1
|
Liu Y, Wu J, Liu R, Li F, Xuan L, Wang Q, Li D, Chen X, Sun H, Li X, Jin C, Huang D, Li L, Tang G, Liu B. Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity. Nat Microbiol 2024; 9:2909-2922. [PMID: 39414933 DOI: 10.1038/s41564-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR-tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention.
Collapse
Affiliation(s)
- Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - XinTong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Di Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, People's Republic of China.
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Yang R, Liu T, Pang C, Cai Y, Lin Z, Guo L, Wei X. The Regulatory Effect of Coaggregation Between Fusobacterium nucleatum and Streptococcus gordonii on the Synergistic Virulence to Human Gingival Epithelial Cells. Front Cell Infect Microbiol 2022; 12:879423. [PMID: 35573793 PMCID: PMC9100429 DOI: 10.3389/fcimb.2022.879423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
In subgingival plaque biofilms, Fusobacterium nucleatum is closely related to the occurrence and development of periodontitis. Streptococcus gordonii, as an accessory pathogen, can coaggregate with periodontal pathogens, facilitating the subgingival colonization of periodontal pathogens. Studies have shown that F. nucleatum can coaggregate with S. gordonii and colonize the subgingival plaque. However, most studies have focused on monocultures or coinfection of species and the potential impact of coaggregation between the two species on periodontal interactions to human gingival epithelial cells (hGECs) remains poorly understood. The present study explored the effect of coaggregation between F. nucleatum and S. gordonii on subgingival synergistic virulence to hGECs. The results showed that coaggregation inhibited the adhesion and invasion of F. nucleatum to hGECs compared with that in the F. nucleatum monoculture and coinfection group. Coaggregation and coinfection with F. nucleatum both enhanced S. gordonii adhesion to hGECs, but neither of the two groups affected S. gordonii invasion to hGECs compared with S. gordonii monoculture. The gene expression levels of TLR2 and TLR4 in hGECs in the coaggregation group were higher than those in the monoculture groups but lower than those in the coinfection group. Compared with coinfection, the coaggregation inhibited apoptosis of hGECs and promoted the secretion of the proinflammatory cytokines TNF-α and IL-6 by hGECs, showed a synergistic inflammatory effect, while coaggregation inhibited the secretion of the anti-inflammatory cytokine TGF-β1. Coaggregation enhanced the phosphorylation of p65, p38, and JNK proteins and therefore activated the NF-κB and MAPK signaling pathways. Pretreatment with a pathway antagonist/inhibitor decreased the phosphorylation levels of proteins and the secretion of TNF-α and IL-6. In conclusion, coaggregation inhibited the adhesion and invasion of F. nucleatum to hGECs. However, it enhanced the adhesion of S. gordonii to hGECs. Compared with coinfection, coaggregation inhibited the apoptosis of hGECs. The coaggregation coordinately promoted the secretion of TNF-α and IL-6 by hGECs through the TLR/NF-κB and TLR/MAPK signaling pathways while inhibiting the secretion of TGF-β1, thus aggravating the inflammatory response of hGECs.
Collapse
Affiliation(s)
- Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chunfeng Pang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanling Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Barrassso K, Chac D, Debela MD, Geigel C, Steenhaut A, Rivera Seda A, Dunmire CN, Harris JB, Larocque RC, Midani FS, Qadri F, Yan J, Weil AA, Ng WL. Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. eLife 2022; 11:73010. [PMID: 35343438 PMCID: PMC8993218 DOI: 10.7554/elife.73010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies indicate that the human intestinal microbiota could impact the outcome of infection by Vibrio cholerae, the etiological agent of the diarrheal disease cholera. A commensal bacterium, Paracoccus aminovorans, was previously identified in high abundance in stool collected from individuals infected with V. cholerae when compared to stool from uninfected persons. However, if and how P. aminovorans interacts with V. cholerae has not been experimentally determined; moreover, whether any association between this bacterium alters the behaviors of V. cholerae to affect the disease outcome is unclear. Here, we show that P. aminovorans and V. cholerae together form dual-species biofilm structure at the air–liquid interface, with previously uncharacterized novel features. Importantly, the presence of P. aminovorans within the murine small intestine enhances V. cholerae colonization in the same niche that is dependent on the Vibrio exopolysaccharide and other major components of mature V. cholerae biofilm. These studies illustrate that multispecies biofilm formation is a plausible mechanism used by a gut microbe to increase the virulence of the pathogen, and this interaction may alter outcomes in enteric infections.
Collapse
Affiliation(s)
- Kelsey Barrassso
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Seattle, United States
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, United States
| | - Meti D Debela
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Catherine Geigel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Anjali Steenhaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Abigail Rivera Seda
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Chelsea N Dunmire
- Department of Medicine, University of Washington, Seattle, United States
| | - Jason B Harris
- Department of Pediatrics, Massachusetts General Hospital, Boston, United States
| | - Regina C Larocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Firas S Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, United States
| | | | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Ana A Weil
- Department of Medicine, University of Washington, Seattle, United States
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| |
Collapse
|
4
|
Li Q, Guo A, Ma Y, Liu L, Liu W, Zhong Y, Zhang Y. Gene Analysis of Listeria monocytogenes Suspended Aggregates Induced by Ralstonia insidiosa Cell-Free Supernatants under Nutrient-Poor Environments. Microorganisms 2021; 9:2591. [PMID: 34946191 PMCID: PMC8704912 DOI: 10.3390/microorganisms9122591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/08/2023] Open
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen. The production of food-borne pathogenic bacteria aggregates is considered to be a way to improve their resistance and persistence in the food chain. Ralstonia insidiosa has been shown to induce L. monocytogenes to form suspended aggregates, but induction mechanisms remain unclear. In the study, the effect of R. insidiosa cell-free supernatants cultured in 10% TSB medium (10% RIS) on the formation of L. monocytogenes suspended aggregates was evaluated. Next, the Illumina RNA sequencing was used to compare the transcriptional profiles of L. monocytogenes in 10% TSB medium with and without 10% RIS to identify differentially expressed genes (DEGs). The result of functional annotation analysis of DEGs indicated that these genes mainly participate in two component system, bacterial chemotaxis and flagellar assembly. Then the reaction network of L. monocytogenes suspended aggregates with the presence of 10% RIS was summarized. The gene-deletion strain of L. monocytogenes was constructed by homologous recombination. The result showed that cheA and cheY are key genes in the formation of suspended aggregates. This research is the preliminary verification of suspended aggregates' RNA sequencing and is helpful to analyze the aggregation mechanisms of food-borne pathogenic bacteria from a new perspective.
Collapse
Affiliation(s)
- Qun Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (Q.L.); (L.L.); (W.L.); (Y.Z.); (Y.Z.)
| | - Ailing Guo
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (Q.L.); (L.L.); (W.L.); (Y.Z.); (Y.Z.)
| | - Yi Ma
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China
| | - Ling Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (Q.L.); (L.L.); (W.L.); (Y.Z.); (Y.Z.)
| | - Wukang Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (Q.L.); (L.L.); (W.L.); (Y.Z.); (Y.Z.)
| | - Yuan Zhong
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (Q.L.); (L.L.); (W.L.); (Y.Z.); (Y.Z.)
| | - Yawen Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (Q.L.); (L.L.); (W.L.); (Y.Z.); (Y.Z.)
| |
Collapse
|
5
|
Contributions of Escherichia coli and Its Motility to the Formation of Dual-Species Biofilms with Vibrio cholerae. Appl Environ Microbiol 2021; 87:e0093821. [PMID: 34260307 DOI: 10.1128/aem.00938-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is important in both the environmental and intestinal phases of the Vibrio cholerae life cycle. Nevertheless, most studies of V. cholerae biofilm formation focus on monospecies cultures, whereas nearly all biofilm communities found in nature consist of a variety of microorganisms. Multispecies biofilms formed between V. cholerae and other bacteria in the environment and the interactions that exist between these species are still poorly understood. In this study, the influence of Escherichia coli on the biofilm formation of V. cholerae was studied in the context of both in vitro coculture and in vivo coinfection. To understand the underlying synergistic mechanisms between these two species and to investigate the role of E. coli in V. cholerae biofilm formation, different pathotypes of E. coli and corresponding deletion mutants lacking genes that influence flagellar motility, curli fibers, or type I pili were cocultured with V. cholerae. Our findings demonstrate that the presence of commensal E. coli increases biofilm formation at the air-liquid interface in vitro and the generation of biofilm-like multicellular clumps in mouse feces. Examination of laboratory E. coli flagellar-motility ΔfliC and ΔmotA mutants in dual-species biofilm formation suggests that flagellar motility plays an important role in the synergistic interaction and coaggregation formation between V. cholerae and E. coli. This study facilitates a better understanding of how V. cholerae resides in harsh environments and colonizes the intestine. IMPORTANCE Biofilms play an important role in the V. cholerae life cycle. Until now, only monospecies biofilm formation of V. cholerae has been well studied. However, in nature, bacteria live in complex microbial communities, where biofilm is mostly composed of multiple microbial species that interact to cooperate with or compete against each other. Uncovering how V. cholerae forms multispecies biofilms is critical for furthering our understanding of how V. cholerae survives in the environment and transitions to infecting the human host. In this work, the dual-species biofilm containing V. cholerae and Escherichia coli was investigated. We demonstrate that the presence of commensal E. coli increased overall biofilm formation. Furthermore, we demonstrate that the motility of E. coli flagella is important for V. cholerae and E. coli to form coaggregation clumps in a dual-species biofilm. These results shed light on a new mechanism for understanding the survival and pathogenesis of V. cholerae.
Collapse
|
6
|
Fusion-expressed CtxB-TcpA-C-CPE improves both systemic and mucosal humoral and T-cell responses against cholera in mice. Microb Pathog 2021; 157:104978. [PMID: 34022352 DOI: 10.1016/j.micpath.2021.104978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Development of an effective oral vaccine against Cholera, a life-threatening dehydrating diarrheal disease, proved to be a challenging task. To improve oral subunit vaccine immunogenicity and to prevent the state of oral tolerance, application of mucosal adjuvants might be a promising approach. In the present study, the CtxB-TcpA-C-CPE fusion was constructed in which CtxB and C-CPE were used as mucosal adjuvants and vaccine delivery system, respectively, to induce mucosal immune responses, and to improve the anti-toxin and anti-colonizing immunity against V. cholerae. MATERIALS & METHODS The fusion construct was synthesized, sub-cloned in pQE30 and expressed in E. coli. The three antigen, making the fusion protein, were also separately expressed in E. coli. The recombinant proteins were purified by affinity chromatography using Ni-NTA agarose. Western blot analysis using anti-His antibody was applied to confirm identity of the purified proteins. BALB/c mice were subcutaneously immunized with CtxB, TcpA, C-CPE and the fusion protein CtxB-TcpA-C-CPE separately. The mice were orally immunized (in 3 boosts) by the same vaccine. Mucosal immune response stimulation was evaluated by measuring the levels of intestinal IgA. Systemic immune response was evaluated by measuring total serum IgG, IgG1, IgG2a, IgG2b subclasses, and also IL-4, IL-5, IL-10 and IFN-γ cytokines in spleen cell culture. RESULTS The recombinant proteins CtxB, TcpA, C-CPE and the fusion protein CtxB-TcpA-C-CPE were expressed in E. coli and highly purified in a single step of chromatography. BALB/c mice immunized with the fusion protein had highest levels of intestinal IgA, serum IgG and IgG subclasses, compared to each of the three proteins making the fusion. Moreover, stimulated splenocytes of mice immunized with the fusion protein displayed significantly higher amounts of IL-5 and IFN-ɣ cytokines. Th2 dominance of the immune response was more evident in mice receiving the fusion protein. CONCLUSION Inclusion of CtxB, as the mucosal adjuvant, and C-CPE, as the vaccine delivery system, in the fusion protein CtxB-TcpA-C-CPE significantly enhanced the elicited mucosal and systemic immune responses, compared to TcpA alone. Of note, significant production of intestinal IgA in mice immunized with the fusion protein is presumably capable of neutralizing TcpA, CtxB and C-CPE antigens, preventing V. cholera colonization, and toxic function of CtxB and C-CPE. Challenge infection of the immunized mice is required to evaluate protective potential of the fusion protein against V. cholera.
Collapse
|
7
|
Afonso AC, Gomes IB, Saavedra MJ, Giaouris E, Simões LC, Simões M. Bacterial coaggregation in aquatic systems. WATER RESEARCH 2021; 196:117037. [PMID: 33751976 DOI: 10.1016/j.watres.2021.117037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The establishment of a sessile community is believed to occur in a sequence of steps where genetically distinct bacteria can become attached to partner cells via specific molecules, in a process known as coaggregation. The presence of bacteria with the ability to autoaggregate and coaggregate has been described for diverse aquatic systems, particularly freshwater, drinking water, wastewater, and marine water. In these aquatic systems, coaggregation already demonstrated a role in the development of complex multispecies sessile communities, including biofilms. While specific molecular aspects on coaggregation in aquatic systems remain to be understood, clear evidence exist on the impact of this mechanism in multispecies biofilm resilience and homeostasis. The identification of bridging bacteria among coaggregating consortia has potential to improve the performance of wastewater treatment plants and/or to contribute for the development of strategies to control undesirable biofilms. This study provides a comprehensive analysis on the occurrence and role of bacterial coaggregation in diverse aquatic systems. The potential of this mechanism in water-related biotechnology is further described, with particular emphasis on the role of bridging bacteria.
Collapse
Affiliation(s)
- Ana C Afonso
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Inês B Gomes
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Maria José Saavedra
- CITAB, Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, Myrina 81400, Lemnos, Greece
| | - Lúcia C Simões
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuel Simões
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|