1
|
Inoue S, Yoshimoto S, Hori K. A new target of multiple lysine methylation in bacteria. J Bacteriol 2025; 207:e0032524. [PMID: 39660925 PMCID: PMC11784438 DOI: 10.1128/jb.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The methylation of ε-amino groups in protein lysine residues is an important posttranslational modification in eukaryotes. This modification plays a pivotal role in the regulation of diverse biological processes, including epigenetics, transcriptional control, and cellular signaling. Recent research has begun to reveal the potential role of methylation in modulating bacterial immune evasion and adherence to host cells. In this study, we analyzed the cell surface proteins of the toluene-degrading bacterium Acinetobacter sp. Tol 5 by label-free liquid chromatography‒mass spectrometry and found multiple lysine methylation in its trimeric autotransporter adhesin (TAA), AtaA. Over 130 lysine residues of AtaA, consisting of 3,630 amino acids and containing 234 lysine residues, were methylated. We identified that the outer membrane protein lysine methyltransferase (OM PKMT) of Tol 5, KmtA, specifically methylates the lysine residues of AtaA. In the KmtA-deficient mutant, most lysine methylations on AtaA were absent, indicating that KmtA is responsible for the methylation of multiple lysine residues throughout AtaA. Bioinformatic analysis revealed that the OM PKMT genes were widely distributed among Gram-negative bacteria, including pathogens with TAAs that promote infectivity, such as Burkholderia mallei and Haemophilus influenzae. Although KmtA has sequence similarities to the OM PKMTs of Rickettsia involved in infectivity, KmtA-like PKMTs formed a distinct cluster from those of the Rickettsia type according to the clustering analysis, suggesting that they are new types of OM PKMTs. Furthermore, the deletion of Tol 5 KmtA led to an increase in AtaA on the cell surface and enhanced bacterial adhesion, resulting in slower growth. IMPORTANCE Lysine methylation has been underexplored in prokaryotes, and information on it is limited to some pathogens. Our finding is the second case of multiple lysine methylation of bacterial outer membrane (OM) proteins, following that of OmpB of Rickettsia. The newly found target of methylation, AtaA, a trimeric autotransporter adhesin family protein of Acinetobacter sp. Tol 5 isolated from activated sludge, extends our understanding of OM protein methylation to non-pathogenic environmental strains. The newly identified enzyme KmtA shows higher specificity than rickettsial lysin methylases, protein lysine methyltransferases, and methylates more lysine residues of the target, which raises interest in the mechanism underlying its biological specificity. The widespread presence of KmtA-like PKMTs throughout Gram-negative bacteria suggests that lysine methylation functions more extensively in bacterial physiology than previously recognized.
Collapse
Affiliation(s)
- Shori Inoue
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Leo JC. Interaction between bacterial adhesins leads to coaggregation by the oral bacteria Veillonella parvula and Streptococcus gordonii. mBio 2025:e0327924. [PMID: 39791898 DOI: 10.1128/mbio.03279-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Veillonella parvula is an unusual diderm firmicute that plays a central role in the formation of dental biofilm formation through coaggregation with many other oral bacteria. However, the molecular interactions leading to oral biofilm formation are largely unknown. In a recent study (L. Dorison, N. Béchon, C. Martin-Gallausiaux, S. Chamorro-Rodriguez, et al., mBio 15:e02171-24, 2024, https://doi.org/10.1128/mbio.02171-24), coaggregation by V. parvula was shown to be mediated by trimeric autotransporter adhesins (TAAs), which are large, fibrous surface proteins widespread in Gram-negative bacteria. Importantly, this study identified the binding partner protein on a coaggregating bacterium, Streptococcus gordonii, which the authors called VisA. This finding is the first time a TAA mediating coaggregation with a different type of protein has been established and suggests that specifically interacting protein partners may have coevolved multiple times to allow complex biofilm formation, as exemplified by the development of dental plaque. Understanding these interactions might lead to innovations to reduce build-up of dental plaque and associated oral diseases.
Collapse
Affiliation(s)
- Jack C Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
3
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi, a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB, encoding trimeric autotransporter adhesins (TAAs) and mltA, encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro, biofilm formation was reduced in ΔstaB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (ΔstaA and ΔmltA) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sylvia L. Tanguma
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Da Costa RM, Rooke JL, Wells TJ, Cunningham AF, Henderson IR. Type 5 secretion system antigens as vaccines against Gram-negative bacterial infections. NPJ Vaccines 2024; 9:159. [PMID: 39218947 PMCID: PMC11366766 DOI: 10.1038/s41541-024-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Gram-negative bacteria are leading causes of mortality worldwide. Due to the rise in antibiotic resistant strains, there is a desperate need for alternative strategies to control infections caused by these organisms. One such approach is the prevention of infection through vaccination. While live attenuated and heat-killed bacterial vaccines are effective, they can lead to adverse reactions. Newer vaccine technologies focus on utilizing polysaccharide or protein subunits for safer and more targeted vaccination approaches. One promising avenue in this regard is the use of proteins released by the Type 5 secretion system (T5SS). This system is the most prevalent secretion system in Gram-negative bacteria. These proteins are compelling vaccine candidates due to their demonstrated protective role in current licensed vaccines. Notably, Pertactin, FHA, and NadA are integral components of licensed vaccines designed to prevent infections caused by Bordetella pertussis or Neisseria meningitidis. In this review, we delve into the significance of incorporating T5SS proteins into licensed vaccines, their contributions to virulence, conserved structural motifs, and the protective immune responses elicited by these proteins.
Collapse
Affiliation(s)
- Rochelle M Da Costa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Rodríguez-Pastor R, Knossow N, Shahar N, Hasik AZ, Deatherage DE, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. Pathogen contingency loci and the evolution of host specificity: Simple sequence repeats mediate Bartonella adaptation to a wild rodent host. PLoS Pathog 2024; 20:e1012591. [PMID: 39348417 PMCID: PMC11466379 DOI: 10.1371/journal.ppat.1012591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Parasites, including pathogens, can adapt to better exploit their hosts on many scales, ranging from within an infection of a single individual to series of infections spanning multiple host species. However, little is known about how the genomes of parasites in natural communities evolve when they face diverse hosts. We investigated how Bartonella bacteria that circulate in rodent communities in the dunes of the Negev Desert in Israel adapt to different species of rodent hosts. We propagated 15 Bartonella populations through infections of either a single host species (Gerbillus andersoni or Gerbillus pyramidum) or alternating between the two. After 20 rodent passages, strains with de novo mutations replaced the ancestor in most populations. Mutations in two mononucleotide simple sequence repeats (SSRs) that caused frameshifts in the same adhesin gene dominated the evolutionary dynamics. They appeared exclusively in populations that encountered G. andersoni and altered the dynamics of infections of this host. Similar SSRs in other genes are conserved and exhibit ON/OFF variation in Bartonella isolates from the Negev Desert dunes. Our results suggest that SSR-based contingency loci could be important not only for rapidly and reversibly generating antigenic variation to escape immune responses but that they may also mediate the evolution of host specificity.
Collapse
Affiliation(s)
- Ruth Rodríguez-Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Naama Shahar
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adam Z. Hasik
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Daniel E. Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ricardo Gutiérrez
- National Reference Center for Bacteriology, Costa Rican Institute for Research and Teaching in Nutrition and Health (Inciensa), Cartago, Costa Rica
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis, West Indies
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard E. Lenski
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
6
|
Sang S, Song W, Lu L, Ou Q, Guan Y, Tao H, Wang Y, Liu C. The Trimeric Autotransporter Adhesin SadA from Salmonella spp. as a Novel Bacterial Surface Display System. Vaccines (Basel) 2024; 12:399. [PMID: 38675781 PMCID: PMC11054257 DOI: 10.3390/vaccines12040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial surface display platforms have been developed for applications such as vaccine delivery and peptide library screening. The type V secretion system is an attractive anchoring motif for the surface expression of foreign proteins in gram-negative bacteria. SadA belongs to subtype C of the type V secretion system derived from Salmonella spp. and promotes biofilm formation and host cell adherence. The inner membrane lipoprotein SadB is important for SadA translocation. In this study, SadA was used as an anchoring motif to expose heterologous proteins in Salmonella typhimurium using SadB. The ability of SadA to display heterologous proteins on the S. typhimurium surface in the presence of SadB was approximately three-fold higher than that in its absence of SadB. Compared to full-length SadA, truncated SadAs (SadA877 and SadA269) showed similar display capacities when exposing the B-cell epitopes of urease B from Helicobacter pylori (UreB158-172aa and UreB349-363aa). We grafted different protein domains, including mScarlet (red fluorescent protein), the urease B fragment (UreBm) from H. pylori SS1, and/or protective antigen domain 4 from Bacillus anthracis A16R (PAD4), onto SadA877 or SadA1292. Whole-cell dot blotting, immunofluorescence, and flow cytometric analyses confirmed the localization of Flag×3-mScarlet (~30 kDa) and Flag×3-UreBm-mScarlet (~58 kDa) to the S. typhimurium surface using truncated SadA877 or SadA1292 as an anchoring motif. However, Flag×3-UreBm-PAD4-mScarlet (~75 kDa) was displayed on S. typhimurium using SadA1292. The oral administrated pSadBA1292-FUM/StmΔygeAΔmurI and pSadBA877-FUM/StmΔygeAΔmurI could elicit a significant mucosal and humoral immunity response. SadA could thus be used as an anchoring motif for the surface expression of large heterologous proteins as a potential strategy for attenuated bacterial vaccine development.
Collapse
Affiliation(s)
- Shuli Sang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Wenge Song
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Lu Lu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Qikun Ou
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Yiyan Guan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Haoxia Tao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Yanchun Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| | - Chunjie Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongda Street, Fengtai District, Beijing 100071, China; (S.S.); (W.S.); (L.L.); (Q.O.); (Y.G.); (H.T.)
| |
Collapse
|
7
|
Xia L, Lu Q, Wang X, Jia C, Zhao Y, Wang G, Yang J, Zhang N, Min X, Huang J, Huang M. Characterization of protective immune responses against Neisseria gonorrhoeae induced by intranasal immunization with adhesion and penetration protein. Heliyon 2024; 10:e25733. [PMID: 38352762 PMCID: PMC10862674 DOI: 10.1016/j.heliyon.2024.e25733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Drug-resistant N. gonorrhoeae is an urgent threat to global public health, and vaccine development is the best long-term strategy for controlling gonorrhea. We have previously shown that adhesion and penetration protein (App) play a role in the adhesion, invasion, and reproductive tract colonization of N. gonorrhoeae. Here, we describe the immune response induced by intranasal immunization with passenger and translocator fragments of App. The recombinant App passenger and translocator fragments induced high titers of IgG and IgA antibodies in serum and vaginal washes. Antibodies produced by App passenger and the combination of passenger and translocator mediated the killing of N. gonorrhoeae via serum bactericidal activity and opsonophagocytic activity, whereas antisera from translocator-immunized groups had lower bactericidal activity and opsonophagocytic activity. The antisera of the App passenger and translocator, alone and in combination, inhibited the adhesion of N. gonorrhoeae to cervical epithelial cells in a concentration-dependent manner. Nasal immunization with App passenger and translocator fragments alone or in combination induced high levels of IgG1, IgG2a, and IgG2b antibodies and stimulated mouse splenocytes to secrete cytokines IFN-γ and IL-17A, suggesting that Th1 and Th17 cellular immune responses were activated. In vivo experiments have shown that immune App passenger and transporter fragments can accelerate the clearance of N. gonorrhoeae in the vagina of mice. These data suggest that the App protein is a promising N. gonorrhoeae vaccine antigen.
Collapse
Affiliation(s)
- Lingyin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaosu Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengyi Jia
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yujie Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianru Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ningqing Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Meirong Huang
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Tayebinia M, Sharifzadeh S, Rafiei Dehbidi G, Zare F, Ranjbaran R, Rahimi A, Miri MR, Mirzakhani M, Behzad-Behbahania A. Expression of the Hepatitis C Virus core-NS3 Fusion Protein on the Surface of Bacterial Ghosts: Prospects for Vaccine Production. Avicenna J Med Biotechnol 2023; 15:173-179. [PMID: 37538239 PMCID: PMC10395460 DOI: 10.18502/ajmb.v15i3.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/26/2023] [Indexed: 08/05/2023] Open
Abstract
Background Antigen presentation using bacterial surface display systems, on one hand, has the benefits of bacterial carriers, including low-cost production and ease of manipulation. On the other hand, the bacteria can help in stimulating the immune system as an adjuvant. For example, using bacterial surface display technology, we developed a hepatitis C virus (HCV) multiple antigens displaying bacteria's surface and then turned it into a bacterial ghost. Methods The HCV core and NS3 proteins' conserved epitopes were cloned into the AIDA gene plasmid as an auto transporter. The recombinant plasmid was then transformed into Escherichia coli (E. coli) Bl21 (DE3). Recombinant bacteria were then turned into a bacterial ghost, an empty cell envelope. Whole-cell ELISA, flow cytometry, and Western blot techniques were used for monitoring the expression of proteins on the surface of bacteria. Results A fusion protein of HCV core-NS3-AIDA was successfully expressed on the E. coli Bl21 (DE3) surface and confirmed by western blotting, Enzyme-Linked Immunosorbent Assay (ELISA), and flow cytometry detection techniques. Conclusion The presence of HCV antigens on non-pathogen bacteria surfaces holds promise for developing safe and cost-benefit-accessible vaccines with optimal intrinsic adjuvant effects and exposure of heterologous antigens to the immune system.
Collapse
Affiliation(s)
- Minoosadat Tayebinia
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farahnaz Zare
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Rahimi
- Bioinfirmatic and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Miri
- The Persian Gulf Marine Biotechnology Research Center, the Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Abbas Behzad-Behbahania
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Irudal S, Scoffone VC, Trespidi G, Barbieri G, D'Amato M, Viglio S, Pizza M, Scarselli M, Riccardi G, Buroni S. Identification by Reverse Vaccinology of Three Virulence Factors in Burkholderia cenocepacia That May Represent Ideal Vaccine Antigens. Vaccines (Basel) 2023; 11:1039. [PMID: 37376428 DOI: 10.3390/vaccines11061039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The Burkholderia cepacia complex comprises environmental and clinical Gram-negative bacteria that infect particularly debilitated people, such as those with cystic fibrosis. Their high level of antibiotic resistance makes empirical treatments often ineffective, increasing the risk of worst outcomes and the diffusion of multi-drug resistance. However, the discovery of new antibiotics is not trivial, so an alternative can be the use of vaccination. Here, the reverse vaccinology approach has been used to identify antigen candidates, obtaining a short-list of 24 proteins. The localization and different aspects of virulence were investigated for three of them-BCAL1524, BCAM0949, and BCAS0335. The three antigens were localized in the outer membrane vesicles confirming that they are surface exposed. We showed that BCAL1524, a collagen-like protein, promotes bacteria auto-aggregation and plays an important role in virulence, in the Galleria mellonella model. BCAM0949, an extracellular lipase, mediates piperacillin resistance, biofilm formation in Luria Bertani and artificial sputum medium, rhamnolipid production, and swimming motility; its predicted lipolytic activity was also experimentally confirmed. BCAS0335, a trimeric adhesin, promotes minocycline resistance, biofilm organization in LB, and virulence in G. mellonella. Their important role in virulence necessitates further investigations to shed light on the usefulness of these proteins as antigen candidates.
Collapse
Affiliation(s)
- Samuele Irudal
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maura D'Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | | | | | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Maki JJ, Howard M, Connelly S, Pettengill MA, Hardy DJ, Cameron A. Species Delineation and Comparative Genomics within the Campylobacter ureolyticus Complex. J Clin Microbiol 2023; 61:e0004623. [PMID: 37129508 PMCID: PMC10204631 DOI: 10.1128/jcm.00046-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Campylobacter ureolyticus is an emerging pathogen increasingly appreciated as a common cause of gastroenteritis and extra-intestinal infections in humans. Outside the setting of gastroenteritis, little work has been done to describe the genomic content and relatedness of the species, especially regarding clinical isolates. We reviewed the epidemiology of clinical C. ureolyticus cultured by our institution over the past 10 years. Fifty-one unique C. ureolyticus isolates were identified between January 2010 and August 2022, mostly originating from abscesses and blood cultures. To clarify the taxonomic relationships between isolates and to attribute specific genes with different clinical manifestations, we sequenced 19 available isolates from a variety of clinical specimen types and conducted a pangenomic analysis with publicly available C. ureolyticus genomes. Digital DNA:DNA hybridization suggested that these C. ureolyticus comprised a species complex of 10 species clusters (SCs) and several subspecies clusters. Although some orthologous genes or gene functions were enriched in isolates found in different SCs and clinical specimens, no association was significant. Nearly a third of the isolates possessed antimicrobial resistance genes, including the ermA resistance gene, potentially conferring resistance to macrolides, the treatment of choice for severe human campylobacteriosis. This work effectively doubles the number of publicly available C. ureolyticus genomes, provides further clarification of taxonomic relationships within this bacterial complex, and identifies target SCs for future analysis.
Collapse
Affiliation(s)
- Joel J. Maki
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mondraya Howard
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sara Connelly
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew A. Pettengill
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dwight J. Hardy
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrew Cameron
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
11
|
Cui J, Zhong W, Liu W, Zhang C, Zou L, Ren H. Whole genome sequencing and annotation of a lysogenic phage vB_EcoP_DE5 isolated from donkey-derived Escherichia coli. Virus Genes 2023; 59:290-300. [PMID: 36607487 DOI: 10.1007/s11262-022-01964-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023]
Abstract
A lysogenic phage vB_EcoP_DE5 (hereafter designated DE5) was isolated from donkey-derived Escherichia coli. The bacteriophage was examined by transmission electron microscopy, and the result showed that DE5 belonged to the genus Kuravirus. DE5 was sensitive to changes in temperature and pH, and it could maintain its activity at pH 7 and below 60 ℃. The whole genome sequencing revealed that DE5 had a double-stranded DNA genome of 77, 305 bp with 42.09% G+C content. A total of 126 open reading frames (ORFs) were identified, including functional genes related to phage integration, DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. One phage integrase gene, one autotransporter adhesin gene, and one tRNA gene were predicted in the whole genome, and no genes associated with drug resistance were identified. The phage DE5 integrase contained 187 amino acids and belonged to the small serine recombinase family. BLASTn analysis revealed that phage DE5 had a high-sequence identity (96%) with E. coli phage SU10. Phylogenetic analysis showed that phage DE5 was a member of the genus Kuravirus. The whole genome sequencing of lysogenic phage DE5 enhanced our understanding of lysogenic phages and their therapeutic applications.
Collapse
Affiliation(s)
- Jiaqi Cui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenshi Zhong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Zhu J, Zhu R, Jiang H, Li Z, Jiang X, Li F, Zhang F, Feng X, Gu J, Li N, Lei L. Adh Promotes Actinobacillus pleuropneumoniae Survival in Porcine Alveolar Macrophages by Inhibiting CHAC2-Mediated Respiratory Burst and Inflammatory Cytokine Expression. Cells 2023; 12:cells12050696. [PMID: 36899832 PMCID: PMC10001268 DOI: 10.3390/cells12050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) causes porcine pleuropneumonia that seriously endangers pig's health. Adh, located in the head region of trimeric autotransporter adhesion of A. pleuropneumoniae, affects bacterial adhesion and pathogenicity. However, how Adh mediates A. pleuropneumoniae immune invasion is still unclear. Here, we established the A. pleuropneumoniae strain L20 or L20 ΔAdh-infected porcine alveolar macrophages (PAM) model, and applied protein overexpression, RNA interference, qRT-PCR, Western blot and immunoflourescence techniques to dissect the effects of Adh on PAM during A. pleuropneumoniae infection. We found that Adh could increase the A. pleuropneumoniae adhesion and intracellular survival in PAM. Gene chip analysis of piglet lungs further showed that Adh significantly induced cation transport regulatory-like protein 2 (CHAC2) expression, whose overexpression suppressed the phagocytic capacity of PAM. Furthermore, CHAC2 overexpression dramatically increased glutathione (GSH) expression, decreased reactive oxygen species (ROS), and promoted A. pleuropneumoniae survival in PAM, while the knockdown of CHAC2 reversed these phenomena. Meanwhile, CHAC2 silence activated the NOD1/NF-κB pathway, resulting in an increase in IL-1β, IL-6, and TNF-α expression, whereas this effect was weakened by CHAC2 overexpression and addition of NOD1/NF-κB inhibitor ML130. Moreover, Adh enhanced the secretion of LPS of A. pleuropneumoniae, which regulated the expression of CHAC2 via TLR4. In conclusion, through a LPS-TLR4-CHAC2 pathway, Adh inhibits respiratory burst and inflammatory cytokines expression to promote A. pleuropneumoniae survival in PAM. This finding may provide a novel target for the prevention and treatment of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Junhui Zhu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rining Zhu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hexiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ziheng Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuan Jiang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fengyang Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fuxian Zhang
- College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Na Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Correspondence: (N.L.); (L.L.)
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- College of Animal Science, Yangtze University, Jingzhou 434025, China
- Correspondence: (N.L.); (L.L.)
| |
Collapse
|
13
|
Jiang B, Long C, Xu Y, Han L. Molecular mechanism of Tsukamurella tyrosinosolvens strain P9 in response to root exudates of peanut. Arch Microbiol 2023; 205:48. [PMID: 36595098 DOI: 10.1007/s00203-022-03387-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Tsukamurella tyrosinosolvens strain P9 is a rare actinomycete with plant growth-promoting properties and can improve the growth of peanut. We analyzed the differentially expressed genes (DEGs) of P9 under the influence of peanut root exudates from RNA-sequencing data and analyzed the effects of root exudates and their organic acid and amino acid components on the growth and growth-promoting effects of this strain to explore the molecular mechanism of the P9 response. The results showed that peanut root exudates promoted the growth and growth-promoting activity of P9. Transcriptome analysis revealed 126 DEGs in P9, comprising 81 up-regulated and 45 down-regulated genes. The DEGs were significantly enriched in 17 KEGG metabolic pathways, including arginine biosynthesis, butyric acid metabolism, fatty acid degradation, and tryptophan metabolism. Peanut root exudates induced up-regulation of nutrient transport, carbohydrate metabolism and energy production, siderophore and IAA biosynthesis, adhesion, and biofilm formation, and down-regulation of arginine biosynthesis and the urea cycle in P9. Organic acids and amino acids are the major components of peanut root exudates. Glycine, proline, and alanine promoted the growth and IAA secretion of P9. Proline, alanine (40 mM), and oxalic acid significantly enhanced siderophore biosynthesis, whereas citric acid, oxalic acid, and malic acid significantly promoted biofilm formation of P9. This study clarifies the response of T. tyrosinosolvens P9 to peanut root exudates at the molecular level, examining the molecular basis of the relationship between P9 and peanut, and provides a theoretical foundation for improved exertion of the growth-promoting properties of P9.
Collapse
Affiliation(s)
- Biao Jiang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Changmei Long
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yu Xu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lizhen Han
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
14
|
Hodges FJ, Torres VVL, Cunningham AF, Henderson IR, Icke C. Redefining the bacterial Type I protein secretion system. Adv Microb Physiol 2023; 82:155-204. [PMID: 36948654 DOI: 10.1016/bs.ampbs.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.
Collapse
Affiliation(s)
- Freya J Hodges
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
The long and the short of Periscope Proteins. Biochem Soc Trans 2022; 50:1293-1302. [PMID: 36196877 DOI: 10.1042/bst20220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria sense, interact with, and modify their environmental niche by deploying a molecular ensemble at the cell surface. The changeability of this exposed interface, combined with extreme changes in the functional repertoire associated with lifestyle switches from planktonic to adherent and biofilm states necessitate dynamic variability. Dynamic surface changes include chemical modifications to the cell wall; export of diverse extracellular biofilm components; and modulation of expression of cell surface proteins for adhesion, co-aggregation and virulence. Local enrichment for highly repetitive proteins with high tandem repeat identity has been an enigmatic phenomenon observed in diverse bacterial species. Preliminary observations over decades of research suggested these repeat regions were hypervariable, as highly related strains appeared to express homologues with diverse molecular mass. Long-read sequencing data have been interrogated to reveal variation in repeat number; in combination with structural, biophysical and molecular dynamics approaches, the Periscope Protein class has been defined for cell surface attached proteins that dynamically expand and contract tandem repeat tracts at the population level. Here, I review the diverse high-stability protein folds and coherent interdomain linkages culminating in the formation of highly anisotropic linear repeat arrays, so-called rod-like protein 'stalks', supporting roles in bacterial adhesion, biofilm formation, cell surface spatial competition, and immune system modulation. An understanding of the functional impacts of dynamic changes in repeat arrays and broader characterisation of the unusual protein folds underpinning this variability will help with the design of immunisation strategies, and contribute to synthetic biology approaches including protein engineering and microbial consortia construction.
Collapse
|
16
|
Thapa G, Jayal A, Sikazwe E, Perry T, Mohammed Al Balushi A, Livingstone P. A genome-led study on the pathogenesis of Fusobacterium necrophorum infections. Gene 2022; 840:146770. [PMID: 35905848 DOI: 10.1016/j.gene.2022.146770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Fusobacterium necrophorum causes a range of mild to life threatening infections and there is uncertainty in terms of diagnosis and treatment due to the lack of knowledge on their pathogenic mechanisms. This study characterised genomes of F. necrophorum to compare their virulence factors and investigate potential infection markers. 27 isolates of F. necrophorum from patients with pharyngotonsillitis were subjected to whole genome sequencing and compared with 42 genomes published in the NCBI database. Phylogenomics, pangemome, pan-GWAS and virulome were analysed to study strain variations with reference to virulence factors. Core genome based phylogenomic tree exhibited three clades of which Clade A belonged to F. necrophorum subsp necrophorum, clades B and C were F. necrophorum subsp funduliforme. Pan-GWAS and Pan-Virulome suggest some marker genes associated with clinical sources of isolation that needs further validation. Our study highlights some interesting features of the pathogenesis of F. necrophorum infections. Although the animal isolate genomes had some marker genes, the genomes of human isolates did not exhibit clear correlation to their clinical sources of isolation. This prompts to think of other mechanisms such as co-infections or host factors that can be involved in the pathogenesis.
Collapse
Affiliation(s)
- Gary Thapa
- Public Health Wales Microbiology Aberystwyth, Bronglais General Hospital, Aberystwyth
| | - Ambikesh Jayal
- School of Information Systems and Technology, University of Canberra, Australia
| | - Elvis Sikazwe
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Thomas Perry
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Ali Mohammed Al Balushi
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Paul Livingstone
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.
| |
Collapse
|
17
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
18
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
19
|
Di Venere A, Nicolai E, Minicozzi V, Caccuri AM, Di Paola L, Mei G. The Odd Faces of Oligomers: The Case of TRAF2-C, A Trimeric C-Terminal Domain of TNF Receptor-Associated Factor. Int J Mol Sci 2021; 22:ijms22115871. [PMID: 34070875 PMCID: PMC8198530 DOI: 10.3390/ijms22115871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
TNF Receptor Associated Factor 2 (TRAF2) is a trimeric protein that belongs to the TNF receptor associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding and for its interaction with other proteins involved in the TNFR signaling. The monomer-trimer equilibrium of a C- terminal domain truncated form of TRAF2 (TRAF2-C), plays also a relevant role in binding the membrane, causing inward vesiculation. In this study, we have investigated the conformational dynamics of TRAF2-C through circular dichroism, fluorescence, and dynamic light scattering, performing temperature-dependent measurements. The data indicate that the protein retains its oligomeric state and most of its secondary structure, while displaying a significative increase in the heterogeneity of the tyrosines signal, increasing the temperature from ≈15 to ≈35 °C. The peculiar crowding of tyrosine residues (12 out of 18) at the three subunit interfaces and the strong dependence on the trimer concentration indicate that such conformational changes mainly involve the contact areas between each pair of monomers, affecting the oligomeric state. Molecular dynamic simulations in this temperature range suggest that the interfaces heterogeneity is an intrinsic property of the trimer that arises from the continuous, asymmetric approaching and distancing of its subunits. Such dynamics affect the results of molecular docking on the external protein surface using receptor peptides, indicating that the TRAF2-receptor interaction in the solution might not involve three subunits at the same time, as suggested by the static analysis obtainable from the crystal structure. These findings shed new light on the role that the TRAF2 oligomeric state might have in regulating the protein binding activity in vivo.
Collapse
Affiliation(s)
- Almerinda Di Venere
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.D.V.); (E.N.)
| | - Eleonora Nicolai
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.D.V.); (E.N.)
| | - Velia Minicozzi
- Department of Physics, Tor Vergata University of Rome, Via Della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Anna Maria Caccuri
- Department of Chemistry, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, University Campus Bio-Medico of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: (L.D.P.); (G.M.)
| | - Giampiero Mei
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.D.V.); (E.N.)
- Correspondence: (L.D.P.); (G.M.)
| |
Collapse
|
20
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
21
|
Pimenta AI, Bernardes N, Alves MM, Mil-Homens D, Fialho AM. Burkholderia cenocepacia transcriptome during the early contacts with giant plasma membrane vesicles derived from live bronchial epithelial cells. Sci Rep 2021; 11:5624. [PMID: 33707642 PMCID: PMC7970998 DOI: 10.1038/s41598-021-85222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Burkholderia cenocepacia is known for its capacity of adherence and interaction with the host, causing severe opportunistic lung infections in cystic fibrosis patients. In this work we produced Giant Plasma Membrane Vesicles (GPMVs) from a bronchial epithelial cell line and validated their use as a cell-like alternative to investigate the steps involved in the adhesion process of B. cenocepacia. RNA-sequencing was performed and the analysis of the B. cenocepacia K56-2 transcriptome after the first contacts with the surface of host cells allowed the recognition of genes implicated in bacterial adaptation and virulence-associated functions. The sensing of host membranes led to a transcriptional shift that caused a cascade of metabolic and physiological adaptations to the host specific environment. Many of the differentially expressed genes encode proteins related with central metabolic pathways, transport systems, cellular processes, and virulence traits. The understanding of the changes in gene expression that occur in the early steps of infection can uncover new proteins implicated in B. cenocepacia-host cell adhesion, against which new blocking agents could be designed to control the progression of the infectious process.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Marta M. Alves
- grid.9983.b0000 0001 2181 4263CQE Instituto Superior Técnico, Departamento de Engenharia Química, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Arsenio M. Fialho
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
22
|
Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, Fattahian Y, Savardashtaki A, Ghasemi Y. Non-adaptive Evolution of Trimeric Autotransporters in Brucellaceae. Front Microbiol 2020; 11:560667. [PMID: 33281759 PMCID: PMC7688925 DOI: 10.3389/fmicb.2020.560667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Brucella species are Gram-negative, facultative intracellular pathogens. They are the main cause of brucellosis, which has led to a global health burden. Adherence of the pathogen to the host cells is the first step in the infection process. The bacteria can adhere to various biotic and abiotic surfaces using their outer membrane proteins. Trimeric autotransporter adhesins (TAAs) are modular homotrimers of various length and domain complexity. They are a diverse, and widespread gene family constituting the type Vc secretion pathway. These adhesins have been established as virulence factors in Brucellaceae. To date, no comprehensive and exhaustive study has been performed on the trimeric autotransporter family in the genus. In the present study, various bioinformatics tools were used to provide a novel evolutionary insight into the sequence and structure of this protein family in Brucellaceae. To this end, a dataset of all trimeric autotransporters from the Brucella genomes was built. Analyses included but were not limited to sequence alignment, phylogenetic tree constructions, codon-based test for selection, clustering of the sequences, and structure (primary to quaternary) predictions. Batch analyzes of the dataset suggested the existence of a few structural domains within the whole population. BatA from the B. abortus 2308 genome was selected as a reference to describe the features of these structural domains. Furthermore, we examined the structural basis for the observed rigidity and resiliency of the protein structure through a molecular dynamics evaluation, which led us to deduce that the random drift results in the non-adaptive evolution of the trimeric autotransporter genes in the Brucella genus. Notably, the modifications have occurred across the genus without interference of gene transmission.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser Fattahian
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Bialer MG, Sycz G, Muñoz González F, Ferrero MC, Baldi PC, Zorreguieta A. Adhesins of Brucella: Their Roles in the Interaction with the Host. Pathogens 2020; 9:E942. [PMID: 33198223 PMCID: PMC7697752 DOI: 10.3390/pathogens9110942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.
Collapse
Affiliation(s)
- Magalí G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Gabriela Sycz
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|