1
|
Ganina A, Askarov M, Kozina L, Karimova M, Shayakhmetov Y, Mukhamedzhanova P, Brimova A, Berikbol D, Chuvakova E, Zaripova L, Baigenzhin A. Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities. Adv Respir Med 2024; 92:504-525. [PMID: 39727496 PMCID: PMC11673795 DOI: 10.3390/arm92060045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
This review explores the significance and prospects of using diverse T-cell variants in the context of combined therapy for lung cancer treatment. Recently, there has been an increase in research focused on understanding the critical role of tumor-specific T lymphocytes and the potential benefits of autologous T-cell-based treatments for individuals with lung cancer. One promising approach involves intravenous administration of ex vivo-activated autologous lymphocytes to improve the immune status of patients with cancer. Investigations are also exploring the factors that influence the success of T-cell therapy and the methods used to stimulate them. Achieving a comprehensive understanding of the characteristics of activated lymphocytes and deciphering the mechanisms underlying their activation of innate anti-tumor immunity will pave the way for numerous clinical trials and the development of innovative strategies for cancer therapy like combined immunotherapy and radiation therapy.
Collapse
Affiliation(s)
- Anastasia Ganina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Manarbek Askarov
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Larissa Kozina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Madina Karimova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Yerzhan Shayakhmetov
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Perizat Mukhamedzhanova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Aigul Brimova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Daulet Berikbol
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Elmira Chuvakova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Lina Zaripova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Abay Baigenzhin
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| |
Collapse
|
2
|
Ye W, Hou K, Tao N, Li W, Tan Z, Huang Q, Yang D, Lin H, Deng Z, Xia Y, Yu G. Association between CD4 + T cells ATP levels and disease progression in patients with non‑small cell lung cancer. Oncol Lett 2024; 28:369. [PMID: 38933807 PMCID: PMC11200158 DOI: 10.3892/ol.2024.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 06/28/2024] Open
Abstract
Introducing the exploration of stimulated CD4+ cells adenosine triphosphate (sATPCD4) levels for immune monitoring post non-small cell lung cancer (NSCLC) chemotherapy, the present study aimed to investigate its efficacy in gauging the potential risk of disease progression (PD) in patients with NSCLC. Therefore, a total of 89 patients with advanced NSCLC, who underwent chemotherapy between August 15 2022 and August 30 2023 at the Fifth Affiliated Hospital of Guangzhou Medical University (Guangzhou, China), were retrospectively studied. Patients were divided into the PD (n=21) and disease stability (non-PD; n=68) groups and their clinical data were compared. The thresholds for predicting PD were identified using receiver operating characteristics (ROC) curves. Multivariate logistic regression analysis was carried out to assess the association between peripheral blood markers and the incidence of PD. Therefore, post-chemotherapy, significant differences in white blood cell count, non-stimulated CD4+ cells ATP and sATPCD4 levels were obtained between patients in the PD and non-PD groups (P<0.05). In addition, sATPCD4 levels were notably decreased in the PD group compared with the non-PD group. Furthermore, ROC analysis revealed that the predictive threshold for PD was 224.5 ng/ml [area under the curve=0.887; 95% confidence interval, 0.811-0.963]. Additionally, patients with low immunity (ATP <224.5 ng/ml) exhibited a higher risk of PD compared with the high-immunity group (ATP >224.5 ng/ml; P<0.0001). Finally, multivariate logistic regression analysis suggested that sATPCD4 could serve as an independent factor for predicting NSCLC progression. Overall, the current study predicted that immune function could be possibly associated with the risk of PD in patients with NSCLC.
Collapse
Affiliation(s)
- Weipeng Ye
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Kailian Hou
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Na Tao
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Weiyi Li
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Zhiqiong Tan
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Qunfeng Huang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Dongheng Yang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Haoxin Lin
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Zihao Deng
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Yuanyuan Xia
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| | - Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Huangpu, Guangzhou 510700, P.R. China
| |
Collapse
|
3
|
Browne DJ, Miller CM, Doolan DL. Technical pitfalls when collecting, cryopreserving, thawing, and stimulating human T-cells. Front Immunol 2024; 15:1382192. [PMID: 38812513 PMCID: PMC11133553 DOI: 10.3389/fimmu.2024.1382192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
The collection, cryopreservation, thawing, and culture of peripheral blood mononuclear cells (PBMCs) can profoundly influence T cell viability and immunogenicity. Gold-standard PBMC processing protocols have been developed by the Office of HIV/AIDS Network Coordination (HANC); however, these protocols are not universally observed. Herein, we have explored the current literature assessing how technical variation during PBMC processing can influence cellular viability and T cell immunogenicity, noting inconsistent findings between many of these studies. Amid the mounting concerns over scientific replicability, there is growing acknowledgement that improved methodological rigour and transparent reporting is required to facilitate independent reproducibility. This review highlights that in human T cell studies, this entails adopting stringent standardised operating procedures (SOPs) for PBMC processing. We specifically propose the use of HANC's Cross-Network PBMC Processing SOP, when collecting and cryopreserving PBMCs, and the HANC member network International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) PBMC Thawing SOP when thawing PBMCs. These stringent and detailed protocols include comprehensive reporting procedures to document unavoidable technical variations, such as delayed processing times. Additionally, we make further standardisation and reporting recommendations to minimise and document variability during this critical experimental period. This review provides a detailed overview of the challenges inherent to a procedure often considered routine, highlighting the importance of carefully considering each aspect of SOPs for PBMC collection, cryopreservation, thawing, and culture to ensure accurate interpretation and comparison between studies.
Collapse
Affiliation(s)
- Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Catherine M. Miller
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, Australia
| | - Denise L. Doolan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Sovunjov E, Halbutoğulları ZS, Gacar G, Öztürk A, Duruksu G, Yazır Y. Examining the effect of activated cytotoxic (CD8 +) T-cell exosomes to the lung cancer. Med Oncol 2023; 40:359. [PMID: 37966661 DOI: 10.1007/s12032-023-02198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023]
Abstract
Lung cancer continues to be a major health problem worldwide owing to its incidence, and causes physical, psychological, social, and economic problems. Activated cytotoxic T cells (ACTC) are positively correlated with the tumor microenvironment (TME), improving the prognosis of cancer patients. Recently, ACTC-derived exosomes (ACTC-dExo) were implicated in this effect by inhibiting mesenchymal stem cells, which may promote metastasis in the TME. Exosomes are thought to be advantageous for the specific delivery of drugs to cancer cells because they have the characteristics of natural liposomes, are nanosized, and remain largely stable in the blood due to the protein and lipid content they carry on their membranes. In this study, we aimed to determine the cytotoxic and metastatic inhibitory effects of ACTC-dExo in A549 cells in vitro. Cytotoxic CD8+ T cells were isolated from whole blood obtained from healthy individuals and cultured for 5-7 days after stimulation. The ACTC-dExo serum-free culture medium was collected by ultracentrifugation. Characterization and quantification of the isolated exosomes were performed using flow cytometry, electron microscopy, zeta-sizer measurements, and bicinchoninic acid (BCA) assays. We co-cultured ACTC and ACTC-dExo with A549 cells for 48 h. The viability of A549 cells was evaluated using a WST-1 assay. The metastasis-related genes MMP2, MMP9, TWIST, SNAI1, and CDH1 were detected by qRT-PCR, and MMP2 and MMP9 proteins were evaluated by confocal microscopy. In addition, changes in cell migration were investigated using a scratch assay. ACTC-dExo were found to have anti-proliferative and anti-metastatic effects and reduced cancer cell proliferation and metastatic properties.
Collapse
Affiliation(s)
- Eldar Sovunjov
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Zehra Seda Halbutoğulları
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey.
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey.
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey.
| | - Gülçin Gacar
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Ahmet Öztürk
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Yusufhan Yazır
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| |
Collapse
|
5
|
Chen H, Zhang Y, Li L, Guo R, Shi X, Cao X. Effective CpG Delivery Using Zwitterion-Functionalized Dendrimer-Entrapped Gold Nanoparticles to Promote T Cell-Mediated Immunotherapy of Cancer Cells. BIOSENSORS 2022; 12:71. [PMID: 35200332 PMCID: PMC8869692 DOI: 10.3390/bios12020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
Recently, cell-based immunotherapy has become one of the most promising ways to completely eliminate cancer. The major challenge is to effectively promote a proper immune response to kill the cancer cells by activated T cells. This study investigated the effect of T cell-mediated immunotherapy trigged by Au DENPs-MPC (zwitterion 2-methacryloyloxyethyl phosphorylcholine (MPC)-functionalized dendrimer-entrapped gold nanoparticles) loading oli-godeoxynucleotides (ODN) of unmethylated cytosine guanine dinucleotide (CPG). Here, we first synthesized Au DENPs-MPC, evaluated their capability to compress and transfect CpG-ODN to bone marrow dendritic cells (BMDCs), and investigated the potential to use T cells stimulated by matured BMDCs to inhibit the growth of tumor cells. The developed Au DENPs-MPC could apparently reduce the toxicity of Au DENPs, and enhanced transfer CpG-ODN to the BMDCs for the maturation as demonstrated by the 44.41-48.53% increase in different surface maturation markers. The transwell experiments certificated that ex vivo activated T cells display excellent anti-tumor ability, which could effectively inhibit the growth of tumor cells. These results suggest that Au DENPs-MPC can deliver CpG-ODN efficiently to enhance the antigen presentation ability of BMDCs to activate T cells, indicating that T cells-based immunotherapy mediated by Au DENPs-MPC loaded with CpG-ODN may become the most promising treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (H.C.); (Y.Z.); (L.L.); (R.G.)
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (H.C.); (Y.Z.); (L.L.); (R.G.)
| |
Collapse
|
6
|
Dondulkar A, Akojwar N, Katta C, Khatri DK, Mehra NK, Singh SB, Madan J. Inhalable polymeric micro and nano-immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer. Curr Pharm Des 2021; 28:395-409. [PMID: 34736378 DOI: 10.2174/1381612827666211104155604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of death in millions of cancer patients. Lack of diagnosis at an early stage in addition to no specific guidelines for its treatment, and a higher rate of treatment-related toxicity further deteriorate the conditions. Current therapies encompass surgery, chemotherapy, radiation therapy, and immunotherapy according to the pattern and the stage of lung cancer. Among all, with a longlasting therapeutic action, reduced side-effects, and a higher rate of survival, therapeutic cancer vaccine is a new, improved strategy for treating NSCLC. Immunoadjuvants are usually incorporated into the therapeutic vaccines to shield the antigen against environmental and physiological harsh conditions in addition to boosting the immune potential. Conventional immunoadjuvants are often associated with an inadequate cellular response, poor target specificity, and low antigen load. Recently, inhalable polymeric nano/micro immunoadjuvants have exhibited immense potential in the development of therapeutic vaccines for the treatment of NSCLC with improved mucosal immunization. The development of polymeric micro/nano immunoadjuvants brought a new era for vaccines with increased strength and efficiency. Therefore, in the present review, we explained the potential application of micro/nano immunoadjuvants for augmenting the stability and efficacy of inhalable vaccines in the treatment of NSCLC. In addition, the role of biodegradable, biocompatible, and non-toxic polymers has also been discussed with case studies.
Collapse
Affiliation(s)
- Ayusha Dondulkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Natasha Akojwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Chanti Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Dharmendra K Khatri
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Neelesh K Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Shashi B Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| |
Collapse
|
7
|
Wang Y, Li G. Effects of S-1 combined with palliative care on immune function and quality of life of patients with advanced stomach cancer. Oncol Lett 2020; 20:2021-2027. [PMID: 32724449 PMCID: PMC7377188 DOI: 10.3892/ol.2020.11720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/08/2020] [Indexed: 12/09/2022] Open
Abstract
The present study aimed to investigate the effects of S-1 combined with palliative care (PC) on the immune function and quality of life (QOL) of patients with advanced stomach cancer (ASC). In this prospective study, 168 patients with ASC admitted to our hospital from September 2016 to March 2018 were enrolled as research objects. Seventy-seven cases were treated with S-1 alone (single drug group, SDG), while another 91 cases were treated with S-1 combined with PC (combined drug group, CDG). The effects of the two therapeutic methods on the efficacy [overall response rate (ORR)], 1-year overall survival rate (OSR), safety, negative emotions, nutritional indices, QOL, and immune function indices of patients were analyzed. After treatment, ORR, OSR, levels of nutritional indices [albumin (ALB), prealbumin (PA), and transferrin (TF)], and QOL improvement rate in the CDG were significantly higher than those in the SDG (P<0.05). After treatment, compared with those in the SDG, patients in the CDG had a lower Self-Rating Anxiety Scale (SAS) score, Self-Rating Depression Scale (SDS) score, and number of adverse reactions (P<0.05), and significantly improved immune function indices (CD4+, CD8+, and CD4+/CD8+) (P<0.05). S-1 combined with PC treatment was superior to S-1 treatment alone in patients with ASC. The patients treated with the combination exhibited improved efficacy (a higher ORR), higher QOL, and improved immune function, and thus this treatment can be clinically popularized.
Collapse
Affiliation(s)
- Ying Wang
- Department of Hematology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Guozhong Li
- Department of Hematology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| |
Collapse
|
8
|
Chen H, Fan Y, Hao X, Yang C, Peng Y, Guo R, Shi X, Cao X. Adoptive cellular immunotherapy of tumors via effective CpG delivery to dendritic cells using dendrimer-entrapped gold nanoparticles as a gene vector. J Mater Chem B 2020; 8:5052-5063. [DOI: 10.1039/d0tb00678e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PEGylated Au DENPs ({(Au0)25-G5·NH2-mPEG20}) are synthesized and used as a novel nonviral vector to deliver CpG to mature BMDCs for the subsequent activation of T cells for adoptive tumor immunotherapy.
Collapse
Affiliation(s)
- Huan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xinxin Hao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Chao Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Yucheng Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
9
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules 2018; 19:1869-1887. [DOI: 10.1021/acs.biomac.8b00460] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
10
|
Wang L, Liang W, Peng N, Hu X, Xu Y, Liu Z. The synergistic antitumor effect of arsenic trioxide combined with cytotoxic T cells in pulmonary metastasis model of colon cancer. Oncotarget 2017; 8:109609-109618. [PMID: 29312633 PMCID: PMC5752546 DOI: 10.18632/oncotarget.22757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/16/2017] [Indexed: 01/02/2023] Open
Abstract
Adoptive T cell therapy, including cytotoxic T lymphocytes (CTLs), represents a promising non-toxic anticancer strategy. The effects of this therapy can be impaired by tumor-infiltrated regulatory T cells (Tregs). Autologous murine CTLs acquired using cryopreservation exhibited a cytotoxic effect equivalent to that of conventional CTLs. The killing activity of CTLs was enhanced significantly using arsenic trioxide (ATO), accompanied by reduction in Tregs in vitro. Results using a pulmonary metastasis model of colon cancer indicated that compared with the control group, ATO group, and CTLs group, metastatic node number decreased significantly (p<0.001, p<0.001, p<0.001, respectively) and survival time was prolonged (p<0.001, p=0.669, p=0.158, respectively) in the ATO plus CTLs group. The number of infiltrated Foxp3+ Tregs decreased in the tumor center, but increased in the peri-tumor tissue. Our results indicate that this approach represents a practical protocol for acquiring autologous CTLs and a feasible strategy that uses a synergistic combination of ATO plus CTLs to treat pulmonary metastases of colon cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Wentao Liang
- Institute of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Na Peng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Disease of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Xiang Hu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yingxin Xu
- Institute of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhong Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
11
|
Steendam CM, Dammeijer F, Aerts JGJV, Cornelissen R. Immunotherapeutic strategies in non-small-cell lung cancer: the present and the future. Immunotherapy 2017; 9:507-520. [DOI: 10.2217/imt-2016-0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of cancer death worldwide, with a poor prognosis. In the era of immunotherapies, the field is rapidly changing, and the clinician needs to be aware of the current state and future perspectives of immunotherapeutic strategies. In this review, we discuss the current status of immune checkpoint inhibitors, cancer vaccines and cellular therapies specifically in NSCLC. Last but not least, we will discuss rational combination strategies that are promising for the near future.
Collapse
Affiliation(s)
- Christi M Steendam
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Amphia Hospital, Molengracht 21, 4818 CK Breda, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Amphia Hospital, Molengracht 21, 4818 CK Breda, The Netherlands
| | - Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
12
|
Marshall EA, Ng KW, Kung SHY, Conway EM, Martinez VD, Halvorsen EC, Rowbotham DA, Vucic EA, Plumb AW, Becker-Santos DD, Enfield KSS, Kennett JY, Bennewith KL, Lockwood WW, Lam S, English JC, Abraham N, Lam WL. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer 2016; 15:67. [PMID: 27784305 PMCID: PMC5082389 DOI: 10.1186/s12943-016-0551-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4+ T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses.In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4+ T cell subsets play active roles in promoting lung cancer progression and metastasis.We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.
Collapse
Affiliation(s)
- Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Kevin W Ng
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Sonia H Y Kung
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada. .,British Columbia Cancer Research Centre Centre, Vancouver, Canada.
| | - Emma M Conway
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Elizabeth C Halvorsen
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - David A Rowbotham
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Adam W Plumb
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Zoology, University of British Columbia, Vancouver, Canada
| | | | - Katey S S Enfield
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Jennifer Y Kennett
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - John C English
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ninan Abraham
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada. .,British Columbia Cancer Research Centre Centre, Vancouver, Canada.
| |
Collapse
|
13
|
Zeng Y, Ruan W, He J, Zhang J, Liang W, Chen Y, He Q, He J. Adoptive Immunotherapy in Postoperative Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0162630. [PMID: 27618180 PMCID: PMC5019384 DOI: 10.1371/journal.pone.0162630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/25/2016] [Indexed: 01/24/2023] Open
Abstract
Background Adoptive immunotherapy (AI) has been applied in the treatment of non-small-cell lung cancer (NSCLC) patients, but the value of postoperative AI has been inconclusive largely as a result of the small number of patients included in each study. We performed a systematic review and meta-analysis to address this issue for patients with postoperative NSCLC. Methods Pubmed, Embase, Cochrane Library were searched for randomized controlled trials comparing adoptive immunotherapy with control therapies in postoperative NSCLC patients. The primary endpoint was overall survival. Hazard ratio (HR) was estimated and 95% confidence intervals (CI) were calculated using a fixed-effect model. Results Compared with control therapies, analyses of 4 randomized controlled trials (472 patients) showed a significant benefit of adoptive immunotherapy on survival (hazard ratio [HR] 0.61, 95% CI 0.45–0.84, p = 0.002), and a 39% reduction in the relative risk of death (no evidence of a difference between trials; p = 0.16, I² = 42%). In subgroup analyses by treatment cycles and treatment regimen, significant OS benefit was found in combination therapy of AI with chemotherapy, regardless of whether or not the treatment cycles were more than 10 cycles. Conclusion Adoptive immunotherapy has the potential to improve overall survival in postoperative NSCLC. The findings suggest this is a valid treatment option for these patients. Further randomized clinical trials are urgently needed.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, No 151, Yanjiang Rd, Guangzhou, 510120, Guangdong Province, PR China
| | - Wenli Ruan
- Guangzhou Zisheng Biotech Company Limited, No 11, Zhu Jiang East Rd, Guangzhou, 510120, Guangdong Province, PR China
| | - Jiaxi He
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, No 151, Yanjiang Rd, Guangzhou, 510120, Guangdong Province, PR China
| | - Jianrong Zhang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, No 151, Yanjiang Rd, Guangzhou, 510120, Guangdong Province, PR China
| | - Wenhua Liang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, No 151, Yanjiang Rd, Guangzhou, 510120, Guangdong Province, PR China
| | - Yaoqi Chen
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, No 151, Yanjiang Rd, Guangzhou, 510120, Guangdong Province, PR China
| | - Qihua He
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, No 151, Yanjiang Rd, Guangzhou, 510120, Guangdong Province, PR China
| | - Jianxing He
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, No 151, Yanjiang Rd, Guangzhou, 510120, Guangdong Province, PR China
- * E-mail:
| |
Collapse
|
14
|
The Effect of ShenQi FuZheng Injection in Combination with Chemotherapy versus Chemotherapy Alone on the Improvement of Efficacy and Immune Function in Patients with Advanced Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS One 2016; 11:e0152270. [PMID: 27015629 PMCID: PMC4807845 DOI: 10.1371/journal.pone.0152270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/13/2016] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate the effect of ShenQi FuZheng Injection (SFI) on cellular immunity and clinical efficacy in patients with advanced non small cell lung cancer(NSCLC) when combined with chemotherapy. Methods Electronic databases including EMBASE, PUBMED, the conference proceedings of the American Society of Clinical Oncology (ASCO), Cochrane, Chinese National Knowledge Infrastructure (CNKI), and Chinese Biological Medical disc(CBM) were searched, until July, 2015. The randomized controlled clinical studies reporting results of efficacy and immune function were collected according to the inclusion criteria. Cochrane handbook 5.1.0 was applied to assess the quality of included trials and Revman 5 software was used for data analysis. Results Fifteen studies including 1006 cases of advanced NSCLC were included based on the inclusion criteria. The results of meta-analysis showed that there were significant differences in percentages of CD3+ cells (SMD = 13.48; 95%CI: 8.11–18.85; p<0.01), CD4+ cells (SMD = 10.78; 95%CI, 6.38–15.18; p<0.01), NK [WMD = 8.59, 95% CI(3.97, 13.21), p = 0.003], and ratio of CD4+/ CD8+ (SMD = 0.32; 95%: 0.28–0.36; p<0.01) between SFI combination group and control group, whereas the difference was not significant in CD8+ (SMD = -1.44; 95%CI, -4.53–1.65; p = 0.36). Funnel plot, Begg's rank correlation test and Egger's linear regression analysis indicated that there was significant publication bias across studies. Conclusion SFI is effective to improve the efficacy of chemotherpay and function of cellular immunity in NSCLC patients, however, high quality RCTs are needed to further confirm the findings.
Collapse
|
15
|
MAP3K3 expression in tumor cells and tumor-infiltrating lymphocytes is correlated with favorable patient survival in lung cancer. Sci Rep 2015; 5:11471. [PMID: 26088427 PMCID: PMC4650617 DOI: 10.1038/srep11471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 12/28/2022] Open
Abstract
MAP3K3 is involved in both the immune response and in tumor progression. Its potential biological role in vitro in lung cancer cell lines and the association of mRNA/protein expression patterns with clinical outcome of primary lung tumors were investigated in this study. Silencing MAP3K3 using siRNA in lung cancer cell lines resulted in decreased cell proliferation, migration and invasion. These effects were associated with down-regulation of the JNK, p38, AKT, and GSK3β pathways as determined using phospho-protein and gene expression array analyses. However, MAP3K3 mRNA and protein overexpression in primary lung tumors correlated significantly with favorable patient survival. Gene cluster and pathway analyses of primary tumor datasets indicated that genes positively-correlated with MAP3K3 are significantly involved in immune response rather than the cell cycle regulators observed using in vitro analyses. These results indicate that although MAP3K3 overexpression has an oncogenic role in vitro, in primary lung adenocarcinomas it correlates with an active immune response in the tumor environment that correlates with improved patient survival. MAP3K3 may potentially not only serve as diagnostic/prognostic markers for patients with lung cancer but also provide an indicator for future investigations into immunomodulatory therapies for lung cancer.
Collapse
|