Sainte-Justine University Hospital, Department of Microbiology, Infectious Diseases and Immunology, University of Montréal QCMontréalCanada
| | - Richard A Goldstein
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Judith Breuer
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
The constitutive activity of the viral-encoded G protein-coupled receptor US28 supports a complex signalling network contributing to cancer development. Biochem Soc Trans 2020; 48:1493-1504. [PMID: 32779712 PMCID: PMC7458396 DOI: 10.1042/bst20190988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
US28 is a viral G protein-coupled receptor (GPCR) encoded by the human cytomegalovirus (HCMV). This receptor, expressed both during lytic replication and viral latency, is required for latency. US28 is binding to a wide variety of chemokines but also exhibits a particularly high constitutive activity robustly modulating a wide network of cellular pathways altering the host cell environment to benefit HCMV infection. Several studies suggest that US28-mediated signalling may contribute to cancer progression. In this review, we discuss the unique structural characteristics that US28 acquired through evolution that confer a robust constitutive activity to this viral receptor. We also describe the wide downstream signalling network activated by this constitutive activation of US28 and discuss how these signalling pathways may promote and support important cellular aspects of cancer.
Collapse
|
13
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
14
|
Farrell HE, Bruce K, Redwood AJ, Stevenson PG. Murine cytomegalovirus disseminates independently of CX3CR1, CCL2 or its m131/m129 chemokine homologue. J Gen Virol 2019; 100:1695-1700. [PMID: 31609196 DOI: 10.1099/jgv.0.001333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytomegaloviruses (CMVs) use myeloid cells to move within their hosts. Murine CMV (MCMV) colonizes the salivary glands for long-term shedding, and reaches them via CD11c+ infected cells. A need to recruit patrolling monocytes for systemic spread has been proposed, based on poor salivary gland infection in fractalkine receptor (CX3CR1)-deficient mice. We found no significant CX3CR1 dependence of salivary gland infection. CCL2 and the viral m131/m129 chemokine homologue were also redundant for acute MCMV spread, arguing against a need for inflammation or infection to recruit additional monocytes to the entry site. M131/m129 promoted salivary gland infection, but only after the initial seeding of infected cells to this site. Our data support the idea that MCMV disseminates by infecting and mobilizing tissue-resident dendritic cells.
Collapse
Affiliation(s)
- Helen E Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Alec J Redwood
- The Institute for Respiratory Health, University of Western Australia, Crawley WA 6009, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|