1
|
Chincarini G, Walker DW, Wong F, Richardson SJ, Cumberland A, Tolcos M. Thyroid hormone analogues: Promising therapeutic avenues to improve the neurodevelopmental outcomes of intrauterine growth restriction. J Neurochem 2024; 168:2335-2350. [PMID: 38742992 DOI: 10.1111/jnc.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Intrauterine growth restriction (IUGR) is a pregnancy complication impairing fetal growth and development. The compromised development is often attributed to disruptions of oxygen and nutrient supply from the placenta, resulting in a number of unfavourable physiological outcomes with impaired brain and organ growth. IUGR is associated with compromised development of both grey and white matter, predisposing the infant to adverse neurodevelopmental outcomes, including long-lasting cognitive and motor difficulties. Cerebral thyroid hormone (TH) signalling, which plays a crucial role in regulating white and grey matter development, is dysregulated in IUGR, potentially contributing to the neurodevelopmental delays associated with this condition. Notably, one of the major TH transporters, monocarboxylate transporter-8 (MCT8), is deficient in the fetal IUGR brain. Currently, no effective treatment to prevent or reverse IUGR exists. Management strategies involve close antenatal monitoring, management of maternal risk factors if present and early delivery if IUGR is found to be severe or worsening in utero. The overall goal is to determine the most appropriate time for delivery, balancing the risks of preterm birth with further fetal compromise due to IUGR. Drug candidates have shown either adverse effects or little to no benefits in this vulnerable population, urging further preclinical and clinical investigation to establish effective therapies. In this review, we discuss the major neuropathology of IUGR driven by uteroplacental insufficiency and the concomitant long-term neurobehavioural impairments in individuals born IUGR. Importantly, we review the existing clinical and preclinical literature on cerebral TH signalling deficits, particularly the impaired expression of MCT8 and their correlation with IUGR. Lastly, we discuss the current evidence on MCT8-independent TH analogues which mimic the brain actions of THs by being metabolised in a similar manner as promising, albeit underappreciated approaches to promote grey and white matter development and improve the neurobehavioural outcomes following IUGR.
Collapse
Affiliation(s)
- Ginevra Chincarini
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
- Monash Newborn Health, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Flora Wong
- Monash Newborn Health, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | | | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
2
|
Salas-Lucia F, Escamilla S, Bianco AC, Dumitrescu A, Refetoff S. Impaired T3 uptake and action in MCT8-deficient cerebral organoids underlie Allan-Herndon-Dudley syndrome. JCI Insight 2024; 9:e174645. [PMID: 38376950 PMCID: PMC11128209 DOI: 10.1172/jci.insight.174645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Patients with mutations in the thyroid hormone (TH) cell transporter monocarboxylate transporter 8 (MCT8) gene develop severe neuropsychomotor retardation known as Allan-Herndon-Dudley syndrome (AHDS). It is assumed that this is caused by a reduction in TH signaling in the developing brain during both intrauterine and postnatal developmental stages, and treatment remains understandably challenging. Given species differences in brain TH transporters and the limitations of studies in mice, we generated cerebral organoids (COs) using human induced pluripotent stem cells (iPSCs) from MCT8-deficient patients. MCT8-deficient COs exhibited (i) altered early neurodevelopment, resulting in smaller neural rosettes with thinner cortical units, (ii) impaired triiodothyronine (T3) transport in developing neural cells, as assessed through deiodinase-3-mediated T3 catabolism, (iii) reduced expression of genes involved in cerebral cortex development, and (iv) reduced T3 inducibility of TH-regulated genes. In contrast, the TH analogs 3,5-diiodothyropropionic acid and 3,3',5-triiodothyroacetic acid triggered normal responses (induction/repression of T3-responsive genes) in MCT8-deficient COs, constituting proof of concept that lack of T3 transport underlies the pathophysiology of AHDS and demonstrating the clinical potential for TH analogs to be used in treating patients with AHDS. MCT8-deficient COs represent a species-specific relevant preclinical model that can be utilized to screen drugs with potential benefits as personalized therapeutics for patients with AHDS.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sergio Escamilla
- Instituto de Neurociencias de Alicante, Miguel Hernández-CSIC University, Sant Joan d’Alacant, Alicante, Spain
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Alexandra Dumitrescu
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Committee on Molecular Metabolism and Nutrition
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, and Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
5
|
Liu Z, Zhao S, Chen J, Ma L, Shi Q, Zhou Y. A novel frameshift mutation in Allan-Herndon-Dudley syndrome. Int J Legal Med 2022; 136:1181-1187. [PMID: 35391604 DOI: 10.1007/s00414-022-02823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a very rare, X-linked psychomotor disability syndrome with delayed myelination, almost exclusively affecting boys. We present a case of a 4-year-old boy with AHDS who was found cyanotic, with intermittent vomiting and paroxysmal convulsions about 4 h after his parents went out, and was then taken to the hospital, where he eventually died the next day. The autopsy revealed foreign bodies in the tiny bronchi and alveoli of the deceased, congestion, and punctate hemorrhage in multiple organs, consistent with the diagnosis of asphyxia. Compared with a normally developing 4-year-old boy, the deceased showed cerebral atrophy and cerebral edema, and Luxol Fast Blue (LFB) stain indicated delayed cerebellar, hippocampal, and basal ganglia development and myelination. A novel frameshift mutation c.584delG in the SLC16A2 gene was detected. Family lineage investigation showed that the mutation was also detected in the deceased's 8-year-old brother and biological mother. The present work enriches the profile mutations in SLC16A2 related to AHDS and emphasizes the importance of autopsy and postmortem genetic analysis in such cases.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Shuquan Zhao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Jianyi Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Qing Shi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
6
|
Iwayama H, Tanaka T, Aoyama K, Moroto M, Adachi S, Fujisawa Y, Matsuura H, Takano K, Mizuno H, Okumura A. Regional Difference in Myelination in Monocarboxylate Transporter 8 Deficiency: Case Reports and Literature Review of Cases in Japan. Front Neurol 2021; 12:657820. [PMID: 34335438 PMCID: PMC8319638 DOI: 10.3389/fneur.2021.657820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Monocarboxylate transporter 8 (MCT8) is a thyroid hormone transmembrane transporter protein. MCT8 deficiency induces severe X-linked psychomotor retardation. Previous reports have documented delayed myelination in the central white matter (WM) in these patients; however, the regional pattern of myelination has not been fully elucidated. Here, we describe the regional evaluation of myelination in four patients with MCT8 deficiency. We also reviewed the myelination status of previously reported Japanese patients with MCT8 deficiency based on magnetic resonance imaging (MRI). Case Reports: Four patients were genetically diagnosed with MCT8 deficiency at the age of 4–9 months. In infancy, MRI signal of myelination was observed mainly in the cerebellar WM, posterior limb of internal capsule, and the optic radiation. There was progression of myelination with increase in age. Discussion: We identified 36 patients with MCT8 deficiency from 25 families reported from Japan. The available MRI images were obtained at the age of <2 years in 13 patients, between 2 and 4 years in six patients, between 4 and 6 years in three patients, and at ≥6 years in eight patients. Cerebellar WM, posterior limb of internal capsule, and optic radiation showed MRI signal of myelination by the age of 2 years, followed by centrum semiovale and corpus callosum by the age of 4 years. Most regions except for deep anterior WM showed MRI signal of myelination at the age of 6 years. Conclusion: The sequential pattern of myelination in patients with MCT8 deficiency was largely similar to that in normal children; however, delayed myelination of the deep anterior WM was a remarkable finding. Further studies are required to characterize the imaging features of patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Hideyuki Iwayama
- Department of Pediatrics, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Tatsushi Tanaka
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kohei Aoyama
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Masaharu Moroto
- Department of Pediatrics, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Shinsuke Adachi
- Department of Pediatrics, Fukuchiyama City Hospital, Fukuchiyama, Japan.,Adachi Pediatric Clinic, Fukuchiyama, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroki Matsuura
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Kyoko Takano
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Haruo Mizuno
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akihisa Okumura
- Department of Pediatrics, School of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
7
|
MCT8 deficiency in a patient with a novel frameshift variant in the SLC16A2 gene. Hum Genome Var 2021; 8:10. [PMID: 33594047 PMCID: PMC7886859 DOI: 10.1038/s41439-021-00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/26/2020] [Accepted: 01/14/2021] [Indexed: 11/26/2022] Open
Abstract
MCT8 deficiency is an X-linked recessive disorder. We report the case of a 2-year-old Japanese boy with MCT8 deficiency caused by a novel frameshift variant, NM_006517.5(SLC16A2_v001):c.966dup [p.(Ile323Hisfs*57)]. He presented no head control and spoke no meaningful words, indicating severe developmental delay. Although missense or in-frame mutations of SLC16A2 are usually related to milder phenotypes and later-onset pyramidal signs, loss-of-function mutations are expected to cause severe clinical symptoms.
Collapse
|
8
|
van Geest FS, Gunhanlar N, Groeneweg S, Visser WE. Monocarboxylate Transporter 8 Deficiency: From Pathophysiological Understanding to Therapy Development. Front Endocrinol (Lausanne) 2021; 12:723750. [PMID: 34539576 PMCID: PMC8440930 DOI: 10.3389/fendo.2021.723750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
Genetic defects in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency. This disorder is characterized by a combination of severe intellectual and motor disability, caused by decreased cerebral thyroid hormone signalling, and a chronic thyrotoxic state in peripheral tissues, caused by exposure to elevated serum T3 concentrations. In particular, MCT8 plays a crucial role in the transport of thyroid hormone across the blood-brain-barrier. The life expectancy of patients with MCT8 deficiency is strongly impaired. Absence of head control and being underweight at a young age, which are considered proxies of the severity of the neurocognitive and peripheral phenotype, respectively, are associated with higher mortality rate. The thyroid hormone analogue triiodothyroacetic acid is able to effectively and safely ameliorate the peripheral thyrotoxicosis; its effect on the neurocognitive phenotype is currently under investigation. Other possible therapies are at a pre-clinical stage. This review provides an overview of the current understanding of the physiological role of MCT8 and the pathophysiology, key clinical characteristics and developing treatment options for MCT8 deficiency.
Collapse
|
9
|
Barenys M, Illa M, Hofrichter M, Loreiro C, Pla L, Klose J, Kühne BA, Gómez-Catalán J, Braun JM, Crispi F, Gratacós E, Fritsche E. Rabbit neurospheres as a novel in vitro tool for studying neurodevelopmental effects induced by intrauterine growth restriction. Stem Cells Transl Med 2020; 10:209-221. [PMID: 33034168 PMCID: PMC7848321 DOI: 10.1002/sctm.20-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to develop a rabbit neurosphere culture to characterize differences in basic processes of neurogenesis induced by intrauterine growth restriction (IUGR). A novel in vitro neurosphere culture has been established using fresh or frozen neural progenitor cells from newborn (PND0) rabbit brains. After surgical IUGR induction in pregnant rabbits and cesarean section 5 days later, neural progenitor cells from both control and IUGR groups were isolated and directly cultured or frozen at −80°C. These neural progenitor cells spontaneously formed neurospheres after 7 days in culture. The ability of control and IUGR neurospheres to migrate, proliferate, differentiate to neurons, astrocytes, or oligodendrocytes was compared and the possibility to modulate their responses was tested by exposure to several positive and negative controls. Neurospheres obtained from IUGR brains have a significant impairment in oligodendrocyte differentiation, whereas no significant differences are observed in other basic processes of neurogenesis. This impairment can be reverted by in vitro exposure of IUGR neurospheres to thyroid hormone, which is known to play an essential role in white matter maturation in vivo. Our new rabbit neurosphere model and the results of this study open the possibility to test several substances in vitro as neuroprotective candidates against IUGR induced neurodevelopmental damage while decreasing the number of animals and resources and allowing a more mechanistic approach at a cellular functional level.
Collapse
Affiliation(s)
- Marta Barenys
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Miriam Illa
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Maxi Hofrichter
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Carla Loreiro
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Laura Pla
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Jördis Klose
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Britta Anna Kühne
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.,BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Jesús Gómez-Catalán
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jan Matthias Braun
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Fatima Crispi
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
10
|
Salas-Lucia F, Pacheco-Torres J, González-Granero S, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Alters the Development of the Corpus Callosum in Rats. An in vivo Magnetic Resonance Image and Electron Microscopy Study. Front Neuroanat 2020; 14:33. [PMID: 32676012 PMCID: PMC7333461 DOI: 10.3389/fnana.2020.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, UMH – Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| |
Collapse
|
11
|
Concolino P, Costella A, Paragliola RM. Mutational Landscape of Resistance to Thyroid Hormone Beta (RTHβ). Mol Diagn Ther 2020; 23:353-368. [PMID: 30976996 DOI: 10.1007/s40291-019-00399-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resistance to thyroid hormone beta (RTHβ) is a syndrome characterized by reduced responsiveness of peripheral tissues to thyroid hormone (TH). In most cases, the disorder is associated with germline pathogenic variants in the thyroid hormone receptor beta (THRB) gene. This paper summarizes the clinical and biochemical presentation of the disease, providing a comprehensive overview on molecular genetic features. Particular care is given in reporting all identified THRB variants with an assessed or unknown clinical significance. Our aim is to offer a useful tool for clinical and genetic specialists in order to ease clinical diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Paola Concolino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Alessandra Costella
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | | |
Collapse
|
12
|
Grijota-Martínez C, Bárez-López S, Gómez-Andrés D, Guadaño-Ferraz A. MCT8 Deficiency: The Road to Therapies for a Rare Disease. Front Neurosci 2020; 14:380. [PMID: 32410949 PMCID: PMC7198743 DOI: 10.3389/fnins.2020.00380] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Allan-Herndon-Dudley syndrome is a rare disease caused by inactivating mutations in the SLC16A2 gene, which encodes the monocarboxylate transporter 8 (MCT8), a transmembrane transporter specific for thyroid hormones (T3 and T4). Lack of MCT8 function produces serious neurological disturbances, most likely due to impaired transport of thyroid hormones across brain barriers during development resulting in severe brain hypothyroidism. Patients also suffer from thyrotoxicity in other organs due to the presence of a high concentration of T3 in the serum. An effective therapeutic strategy should restore thyroid hormone serum levels (both T3 and T4) and should address MCT8 transporter deficiency in brain barriers and neural cells, to enable the access of thyroid hormones to target neural cells. Unfortunately, targeted therapeutic options are currently scarce and their effect is limited to an improvement in the thyrotoxic state, with no sign of any neurological improvement. The use of thyroid hormone analogs such as TRIAC, DITPA, or sobetirome, that do not require MCT8 to cross cell membranes and whose controlled thyromimetic activity could potentially restore the normal function of the affected organs, are being explored to improve the cerebral availability of these analogs. Other strategies aiming to restore the transport of THs through MCT8 at the brain barriers and the cellular membranes include gene replacement therapy and the use of pharmacological chaperones. The design of an appropriate therapeutic strategy in combination with an early diagnosis (at prenatal stages), will be key aspects to improve the devastating alterations present in these patients.
Collapse
Affiliation(s)
- Carmen Grijota-Martínez
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Soledad Bárez-López
- Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain.,Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron University Hospital and VHIR (Euro-NMD, ERN-RND), Barcelona, Spain
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Vancamp P, Demeneix BA, Remaud S. Monocarboxylate Transporter 8 Deficiency: Delayed or Permanent Hypomyelination? Front Endocrinol (Lausanne) 2020; 11:283. [PMID: 32477268 PMCID: PMC7237703 DOI: 10.3389/fendo.2020.00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) deficiency or the Allan-Herndon-Dudley Syndrome (AHDS) is an X-linked psychomotor disability syndrome with around 320 clinical cases described worldwide. SLC16A2 gene mutations, encoding the thyroid hormone (TH) transporter MCT8, result in intellectual disability due to impaired TH uptake in the developing brain. MCT8 deficiency is a multi-organ affecting disease with a predominant neuronal cell-based pathology, with the glial component inadequately investigated. However, deficiency in myelin, a key component of white matter (WM) enabling fast nerve conduction, is a TH-dependent hallmark of the disease. Nevertheless, analysis of the myelin status in AHDS patients has led to conflicting interpretations. The majority of individual case studies reported delayed myelination, that was restored later in life. In contrast, post-mortem studies and high-resolution MRIs detected WM (micro-) abnormalities throughout adolescence, suggesting permanent hypomyelination. Thus, interpretations vary depending on methodology to investigate WM microstructure. Further, it is unknown whether the mutation within the MCT8 is linked to the severity of the myelin deficiency. Consequently, terminology is inconsistent among reports, and AHDS is occasionally misdiagnosed as another WM disorder. The evolutionary conserved TH signaling pathway that promotes the generation of myelinating oligodendrocytes enabled deciphering how the lack of MCT8 might affect myelinogenesis. Linking patient findings on myelination to those obtained from models of MCT8 deficiency revealed underlying pathophysiological mechanisms, but knowledge gaps remain, notably how myelination progresses both spatially and temporally in MCT8 deficiency. This limits predicting how myelin integrity might benefit therapeutically, and when to initiate. A recurrent observation in clinical trials is the absence of neurological improvement. Testing MCT8-independent thyromimetics in models, and evaluating treatments used in other demyelinating diseases, despite different etiologies, is crucial to propose new therapeutic strategies combatting this devastating disease.
Collapse
Affiliation(s)
- Pieter Vancamp
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
15
|
Remerand G, Boespflug-Tanguy O, Tonduti D, Touraine R, Rodriguez D, Curie A, Perreton N, Des Portes V, Sarret C. Expanding the phenotypic spectrum of Allan-Herndon-Dudley syndrome in patients with SLC16A2 mutations. Dev Med Child Neurol 2019; 61:1439-1447. [PMID: 31410843 DOI: 10.1111/dmcn.14332] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2019] [Indexed: 01/01/2023]
Abstract
The aim of the study was to redefine the phenotype of Allan-Herndon-Dudley syndrome (AHDS), which is caused by mutations in the SLC16A2 gene that encodes the brain transporter of thyroid hormones. Clinical phenotypes, brain imaging, thyroid hormone profiles, and genetic data were compared to the existing literature. Twenty-four males aged 11 months to 29 years had a mutation in SLC16A2, including 12 novel mutations and five previously described mutations. Sixteen patients presented with profound developmental delay, three had severe intellectual disability with poor language and walking with an aid, four had moderate intellectual disability with language and walking abilities, and one had mild intellectual disability with hypotonia. Overall, eight had learned to walk, all had hypotonia, 17 had spasticity, 18 had dystonia, 12 had choreoathetosis, 19 had hypomyelination, and 10 had brain atrophy. Kyphoscoliosis (n=12), seizures (n=7), and pneumopathies (n=5) were the most severe complications. This study extends the phenotypic spectrum of AHDS to a mild intellectual disability with hypotonia. Developmental delay, hypotonia, hypomyelination, and thyroid hormone profile help to diagnose patients. Clinical course depends on initial severity, with stable acquisition after infancy; this may be adversely affected by neuro-orthopaedic, pulmonary, and epileptic complications. WHAT THIS PAPER ADDS: Mild intellectual disability is associated with SLC16A2 mutations. A thyroid hormone profile with a free T3 /T4 ratio higher than 0.75 can help diagnose patients. Patients with SLC16A2 mutations present a broad spectrum of neurological phenotypes that are also observed in other hypomyelinating disorders. Axial hypotonia is a consistent feature of Allan-Herndon-Dudley syndrome and leads to specific complications.
Collapse
Affiliation(s)
- Ganaelle Remerand
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Pôle Femme et Enfant, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Centre de Référence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Service de Neurologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France.,NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Paris, France
| | - Davide Tonduti
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Unit of Child Neurology, V. Buzzi Children's Hospital, Milan, Italy
| | - Renaud Touraine
- Service de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Diana Rodriguez
- Sorbonne Université, GRC no. 19, Pathologies Congénitales du Cervelet-LeucoDystrophies, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France.,Centre de Référence Neurogénétique, Service de Neurologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Aurore Curie
- Centre de Référence des Déficiences Intellectuelles de Cause Rare, Service de Neurologie Pédiatrique, Centre Hospitalier Universitaire de Lyon, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Nathalie Perreton
- CIC 1407Inserm, Centre Hospitalo-Universitaire de Lyon, Lyon, France
| | - Vincent Des Portes
- Centre de Référence des Déficiences Intellectuelles de Cause Rare, Service de Neurologie Pédiatrique, Centre Hospitalier Universitaire de Lyon, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Pôle Femme et Enfant, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,IGCNC, Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
| | | |
Collapse
|
16
|
Walter KM, Dach K, Hayakawa K, Giersiefer S, Heuer H, Lein PJ, Fritsche E. Ontogenetic expression of thyroid hormone signaling genes: An in vitro and in vivo species comparison. PLoS One 2019; 14:e0221230. [PMID: 31513589 PMCID: PMC6742404 DOI: 10.1371/journal.pone.0221230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid hormone (TH) is essential for brain development. While disruption of TH signaling by environmental chemicals has been discussed as a mechanism of developmental neurotoxicity (DNT) for more than a decade, there remains a paucity of information linking specific TH disrupting chemicals to adverse neurodevelopmental outcomes. This data gap reflects, in part, the fact that the molecular machinery of TH signaling is complex and varies according to cell type and developmental time. Thus, establishing a baseline of the ontogenetic profile of expression of TH signaling molecules in relevant cell types is critical for developing in vitro and alternative systems-based models for screening TH disrupting chemicals for DNT. Here, we characterize the transcriptomic profile of molecules critical to TH signaling across three species-human, rat, and zebrafish-in vitro and in vivo across different stages of neurodevelopment. Our data indicate that while cultured human and rat neural progenitor cells, primary cultures of rat cortical cells, and larval zebrafish all express a fairly comprehensive transcriptome of TH signaling molecules, the spatiotemporal expression profiles as well as the responses to TH vary across species and developmental stages. The data presented here provides a roadmap for identifying appropriate in vitro and in simpler systems-based models for mechanistic studies and screening of chemicals that alter neurodevelopment via interference with TH action.
Collapse
Affiliation(s)
- Kyla M. Walter
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, United States of America
| | - Katharina Dach
- IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - Keri Hayakawa
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, United States of America
| | - Susanne Giersiefer
- IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - Heike Heuer
- IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
- Dept. Endocrinology, University Hospital Essen, Essen, Germany
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, United States of America
- * E-mail: (PJL); (EF)
| | - Ellen Fritsche
- IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
- * E-mail: (PJL); (EF)
| |
Collapse
|
17
|
Kim MJ, Petratos S. Oligodendroglial Lineage Cells in Thyroid Hormone-Deprived Conditions. Stem Cells Int 2019; 2019:5496891. [PMID: 31182964 PMCID: PMC6515029 DOI: 10.1155/2019/5496891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes are supporting glial cells that ensure the metabolism and homeostasis of neurons with specific synaptic axoglial interactions in the central nervous system. These require key myelinating glial trophic signals important for growth and metabolism. Thyroid hormone (TH) is one such trophic signal that regulates oligodendrocyte maturation, myelination, and oligodendroglial synaptic dynamics via either genomic or nongenomic pathways. The intracellular and extracellular transport of TH is facilitated by a specific transmembrane transporter known as the monocarboxylate transporter 8 (MCT8). Dysfunction of the MCT8 due to mutation, inhibition, or downregulation during brain development leads to inherited hypomyelination, which manifests as psychomotor retardation in the X-linked inherited Allan-Herndon-Dudley syndrome (AHDS). In particular, oligodendroglial-specific MCT8 deficiency may restrict the intracellular T3 availability, culminating in deficient metabolic communication between the oligodendrocytes and the neurons they ensheath, potentially promulgating neurodegenerative adult diseases such as multiple sclerosis (MS). Based on the therapeutic effects exhibited by TH in various preclinical studies, particularly related to its remyelinating potential, TH has now entered the initial stages of a clinical trial to test the therapeutic efficacy in relapsing-remitting MS patients (NCT02506751). However, TH analogs, such as DITPA or Triac, may well serve as future therapeutic options to rescue mature oligodendrocytes and/or promote oligodendrocyte precursor cell differentiation in an environment of MCT8 deficiency within the CNS. This review outlines the therapeutic strategies to overcome the differentiation blockade of oligodendrocyte precursors and maintain mature axoglial interactions in TH-deprived conditions.
Collapse
Affiliation(s)
- Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| |
Collapse
|
18
|
Islam MS, Namba N, Ohata Y, Fujiwara M, Nakano C, Takeyari S, Miyata K, Nakano Y, Yamamoto K, Nakayama H, Kitaoka T, Kubota T, Ozono K. Functional analysis of monocarboxylate transporter 8 mutations in Japanese Allan-Herndon-Dudley syndrome patients. Endocr J 2019; 66:19-29. [PMID: 30369548 DOI: 10.1507/endocrj.ej18-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates T3 uptake into cells. Mutations in MCT8 lead to Allan-Herndon-Dudley syndrome (AHDS), which is characterized by severe psychomotor retardation and abnormal thyroid hormone profile. Nine uncharacterized MCT8 mutations in Japanese patients with severe neurocognitive impairment and elevated serum T3 levels were studied regarding the transport of T3. Human MCT8 (hMCT8) function was studied in wild-type (WT) or mutant hMCT8-transfected human placental choriocarcinoma cells (JEG3) by visualizing the locations of the proteins in the cells, detecting specific proteins, and measuring T3 uptake. We identified 6 missense (p.Arg445Ser, p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, and p.Gly312Arg), 2 frameshift (p.Arg355Profs*64 and p.Tyr550Serfs*17), and 1 deletion (p.Pro561del) mutation(s) in the hMCT8 gene. All patients exhibited clinical characteristics of AHDS with high free T3, low-normal free T4, and normal-elevated TSH levels. All tested mutants were expressed at the protein level, except p.Arg355Profs*64 and p.Tyr550Serfs*17, which were truncated, and were inactive in T3 uptake, excluding p.Arg445Ser and p.Pro561del mutants, compared with WT-hMCT8. Immunocytochemistry revealed plasma membrane localization of p.Arg445Ser and p.Pro561del mutants similar with WT-hMCT8. The other mutants failed to localize in significant amount(s) in the plasma membrane and instead localized in the cytoplasm. These data indicate that p.Arg445Ser and p.Pro561del mutants preserve residual function, whereas p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, p.Gly312Arg, p.Arg355Profs*64, and p.Tyr550Serfs*17 mutants lack function. These findings suggest that the mutations in MCT8 cause loss of function by reducing protein expression, impairing trafficking of protein to plasma membrane, and disrupting substrate channel.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Chiho Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kei Miyata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The Japan Environment and Children's Study, Osaka Unit Center, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
19
|
Bárez-López S, Hartley MD, Grijota-Martínez C, Scanlan TS, Guadaño-Ferraz A. Sobetirome and its Amide Prodrug Sob-AM2 Exert Thyromimetic Actions in Mct8-Deficient Brain. Thyroid 2018; 28:1211-1220. [PMID: 29845892 PMCID: PMC6154442 DOI: 10.1089/thy.2018.0008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Loss of function mutations in the thyroid hormone (TH)-specific cell membrane transporter, the monocarboxylate transporter 8 (MCT8), lead to profound psychomotor retardation and abnormal TH serum levels, with low thyroxine (T4) and high triiodothyronine (T3). Several studies point to impaired TH transport across brain barriers as a crucial pathophysiological mechanism resulting in cerebral hypothyroidism. Treatment options for MCT8-deficient patients are limited and are focused on overcoming the brain barriers. The aim of this study was to evaluate the ability of the TH analog sobetirome and its prodrug Sob-AM2 to access the brain and exert thyromimetic actions in the absence of Mct8. METHODS Juvenile wild-type (Wt) mice and mice lacking Mct8 and deiodinase type 2 (Mct8/Dio2KO) were treated systemically with daily injections of vehicle, 1 mg of sobetirome/kg body weight/day, or 0.3 mg of Sob-AM2/kg body weight/day for seven days. Sobetirome content was measured using liquid chromatography-tandem mass spectrometry, and T4 and T3 levels by specific radioimmunoassays. The effect of sobetirome treatment in the expression of T3-dependent genes was measured in the heart, liver, and cerebral cortex by real-time polymerase chain reaction. RESULTS Sob-AM2 treatment in Mct8/Dio2KO animals led to 1.8-fold more sobetirome content in the brain and 2.5-fold less in plasma in comparison to the treatment with the parent drug sobetirome. Both sobetirome and Sob-AM2 treatments in Mct8/Dio2KO mice greatly decreased plasma T4 and T3 levels. Dio1 and Ucp2 gene expression was altered in the liver of Mct8/Dio2KO mice and was not affected by the treatments. In the heart, Hcn2 but not Atp2a2 expression was increased after treatment with the analogs. Interestingly, both sobetirome and Sob-AM2 treatments increased the expression of several T3-dependent genes in the brain such as Hr, Abcd2, Mme, and Flywch2 in Mct8/Dio2KO mice. CONCLUSIONS Sobetirome and its amide prodrug Sob-AM2 can access the brain in the absence of Mct8 and exert thyromimetic actions modulating the expression of T3-dependent genes. At the peripheral level, the administration of these TH analogs results in the depletion of circulating T4 and T3. Therefore, sobetirome and Sob-AM2 have the potential to address the cerebral hypothyroidism and the peripheral hyperthyroidism characteristic of MCT8 deficiency.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
| | - Meredith D. Hartley
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health and Science University, Portland, Oregon
| | - Carmen Grijota-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health and Science University, Portland, Oregon
- Address correspondence to:Thomas S. Scanlan, PhDDepartment of Physiology and Pharmacology and Program in Chemical BiologyOregon Health and Science UniversityPortland, OR 97239
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Biomedical Research on Rare Diseases (Ciberer), Unit 708, Instituto de Salud Carlos III, Madrid, Spain
- Ana Guadaño-Ferraz, PhDDepartment of Endocrine and Nervous System PathophysiologyInstituto de Investigaciones Biomédicas Alberto SolsConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridArturo Duperier 4E-28029 MadridSpain
| |
Collapse
|
20
|
Dach K, Bendt F, Huebenthal U, Giersiefer S, Lein PJ, Heuer H, Fritsche E. BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action. Sci Rep 2017; 7:44861. [PMID: 28317842 PMCID: PMC5357893 DOI: 10.1038/srep44861] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 02/15/2017] [Indexed: 01/02/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants causing developmental neurotoxicity (DNT) in humans and rodents. Their DNT effects are suspected to involve thyroid hormone (TH) signaling disruption. Here, we tested the hypothesis whether disturbance of neural progenitor cell (NPC) differentiation into the oligodendrocyte lineage (O4+ cells) by BDE-99 involves disruption of TH action in human and mouse (h,m)NPCs. Therefore, we quantified differentiation of NPCs into O4+ cells and measured their maturation via expression of myelin-associated genes (hMBP, mMog) in presence and absence of TH and/or BDE-99. T3 promoted O4+ cell differentiation in mouse, but not hNPCs, and induced hMBP/mMog gene expression in both species. BDE-99 reduced generation of human and mouse O4+ cells, but there is no indication for BDE-99 interfering with cellular TH signaling during O4+ cell formation. BDE-99 reduced hMBP expression due to oligodendrocyte reduction, but concentrations that did not affect the number of mouse O4+ cells inhibited TH-induced mMog transcription by a yet unknown mechanism. In addition, ascorbic acid antagonized only the BDE-99-dependent loss of human, not mouse, O4+ cells by a mechanism probably independent of reactive oxygen species. These data point to species-specific modes of action of BDE-99 on h/mNPC development into the oligodendrocyte lineage.
Collapse
Affiliation(s)
- Katharina Dach
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Farina Bendt
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ulrike Huebenthal
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Susanne Giersiefer
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Heike Heuer
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| |
Collapse
|
21
|
Abstract
Transport of thyroid hormone (TH) across the plasma membrane is essential for intracellular TH metabolism and action, and this is mediated by specific transporter proteins. During the last two decades several transporters capable of transporting TH have been identified, including monocarboxylate transporter 8 (MCT8), MCT10 and organic anion transporting polypeptide 1C1 (OATP1C1). In particular MCT8 and OATP1C1 are important for the regulation of local TH activity in the brain and thus for brain development. MCT8 is a protein containing 12 transmembrane domains, and is encoded by the SLC16A2 gene located on the X chromosome. It facilitates both TH uptake and efflux across the cell membrane. Male subjects with hemizygous mutations in MCT8 are afflicted with severe intellectual and motor disability, also known as the Allan-Herndon-Dudley syndrome (AHDS), which goes together with low serum T4 and high T3 levels. This review concerns molecular and clinical aspects of MCT8 function.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W Edward Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Theo J Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
van Mullem AA, van Gucht ALM, Visser WE, Meima ME, Peeters RP, Visser TJ. Effects of thyroid hormone transporters MCT8 and MCT10 on nuclear activity of T3. Mol Cell Endocrinol 2016; 437:252-260. [PMID: 27492966 DOI: 10.1016/j.mce.2016.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/10/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
Transport of thyroid hormone (TH) across the plasma membrane is necessary for the genomic action of T3 mediated by its nuclear T3 receptor. MCT8 and MCT10 have been identified as important TH transporters. Mutations in MCT8 result in severe psychomotor retardation. In addition to TH transport into the cell, MCT8 and MCT10 also facilitate TH efflux from cells. Therefore, the aim of this study was to examine if MCT8 and MCT10 increase the availability of T3 for its nuclear receptor rather than generate a rapid equilibrium between cellular and serum T3. T3 action was investigated in JEG3 cells co-transfected with TRβ1 and a T3 response element-driven luciferase construct, and T3 metabolism was analyzed in cells transfected with type 3 deiodinase (D3). In addition, cells were transfected with MCT8 or MCT10 and/or the cytoplasmic T3-binding protein mu-crystallin (CRYM). Luciferase signal was markedly stimulated by incubating cells for 24 h with 1 nM T3, but this response was not augmented by MCT8 or MCT10 expression. Limiting the time of T3 exposure to 1-6 h and co-transfection with CRYM allowed for a modest increase in luciferase response to T3. In contrast, T3 metabolism by D3 was potently stimulated by MCT8 or MCT10 expression, but it was not affected by expression of CRYM. These results suggest that MCT8 and MCT10 by virtue of their bidirectional T3 transport have less effect on steady-state nuclear T3 levels than on T3 levels at the cell periphery where D3 is located. CRYM alters the dynamics of cellular TH transport but its exact function in the cellular distribution of TH remains to be determined.
Collapse
Affiliation(s)
- Alies A van Mullem
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja L M van Gucht
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel E Meima
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Hirashima R, Michimae H, Takemoto H, Sasaki A, Kobayashi Y, Itoh T, Tukey RH, Fujiwara R. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity. Mol Pharmacol 2016; 90:265-74. [PMID: 27413119 DOI: 10.1124/mol.116.104174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels.
Collapse
Affiliation(s)
- Rika Hirashima
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Hirofumi Michimae
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Hiroaki Takemoto
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Aya Sasaki
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Yoshinori Kobayashi
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Tomoo Itoh
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Robert H Tukey
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Ryoichi Fujiwara
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| |
Collapse
|
24
|
Charzewska A, Wierzba J, Iżycka-Świeszewska E, Bekiesińska-Figatowska M, Jurek M, Gintowt A, Kłosowska A, Bal J, Hoffman-Zacharska D. Hypomyelinating leukodystrophies - a molecular insight into the white matter pathology. Clin Genet 2016; 90:293-304. [DOI: 10.1111/cge.12811] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/23/2022]
Affiliation(s)
- A. Charzewska
- Institute of Mother and Child, Department of Medical Genetics; Warsaw Poland
| | - J. Wierzba
- Medical University of Gdańsk; Department of Paediatrics, Haemathology & Oncology, Department of General Nursery; Gdańsk Poland
| | - E. Iżycka-Świeszewska
- Medical University of Gdańsk; Department of Pathology & Neuropathology; Copernicus Hospital, Department of Patomorphology; Gdańsk Poland
| | | | - M. Jurek
- Institute of Mother and Child, Department of Medical Genetics; Warsaw Poland
| | - A. Gintowt
- Medical University of Gdańsk; Department of Biology and Genetics; Gdańsk Poland
| | - A. Kłosowska
- Medical University of Gdańsk; Department of Paediatrics, Haemathology & Oncology, Department of General Nursery; Gdańsk Poland
| | - J. Bal
- Institute of Mother and Child, Department of Medical Genetics; Warsaw Poland
| | | |
Collapse
|
25
|
Bárez-López S, Obregon MJ, Martínez-de-Mena R, Bernal J, Guadaño-Ferraz A, Morte B. Effect of Triiodothyroacetic Acid Treatment in Mct8 Deficiency: A Word of Caution. Thyroid 2016; 26:618-26. [PMID: 26701289 DOI: 10.1089/thy.2015.0388] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Monocarboxylate transporter 8 (MCT8) is a thyroid hormone-specific cell membrane transporter. Mutations in the MCT8 gene lead to profound psychomotor retardation and abnormal thyroid hormone serum levels with low thyroxine (T4) and high triiodothyronine (T3). Currently, therapeutic options for patients are limited. Triiodothyroacetic acid (TRIAC) has potential therapeutic value. The aim of this study was to evaluate the effects and efficacy of therapeutic doses of TRIAC on Mct8-deficient mice (Mct8KO). METHODS Wild-type (Wt) and Mct8KO mice were treated with 30 ng TRIAC/g of body weight/day, given in drinking water, from postnatal day 21 to 30. TRIAC, T4 and T3 levels in plasma, as well as T3 and TRIAC content in the cerebral cortex and striatum were measured by specific radioimmunoassays. The activities of deiodinases 1 and 2 were measured in liver and cortex. The effect of TRIAC treatment in the expression of T3-dependent genes was measured in the heart, cerebral cortex, and striatum. RESULTS Plasma TRIAC concentration were the same in Wt and Mct8KO animals after treatment. TRIAC treatment greatly decreased plasma T4 in Wt and Mct8KO mice, and reduced T3 to normal levels in the Mct8KO mice. Deiodinase 1 activity and gene expression in the liver increased, while it did not have any effect on the expression of Serca2a in the heart. TRIAC treatment did not induce the expression of T3-dependent genes in the cerebral cortex or striatum, but further decreased expression of Flywch2 in the cortex and Aldh1a1 and Flywch2 in the striatum. Direct measurements of TRIAC and T3 content in the cortex and striatum revealed a decrease in T3 after treatment with no significant increase in the level of endogenous TRIAC. CONCLUSIONS Therapeutic doses of TRIAC in Mct8KO mice restored plasma T3 levels but severely decreased T4 levels. TRIAC has a direct effect on deiodinase 1 in the liver and does not have an effect on gene expression in the heart. The increase in the plasma TRIAC levels after treatment is not sufficient to increase TRIAC levels in the brain and to promote the expression of T3-dependent genes in brain cells. Instead, it leads to a state of brain hypothyroidism with reduced T3 content.
Collapse
Affiliation(s)
- Soledad Bárez-López
- 1 Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- 2 Department of Endocrine, U-708, Center for Biomedical Research on Rare Diseases (Ciberer) , Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Jesus Obregon
- 1 Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Martínez-de-Mena
- 1 Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Juan Bernal
- 1 Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- 2 Department of Endocrine, U-708, Center for Biomedical Research on Rare Diseases (Ciberer) , Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Guadaño-Ferraz
- 1 Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- 2 Department of Endocrine, U-708, Center for Biomedical Research on Rare Diseases (Ciberer) , Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Morte
- 1 Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- 2 Department of Endocrine, U-708, Center for Biomedical Research on Rare Diseases (Ciberer) , Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Ono E, Ariga M, Oshima S, Hayakawa M, Imai M, Ochiai Y, Mochizuki H, Namba N, Ozono K, Miyata I. Three novel mutations of the MCT8 (SLC16A2) gene: individual and temporal variations of endocrinological and radiological features. Clin Pediatr Endocrinol 2016; 25:23-35. [PMID: 27212794 PMCID: PMC4860513 DOI: 10.1297/cpe.25.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/17/2015] [Indexed: 11/13/2022] Open
Abstract
We performed genetic analysis and clinical investigations for three patients with
suspected monocarboxylate transporter 8 (MCT8) deficiency. On genetic analysis of the
MCT8(SLC16A2) gene, novel mutations (c.1333C>A;
p.R445S, c.587G>A; p.G196E and c.1063_1064insCTACC; p.R355PfsX64) were identified in
each of three patients. Although thyroid function tests (TFTs) showed the typical pattern
of MCT8 deficiency at the time of genetic diagnosis in all patients, two patients
occasionally were euthyroid. A TRH test revealed low response, exaggerated response and
normal response of TSH, respectively. Endocrinological studies showed gonadotropin (Gn)
deficiency in two adult patients. On ultrasonography, goiter was detected in one patient.
Interestingly, pituitary magnetic resonance imaging (MRI) demonstrated atrophy and
thinness of the pituitary gland in two patients. Our findings suggest that thyroid status
in patients with MCT8 deficiency varies with time of examination, and repeated TFTs are
necessary for patients suspected of MCT8 deficiency before genetic analysis. In addition,
it is noteworthy that some variations were observed on the TRH test and ultrasonography of
the thyroid gland in the present study. Morphological abnormality of the pituitary gland
may be found in some patients, while Gn deficiency should be considered as one of the
complications.
Collapse
Affiliation(s)
- Erina Ono
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Masamichi Ariga
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Sakiko Oshima
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Mika Hayakawa
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Masayuki Imai
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Yukikatsu Ochiai
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Hiroshi Mochizuki
- Department of Endocrinology and Metabolism, Saitama Children's Medical Center, Saitama, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ichiro Miyata
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Kim JH, Kim YM, Yum MS, Choi JH, Lee BH, Kim GH, Yoo HW. Clinical and endocrine features of two Allan-Herndon-Dudley syndrome patients with monocarboxylate transporter 8 mutations. Horm Res Paediatr 2016; 83:288-92. [PMID: 25896225 DOI: 10.1159/000371466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022] Open
Abstract
The monocarboxylate transporter 8 (MCT8) gene, located on chromosome Xq13.2, encodes a thyroid hormone transporter that is involved in triiodothyronine (T3) uptake into central neurons. MCT8 mutations cause an X-linked syndromic disorder known as Allan-Herndon-Dudley syndrome (AHDS) that is characterized by severe psychomotor delays, abnormal thyroid function, and hypomyelinated leukodystrophies. We identified 2 AHDS patients with developmental delays, truncal hypotonia, and spastic paraplegia. These patients presented with psychomotor retardation and characteristic thyroid function abnormalities, such as elevated T3 and low T4 levels. Direct MCT8 sequencing identified heterozygous mutations in each patient: p.I114N and p.A224V, respectively. Because it is difficult to suspect AHDS solely according to neurological features, thyroid function, including the T3 level, should be screened in male patients with X-linked mental retardation. Although the clinical features of hypothyroidism cannot be improved by only administering levothyroxine treatment, early diagnosis, management, and appropriate genetic counseling should be provided to at-risk families.
Collapse
Affiliation(s)
- Ja Hye Kim
- Division of Pediatric Endocrinology and Metabolism, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Matheus MG, Lehman RK, Bonilha L, Holden KR. Redefining the Pediatric Phenotype of X-Linked Monocarboxylate Transporter 8 (MCT8) Deficiency: Implications for Diagnosis and Therapies. J Child Neurol 2015; 30:1664-8. [PMID: 25900139 DOI: 10.1177/0883073815578524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
X-linked monocarboxylate transporter 8 (MCT8) deficiency results from a loss-of-function mutation in the monocarboxylate transporter 8 gene, located on chromosome Xq13.2 (Allan-Herndon-Dudley syndrome). Affected boys present early in life with neurodevelopment delays but have pleasant dispositions and commonly have elevated serum triiodothyronine. They also have marked axial hypotonia and quadriparesis but surprisingly little spasticity early in their disease course. They do, however, have subtle involuntary movements, most often dystonia. The combination of hypotonia and dystonia presents a neurorehabilitation challenge and explains why spasticity-directed therapies have commonly produced suboptimal responses. Our aim was to better define the spectrum of motor disability and to elucidate the neuroanatomic basis of the motor impairments seen in MCT8 deficiency using clinical observation and brain magnetic resonance imaging (MRI) in a cohort of 6 affected pediatric patients. Our findings identified potential imaging biomarkers and suggest that rehabilitation efforts targeting dystonia may be more beneficial than those targeting spasticity in the prepubertal pediatric MCT8 deficiency population.
Collapse
Affiliation(s)
- Maria Gisele Matheus
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca K Lehman
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Kenton R Holden
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA Department of Neurology, Medical University of South Carolina, Charleston, SC, USA Greenwood Genetic Center, Greenwood, SC, USA
| |
Collapse
|
29
|
Armour CM, Kersseboom S, Yoon G, Visser TJ. Further Insights into the Allan-Herndon-Dudley Syndrome: Clinical and Functional Characterization of a Novel MCT8 Mutation. PLoS One 2015; 10:e0139343. [PMID: 26426690 PMCID: PMC4591285 DOI: 10.1371/journal.pone.0139343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Background Mutations in the thyroid hormone (TH) transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization. Methods Proband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter. Results The proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F) was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells. Conclusions We describe a novel MCT8 mutation (S290F) in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction.
Collapse
Affiliation(s)
- Christine M. Armour
- Regional Genetics Program, Children’s Hospital of Eastern Ontario, and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Simone Kersseboom
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Grace Yoon
- Department of Paediatrics, Divisions of Neurology and Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
La Piana R, Vanasse M, Brais B, Bernard G. Myelination Delay and Allan-Herndon-Dudley Syndrome Caused by a Novel Mutation in the SLC16A2 Gene. J Child Neurol 2015; 30:1371-4. [PMID: 25380603 DOI: 10.1177/0883073814555189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/19/2014] [Indexed: 11/16/2022]
Abstract
Allan-Herndon-Dudley syndrome is an X-linked disease caused by mutations in the solute carrier family 16 member 2 (SLC16A2) gene. As SLC16A2 encodes the monocarboxylate transporter 8 (MCT8), a thyroid hormone transporter, patients with Allan-Herndon-Dudley syndrome present a specific altered thyroid hormone profile. Allan-Herndon-Dudley syndrome has been associated with myelination delay on the brain magnetic resonance imaging (MRI) of affected subjects. We report a patient with Allan-Herndon-Dudley syndrome characterized by developmental delay, hypotonia, and delayed myelination caused by a novel SLC16A2 mutation (p.L291R). The thyroid hormones profile in our patient was atypical for Allan-Herndon-Dudley syndrome. The follow-up examinations showed that the progression of the myelination was not accompanied by a clinical improvement. Our paper suggests that SLC16A2 mutations should be investigated in patients with myelination delay even when the thyroid function is not conclusively altered.
Collapse
Affiliation(s)
- Roberta La Piana
- Laboratory of Neurogenetics of Movement, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada Department of Neuroradiology, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Michel Vanasse
- Department of Neuroscience, Division of Neurology, CHU-Sainte-Justine, Montreal, Canada
| | - Bernard Brais
- Laboratory of Neurogenetics of Movement, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada Departments of Neurology, Neurosurgery and Human Genetics, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Genevieve Bernard
- Department of Neuroscience, Division of Neurology, CHU-Sainte-Justine, Montreal, Canada Departments of Pediatrics, Neurology and Neurosurgery, division of Pediatric Neurology, Montreal Children's Hospital, Montreal, Canada
| |
Collapse
|
31
|
Abstract
The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations.
Collapse
Affiliation(s)
- Juan Bernal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Beatriz Morte
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
32
|
Anık A, Kersseboom S, Demir K, Catlı G, Yiş U, Böber E, van Mullem A, van Herebeek REA, Hız S, Abacı A, Visser TJ. Psychomotor retardation caused by a defective thyroid hormone transporter: report of two families with different MCT8 mutations. Horm Res Paediatr 2015; 82:261-71. [PMID: 25247785 DOI: 10.1159/000365191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Monocarboxylate transporter 8 (MCT8) is essential for thyroid hormone (TH) transport in the brain. Mutations in MCT8 are associated with the Allan-Herndon-Dudley syndrome (AHDS), characterized by severe psychomotor retardation and altered serum thyroid parameters. Here we report two novel mutations in MCT8 and discuss the clinical findings. CASE REPORT AND RESULTS We describe 4 males with AHDS from two unrelated families varying in age from 1.5 to 11 years. All 4 patients presented with typical clinical signs of AHDS, including severe psychomotor retardation, axial hypotonia, lack of speech, diminished muscle mass, increased muscle tone, hyperreflexia, myopathic facies, high T3, low T4 and rT3, and normal/mildly elevated TSH levels. Comparison of patients at different ages suggests the progressive nature of AHDS. Genetic analyses identified a novel missense MCT8 mutation (p.G495A) in family 1 and a 2.8-kb deletion comprising exons 3 and 4 in family 2. Functional analysis of p.G495A revealed impaired TH transport varying from 20 to 85% depending on the cell context. CONCLUSION Here we report 4 AHDS patients in unrelated Turkish families harboring novel MCT8 mutations. Despite the widely different mutations, the clinical phenotypes are very similar and findings support the progressive nature of AHDS.
Collapse
Affiliation(s)
- Ahmet Anık
- Department of Pediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation. PLoS Genet 2014; 10:e1004615. [PMID: 25255244 PMCID: PMC4177677 DOI: 10.1371/journal.pgen.1004615] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022] Open
Abstract
The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS) is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH) parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2) gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8−/−) zebrafish using zinc-finger nuclease (ZFN)-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8−/− larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8−/− larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8−/− larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8−/− larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit assembly, ultimately mediating sensory and motor control of behavioral performance. We also propose that the administration of TH analogs early during embryo development can specifically reduce neurological damage in AHDS patients. In a wide range of brain disorders, mutations in specific genes cause alterations in the development and function of neural circuits that ultimately affect behavior. A major challenge is to uncover the mechanism and provide treatment which is capable of preventing brain damage. Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by intellectual disabilities, neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter MCT8 are associated with AHDS. Mice that lack the MCT8 protein exhibited impaired TH levels, as is the case in human patients; however, they lack neurological defects. Here, we generated an mct8 mutant (mct8−/−) zebrafish, which exhibited neurological and behavioral deficiencies and mimics pathological conditions of AHDS patients. The zebrafish is a simple transparent vertebrate and its nervous system is conserved with mammals. Time-lapse live imaging of single axons and synapses, and video-tracking of behavior revealed deficiencies in neural circuit assembly, which are associated with disturbed sleep and altered locomotor activity. In addition, since the mct8−/− larvae provides a highthroughput platform for testing therapeutic drugs, we showed that TH analogs can recover neurological deficiencies in an animal model for psychomotor retardation.
Collapse
Affiliation(s)
- David Zada
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Adi Tovin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerer-Goldshtein
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Gad David Vatine
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Lior Appelbaum
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
34
|
Azzolini S, Nosadini M, Balzarin M, Sartori S, Suppiej A, Mardari R, Greggio NA, Toldo I. Delayed myelination is not a constant feature of Allan-Herndon-Dudley syndrome: report of a new case and review of the literature. Brain Dev 2014; 36:716-20. [PMID: 24268987 DOI: 10.1016/j.braindev.2013.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Allan-Herndon-Dudley syndrome is an X-linked condition caused by mutations of the monocarboxylate transporter 8 gene. This syndrome is characterized by axial hypotonia, severe mental retardation, dysarthria, athetoid movements, spastic paraplegia, and a typical thyroid hormone profile. In most of the cases reported so far, brain magnetic resonance imaging showed delayed myelination of the central white matter and this finding greatly affects the diagnosis of the syndrome. CASE REPORT We present a new case studied with magnetic resonance imaging and spectroscopy and we reviewed all the articles published between 2004 and 2012 containing information on brain neuroimaging in this syndrome. An Italian boy, showing a classical phenotype of the syndrome, was diagnosed at 17months of age. Genetic analysis revealed a new frameshift mutation of the monocarboxylate transporter 8 gene. His brain magnetic resonance imaging and spectroscopy, performed at the age of 14months, were normal. DISCUSSION Among the 33 cases reported in the literature, 3 cases had normal neuroimaging and in 7 of 14 cases, having a longitudinal follow-up, the initial finding of delayed myelination gradually improved. Our case and the review of the pertinent literature suggest that Allan-Herndon-Dudley syndrome should be suspected in males with the typical neurological and thyroid profile, even in cases with normal brain myelination.
Collapse
Affiliation(s)
- Sara Azzolini
- Pediatric Endocrinology Unit, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
| | - Margherita Nosadini
- Child Neurology Unit, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
| | - Marta Balzarin
- Pediatric Endocrinology Unit, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
| | - Stefano Sartori
- Child Neurology Unit, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
| | - Agnese Suppiej
- Child Neurology Unit, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
| | - Rodica Mardari
- Institute of Neuroradiology, University Hospital of Padua, Padua, Italy
| | - Nella Augusta Greggio
- Pediatric Endocrinology Unit, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
| | - Irene Toldo
- Child Neurology Unit, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy.
| |
Collapse
|
35
|
X-exome sequencing in Finnish families with intellectual disability--four novel mutations and two novel syndromic phenotypes. Orphanet J Rare Dis 2014; 9:49. [PMID: 24721225 PMCID: PMC4022384 DOI: 10.1186/1750-1172-9-49] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/31/2014] [Indexed: 01/18/2023] Open
Abstract
Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations and the challenges of interpreting the results. Further functional studies are required to confirm the cause of the syndromic phenotypes associated with ZMYM3 and SYP in this study.
Collapse
|
36
|
Abstract
The description of two novel human defects in the last ten years has uncovered new aspects of thyroid hormone physiology with regard to cell-membrane transport and intracellular metabolism. Mutations in the X-linked monocarboxylate transporter 8 (MCT8) gene result in an invalidating neurodevelopmental phenotype in males and pathognomonic thyroid functions tests with high T3, low rT3, low or low normal T4, and normal or slightly high TSH. Recessive mutations in the selenocysteine insertion sequence binding protein 2 (SBP2) gene present a variable clinical phenotype depending on the severity of the defect and its consequences on the selenoprotein hierarchy. Most characteristic is the thyroid phenotype of low serum T3, high T4, high rT3, and slightly elevated TSH levels. Herein we review all known cases of MCT8 and SBP2 deficiency and describe each disease in terms of the clinical, biochemical, genetic, and therapeutic aspects.
Collapse
Affiliation(s)
- Jiao Fu
- Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland Avenue MC3090, Room M369, Chicago, IL 60637, USA; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China.
| | - Alexandra M Dumitrescu
- Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland Avenue MC3090, Room M369, Chicago, IL 60637, USA.
| |
Collapse
|
37
|
Visser WE, van Mullem AAA, Visser TJ, Peeters RP. Different causes of reduced sensitivity to thyroid hormone: diagnosis and clinical management. Clin Endocrinol (Oxf) 2013; 79:595-605. [PMID: 23834164 DOI: 10.1111/cen.12281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
Normal thyroid hormone (TH) metabolism and action require adequate cellular TH signalling. This entails proper function of TH transporters in the plasma membrane, intracellular deiodination of TH and action of the bioactive hormone T3 at its nuclear receptors (TRs). The present review summarizes the discoveries of different syndromes with reduced sensitivity at the cellular level. Mutations in the TH transporter MCT8 cause psychomotor retardation and abnormal thyroid parameters. Mutations in the SBP2 protein, which is required for normal deiodination, give rise to a multisystem disorder including abnormal thyroid function tests. Mutations in TRβ1 are a well-known cause of resistance to TH with mostly a mild phenotype, while only recently, patients with mutations in TRα1 were identified. The latter patients have slightly abnormal TH levels, growth retardation and cognitive defects. This review will describe the mechanisms of disease, clinical phenotype, diagnostic testing and suggestions for treatment strategies for each of these syndromes.
Collapse
Affiliation(s)
- W Edward Visser
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Yamamoto S, Okuhara K, Tonoki H, Iizuka S, Nihei N, Tajima T. A Novel Deletion Mutation of SLC16A2 Encoding Monocarboxylate Transporter (MCT) 8 in a 26-year-old Japanese Patient with Allan-Herndon-Dudley Syndrome. Clin Pediatr Endocrinol 2013. [PMID: 24170966 PMCID: PMC3809735 DOI: 10.1297/cpe.22.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Allan-Herndon-Dudley Syndrome (AHDS), an X linked condition, is characterized by congenital hypotonia that progresses to spasticity with severe psychomotor delays, in combination with altered thyroid hormone levels, in particular, high serum T3 levels. Recently, this disease was proved to be caused by mutations in SLC16A2 coding for the monocarboxylate thyroid hormone transporter 8 (MCT8). Here we describe a 26-year -old Japanese patient with AHDS who had deletion of exon 3 of SLC16A2.
Collapse
Affiliation(s)
- Sayaka Yamamoto
- Department of Pediatrics, Tenshi Hospital, Social Medical Corporation Bokoi, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Yamamoto S, Okuhara K, Tonoki H, Iizuka S, Nihei N, Tajima T. A Novel Deletion Mutation of SLC16A2 Encoding Monocarboxylate Transporter (MCT) 8 in a 26-year-old Japanese Patient with Allan-Herndon-Dudley Syndrome. Clin Pediatr Endocrinol 2013; 22:83-6. [PMID: 24170966 DOI: 10.1292/cpe.22.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/14/2013] [Indexed: 11/22/2022] Open
Abstract
Allan-Herndon-Dudley Syndrome (AHDS), an X linked condition, is characterized by congenital hypotonia that progresses to spasticity with severe psychomotor delays, in combination with altered thyroid hormone levels, in particular, high serum T3 levels. Recently, this disease was proved to be caused by mutations in SLC16A2 coding for the monocarboxylate thyroid hormone transporter 8 (MCT8). Here we describe a 26-year -old Japanese patient with AHDS who had deletion of exon 3 of SLC16A2.
Collapse
Affiliation(s)
- Sayaka Yamamoto
- Department of Pediatrics, Tenshi Hospital, Social Medical Corporation Bokoi, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Rodrigues TB, Ceballos A, Grijota-Martínez C, Nuñez B, Refetoff S, Cerdán S, Morte B, Bernal J. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8). PLoS One 2013; 8:e74621. [PMID: 24098341 PMCID: PMC3788064 DOI: 10.1371/journal.pone.0074621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/03/2013] [Indexed: 11/19/2022] Open
Abstract
Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-(13)C) glucose and brain extracts prepared and analyzed by (13)C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood.
Collapse
Affiliation(s)
- Tiago B. Rodrigues
- Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, Madrid, Spain
- CRUK, Cambridge Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ainhoa Ceballos
- Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, Madrid, Spain
| | - Carmen Grijota-Martínez
- Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, Madrid, Spain
- Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Barbara Nuñez
- Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, Madrid, Spain
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics and Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Sebastian Cerdán
- Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, Madrid, Spain
| | - Beatriz Morte
- Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, Madrid, Spain
- Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Juan Bernal
- Instituto de Investigaciones Biomedicas, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, Madrid, Spain
- Center for Biomedical Research on Rare Diseases, Madrid, Spain
| |
Collapse
|
41
|
Cerebral Blood Flow on 99mTc Ethyl Cysteinate Dimer SPECT in 2 Siblings With Monocarboxylate Transporter 8 Deficiency. Clin Nucl Med 2013; 38:e276-8. [DOI: 10.1097/rlu.0b013e31827082d8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Tonduti D, Vanderver A, Berardinelli A, Schmidt JL, Collins CD, Novara F, Di Genni A, Mita A, Triulzi F, Brunstrom-Hernandez JE, Zuffardi O, Balottin U, Orcesi S. MCT8 deficiency: extrapyramidal symptoms and delayed myelination as prominent features. J Child Neurol 2013; 28:795-800. [PMID: 22805248 PMCID: PMC4155008 DOI: 10.1177/0883073812450944] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) deficiency is an X-linked disorder resulting from an impairment of the transcellular transportation of thyroid hormones. Within the central nervous system thyroid hormone transport is normally mediated by MCT8. Patients are described as affected by a static or slowly progressive clinical picture which consists of variable degrees of mental retardation, hypotonia, spasticity, ataxia and involuntary movements, occasionally paroxysmal. The authors describe the clinical and neuroradiological picture of 3 males patients with marked delayed brain myelination and in which the clinical picture was dominated by early onset nonparoxysmal extrapyramidal symptoms. In one subject a novel mutation is described.
Collapse
Affiliation(s)
- Davide Tonduti
- Child Neurology and Psychiatry Unit, IRCCS C. Mondino National Institute of Neurology Foundation, Via Mondino 2, Pavia, Italy.
| | - Adeline Vanderver
- Department of Neurology, Children’s National Medical Center, Washington, DC, USA
| | - Angela Berardinelli
- Child Neurology and Psychiatry Unit, IRCCS C. Mondino National Institute of Neurology Foundation, Pavia, Italy
| | - Johanna L. Schmidt
- Department of Neurology, Children’s National Medical Center, Washington, DC, USA
| | - Christin D. Collins
- Emory Genetics Laboratory, Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Antonia Di Genni
- Child Neurology and Psychiatry Unit, IRCCS C. Mondino National Institute of Neurology Foundation, Pavia, Italy
| | - Alda Mita
- Child Neurology and Psychiatry Unit, IRCCS C. Mondino National Institute of Neurology Foundation, Pavia, Italy
| | - Fabio Triulzi
- Departments of Radiology and Neuroradiology, Children’s Hospital V. Buzzi-Istituti Clinici di Perfezionamento, Milan, Italy
| | - Janice E. Brunstrom-Hernandez
- Pediatric Neurology Cerebral Palsy Center, Departments of Neurology and Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, USA
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Umberto Balottin
- Department of Public Health, Neuroscience, Experimental and Forensic Medicine, Unit of Child Neurology and Psychiatry, University of Pavia, Italy
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS C. Mondino National Institute of Neurology Foundation, Pavia, Italy
| |
Collapse
|
43
|
Capri Y, Friesema EC, Kersseboom S, Touraine R, Monnier A, Eymard-Pierre E, Des Portes V, De Michele G, Brady AF, Boespflug-Tanguy O, Visser TJ, Vaurs-Barriere C. Relevance of Different Cellular Models in Determining the Effects of Mutations on SLC16A2/MCT8 Thyroid Hormone Transporter Function and Genotype-Phenotype Correlation. Hum Mutat 2013; 34:1018-25. [DOI: 10.1002/humu.22331] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/25/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Yline Capri
- INSERM; UMR 1103, CNRS 6293, GReD, Medical school; Clermont-Ferrand France
- APHP; Genetic Department; Robert Debré University Hospital; Paris France
- Université Paris Diderot; Sorbonne Paris Cité, Robert Debré University Hospital; Paris France
| | - Edith C.H. Friesema
- Department of Internal Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Simone Kersseboom
- Department of Internal Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Renaud Touraine
- Department of Clinical Chromosomal and Molecular Genetics; CHU St Etienne France
| | - Aurélie Monnier
- INSERM; UMR 1103, CNRS 6293, GReD, Medical school; Clermont-Ferrand France
- Medical Cytogenetic; Clermont-Ferrand University Hospital; Clermont-Ferrand France
| | - Eléonore Eymard-Pierre
- INSERM; UMR 1103, CNRS 6293, GReD, Medical school; Clermont-Ferrand France
- Medical Cytogenetic; Clermont-Ferrand University Hospital; Clermont-Ferrand France
| | - Vincent Des Portes
- Reference Center for Rare Intellectual Disabilities; Neuro-Paediatric Department, Debrousse Hospital; Lyon France
| | - Giusseppe De Michele
- Dipartimento di Scienze Neurologiche; Università di Napoli Federico II; Napoli Italy
| | - Angela F. Brady
- North West Thames Regional Genetics Service, Kennedy-Galton Centre; Northwick Park Hospital; Harrow United-Kingdom
| | - Odile Boespflug-Tanguy
- Université Paris Diderot; Sorbonne Paris Cité, Robert Debré University Hospital; Paris France
- APHP; Reference Center for Rare diseases “Leukodystrophies”, Pediatric Neurology and Metabolic Disorders Department, Robert Debré University Hospital; Paris France
- INSERM U676; Hôpital Robert Debré; Paris France
| | - Theo J. Visser
- Department of Internal Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Catherine Vaurs-Barriere
- INSERM; UMR 1103, CNRS 6293, GReD, Medical school; Clermont-Ferrand France
- Auvergne University; Medical School; Clermont-Ferrand France
| |
Collapse
|
44
|
Horn S, Kersseboom S, Mayerl S, Müller J, Groba C, Trajkovic-Arsic M, Ackermann T, Visser TJ, Heuer H. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 2013; 154:968-79. [PMID: 23307789 DOI: 10.1210/en.2012-1628] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The monocarboxylate transporter 8 (MCT8) plays a critical role in mediating the uptake of thyroid hormones (THs) into the brain. In patients, inactivating mutations in the MCT8 gene are associated with a severe form of psychomotor retardation and abnormal serum TH levels. Here, we evaluate the therapeutic potential of the TH analog 3,5,3',5'-tetraiodothyroacetic acid (tetrac) as a replacement for T(4) in brain development. Using COS1 cells transfected with TH transporter and deiodinase constructs, we could show that tetrac, albeit not being transported by MCT8, can be metabolized to the TH receptor active compound 3,3',5-triiodothyroacetic acid (triac) by type 2 deiodinase and inactivated by type 3 deiodinase. Triac in turn is capable of replacing T(3) in primary murine cerebellar cultures where it potently stimulates Purkinje cell development. In vivo effects of tetrac were assessed in congenital hypothyroid Pax8-knockout (KO) and Mct8/Pax8 double-KO mice as well as in Mct8-KO and wild-type animals after daily injection of tetrac (400 ng/g body weight) during the first postnatal weeks. This treatment was sufficient to promote TH-dependent neuronal differentiation in the cerebellum, cerebral cortex, and striatum but was ineffective in suppressing hypothalamic TRH expression. In contrast, TSH transcript levels in the pituitary were strongly down-regulated in response to tetrac. Based on our findings we propose that tetrac administration offers the opportunity to provide neurons during the postnatal stage with a potent TH receptor agonist, thereby eventually reducing the neurological damage in patients with MCT8 mutations without deteriorating the thyrotoxic situation in peripheral tissues.
Collapse
Affiliation(s)
- Sigrun Horn
- Leibniz Institute for Age Research/Fritz Lipmann Institute, D-07745 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Visser WE, Vrijmoeth P, Visser FE, Arts WFM, van Toor H, Visser TJ. Identification, functional analysis, prevalence and treatment of monocarboxylate transporter 8 (MCT8) mutations in a cohort of adult patients with mental retardation. Clin Endocrinol (Oxf) 2013; 78:310-5. [PMID: 22924588 DOI: 10.1111/cen.12023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/26/2012] [Accepted: 08/20/2012] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Monocarboxylate transporter 8 (MCT8) is an essential thyroid hormone (TH) transporter as humans with MCT8 mutations have severe neurological and endocrine abnormalities. The objectives are (i) to identify novel MCT8 mutations and (ii) to assess their functional relevance; (iii) to describe the effects of block-and-replace treatment in an MCT8 patient. DESIGN The TOP-R study is a cross-sectional nation-wide multicentre study. PATIENTS Subjects with unexplained mental retardation (MR) were screened for MCT8 mutations. RESULTS We identified three mutations: p.F501del (previously described), p.L492P and p.T162T. The F501del and L492P mutants, but not the T162T mutant, showed diminished T3, T4 and rT3 transport in transfected cells. TH transport in T162T fibroblasts was also not affected. One patient was treated with block-and-replace therapy to normalize serum TH levels. The results indicated a slow onset of the decrease in serum T4 and T3 by successive treatment with methimazole and PTU, and eventually their complete normalization by administration of LT4 with PTU but not with methimazole. The frequency of MCT8 mutations in males with X-linked MR approximately 3·9%. CONCLUSIONS We identified several MCT8 mutations in a cohort of subjects with unexplained MR. We demonstrated the pathogenicity of two missense mutations. The synonymous variant did not affect TH transport. Block-and-replace therapy of one patient reversed the TH abnormalities. Our data suggest a decreased TH secretion rate and an increased T4 to T3 conversion by the type I deiodinase in patients with MCT8 mutations. Our study indicates that MCT8 mutations are a relatively frequent cause of X-linked MR.
Collapse
Affiliation(s)
- W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Dr Molewaterplein 50, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta Gen Subj 2012; 1830:3987-4003. [PMID: 22986150 DOI: 10.1016/j.bbagen.2012.08.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Six known steps are required for the circulating thyroid hormone (TH) to exert its action on target tissues. For three of these steps, human mutations and distinct phenotypes have been identified. SCOPE OF REVIEW The clinical, laboratory, genetic and molecular characteristics of these three defects of TH action are the subject of this review. The first defect, recognized 45years ago, produces resistance to TH and carries the acronym, RTH. In the majority of cases it is caused by TH receptor β gene mutations. It has been found in over 3000 individuals belonging to approximately 1000 families. Two relatively novel syndromes presenting reduced sensitivity to TH involve membrane transport and metabolism of TH. One of them, caused by mutations in the TH cell-membrane transporter MCT8, produces severe psychomotor defects. It has been identified in more than 170 males from 90 families. A defect of the intracellular metabolism of TH in 10 individuals from 8 families is caused by mutations in the SECISBP2 gene required for the synthesis of selenoproteins, including TH deiodinases. MAJOR CONCLUSIONS Defects at different steps along the pathway leading to TH action at cellular level can manifest as reduced sensitivity to TH. GENERAL SIGNIFICANCE Knowledge of the molecular mechanisms involved in TH action allows the recognition of the phenotypes caused by defects of TH action. Once previously known defects have been ruled out, new molecular defects could be sought, thus opening the avenue for novel insights in thyroid physiology. This article is part of a Special Issue entitled Thyroid hormone signaling.
Collapse
|
47
|
Schweizer U, Köhrle J. Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta Gen Subj 2012; 1830:3965-73. [PMID: 22890106 DOI: 10.1016/j.bbagen.2012.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND Iodothyronines are charged amino acid derivatives that cannot passively cross a phospholipid bilayer. Transport of thyroid hormones across plasma membranes is mediated by integral membrane proteins belonging to several gene families. These transporters therefore allow or limit access of thyroid hormones into brain. Since thyroid hormones are essential for brain development and cell differentiation, it is expected that genetic deficiency of such transporters would result in neurodevelopmental derangements. SCOPE OF REVIEW We introduce concepts of thyroid hormone transport into the brain and into brain cells. Important thyroid hormone transmembrane transporters are presented along with their expression patterns in different brain cell types. A focus is placed on monocarboxylate transporter 8 (MCT8) which has been identified as an essential thyroid hormone transporter in humans. Mutations in MCT8 underlie one of the first described X-linked mental retardation syndromes, the Allan-Herndon-Dudley syndrome. MAJOR CONCLUSIONS Thyroid hormone transporter molecules are expressed in a developmental and cell type-specific pattern. Any thyroid hormone molecule has to cross consecutively the luminal and abluminal membranes of the capillary endothelium, enter astrocytic foot processes, and leave the astrocyte through the plasma membrane to finally cross another plasma membrane on its way towards its target nucleus. GENERAL SIGNIFICANCE We can expect more transporters being involved in or contributing to in neurodevelopmental or neuropsychiatric disease. Due to their expression in cellular components regulating the hypothalamus-pituitary-thyroid axis, mutations and polymorphisms are expected to impact on negative feedback regulation and hormonal setpoints. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | |
Collapse
|
48
|
Abe S, Namba N, Abe M, Fujiwara M, Aikawa T, Kogo M, Ozono K. Monocarboxylate transporter 10 functions as a thyroid hormone transporter in chondrocytes. Endocrinology 2012; 153:4049-58. [PMID: 22719050 DOI: 10.1210/en.2011-1713] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone is essential for normal proliferation and differentiation of chondrocytes. Thus, untreated congenital hypothyroidism is marked by severe short stature. The monocarboxylate transporter 8 (MCT8) is a highly specific transporter for thyroid hormone. The hallmarks of Allan-Herndon-Dudley syndrome, caused by MCT8 mutations, are severe psychomotor retardation and elevated T(3) levels. However, growth is mostly normal. We therefore hypothesized that growth plate chondrocytes use transporters other than MCT8 for thyroid hormone uptake. Extensive analysis of thyroid hormone transporter mRNA expression in mouse chondrogenic ATDC5 cells revealed that monocarboxylate transporter 10 (Mct10) was most abundantly expressed among the transporters known to be highly specific for thyroid hormone, namely Mct8, Mct10, and organic anion transporter 1c1. Expression levels of Mct10 mRNA diminished with chondrocyte differentiation in these cells. Accordingly, Mct10 mRNA was expressed most abundantly in the growth plate resting zone chondrocytes in vivo. Small interfering RNA-mediated knockdown of Mct10 mRNA in ATDC5 cells decreased [(125)I]T(3) uptake up to 44% compared with negative control (P < 0.05). Moreover, silencing Mct10 mRNA expression abolished the known effects of T(3), i.e. suppression of proliferation and enhancement of differentiation, in ATDC5 cells. These results suggest that Mct10 functions as a thyroid hormone transporter in chondrocytes and can explain at least in part why Allan-Herndon-Dudley syndrome patients do not exhibit significant growth impairment.
Collapse
Affiliation(s)
- Sanae Abe
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Müller J, Heuer H. Understanding the hypothalamus-pituitary-thyroid axis in mct8 deficiency. Eur Thyroid J 2012; 1:72-9. [PMID: 24783000 PMCID: PMC3821472 DOI: 10.1159/000339474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/15/2012] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone (TH) metabolism and action via binding to nuclear receptors are intracellular events that require the passage of TH across the plasma membrane. This process is mediated by specific TH transporters of which the monocarboxylate transporter 8 (Mct8) has received major attention. Mct8 is highly expressed in different tissues such as liver, kidney, thyroid, pituitary and brain. In humans, inactivating mutations of the MCT8 gene (SLC16A2) are associated with severe forms of psychomotor retardation and abnormal TH serum levels (Allan-Herndon-Dudley syndrome). Surprisingly, Mct8 knockout (ko) mice do not exhibit overt neurological symptoms but fully replicate the unusual serum TH profile with highly increased serum T3 in the presence of low serum T4. In order to evaluate the underlying mechanisms for these abnormalities, TH transport and metabolism have been intensively studied in different tissues of Mct8 ko mice. Here, we summarize the observed changes within the hypothalamus-pituitary-thyroid axis that result in altered TH production and secretion. Although analysis of Mct8 ko mice has greatly expanded our knowledge, many open questions still remain to be addressed in order to define the tissue- and cell-specific role of this important TH transporter.
Collapse
Affiliation(s)
| | - Heike Heuer
- *Heike Heuer, PhD, Leibniz Institute for Age Research/Fritz Lipmann Institute e.V., Beutenbergstrasse 11, DE–07745 Jena (Germany), Tel. +49 3641 65 6021, E-Mail
| |
Collapse
|
50
|
Heuer H, Visser TJ. The pathophysiological consequences of thyroid hormone transporter deficiencies: Insights from mouse models. Biochim Biophys Acta Gen Subj 2012; 1830:3974-8. [PMID: 22543196 DOI: 10.1016/j.bbagen.2012.04.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/04/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND As a prerequisite for thyroid hormone (TH) metabolism and action TH has to be transported into cells where TH deiodinases and receptors are located. The trans-membrane passage of TH is facilitated by TH transporters of which the monocarboxylate transporter MCT8 has been most intensively studied. Inactivating mutations in the gene encoding MCT8 are associated with a severe form of psychomotor retardation and abnormal serum TH levels (Allan-Herndon-Dudley syndrome). In order to define the underlying pathogenic mechanisms, Mct8 knockout mice have been generated and intensively studied. Most surprisingly, Mct8 ko mice do not show any neurological symptoms but fully replicate the abnormal serum thyroid state. SCOPE OF REVIEW We will summarize the findings of these mouse studies that shed light on various aspects of Mct8 deficiency and unambiguously demonstrated the pivotal role of Mct8 in mediating TH transport in various tissues. These studies have also revealed the presence of the complex interplay between different pathogenic mechanisms that contribute to the generation of the abnormal TH serum profile. MAJOR CONCLUSIONS Most importantly, studies of Mct8 ko mice indicated the presence of additional TH transporters that act in concert with Mct8. Interesting candidates for such a function are the L-type amino acid transporters Lat1 and Lat2 as well as the organic anion transporting polypeptide Oatp1c1. GENERAL SIGNIFICANCE Overall, the analysis of Mct8 deficient mice has greatly expanded our knowledge about the (patho-) physiological function of this transporter and established a sound basis for the characterization of additional TH transporter candidates. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Heike Heuer
- Leibniz Institute for Age Research/Fritz Lipmann Institute, Jena, Germany.
| | | |
Collapse
|