1
|
Jalali F, Fakhari F, Sepehr A, Zafari J, Sarajar BO, Sarihi P, Jafarzadeh E. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review. Transl Oncol 2024; 45:101946. [PMID: 38636389 PMCID: PMC11040171 DOI: 10.1016/j.tranon.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Doxorubicin (DOX) a chemotherapy drug often leads to the development of resistance, in cancer cells after prolonged treatment. Recent studies have suggested that using metformin plus doxorubicin could result in synergic effects. This study focuses on exploring the co-treat treatment of doxorubicin and metformin for various cancers. METHOD Following the PRISMA guidelines we conducted a literature search using different databases such as Embase, Scopus, Web of Sciences, PubMed, Science Direct and Google Scholar until July 2023. We selected search terms based on the objectives of this study. After screening a total of 30 articles were included. RESULTS The combination of doxorubicin and metformin demonstrated robust anticancer effects, surpassing the outcomes of monotherapy drug treatment. In vitro experiments consistently demonstrated inhibition of cancer cell growth and increased rates of cell death. Animal studies confirmed substantial reductions in tumor growth and improved survival rates, emphasizing the synergistic impact of the combined therapy. The research' discoveries collectively emphasize the capability of the co-treat doxorubicin-metformin as a compelling approach in cancer treatment, highlighting its potential to address medicate resistance and upgrade generally helpful results. CONCLUSION The findings of this study show that the combined treatment regimen including doxorubicin and metformin has significant promise in fighting cancer. The observed synergistic effects suggest that this combination therapy could be valuable, in a setting. This study highlights the need for clinical research to validate and enhance the application of the doxorubicin metformin regimen.
Collapse
Affiliation(s)
- Fereshtehsadat Jalali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fakhari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afrah Sepehr
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Omidi Sarajar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Sarihi
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran.
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bashraheel SS, Kheraldine H, Khalaf S, Moustafa AEA. Metformin and HER2-positive breast cancer: Mechanisms and therapeutic implications. Biomed Pharmacother 2023; 162:114676. [PMID: 37037091 DOI: 10.1016/j.biopha.2023.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Due to the strong association between diabetes and cancer incidents, several anti-diabetic drugs, including metformin, have been examined for their anticancer activity. Metformin is a biguanide antihyperglycemic agent used as a first-line drug for type II diabetes mellitus. It exhibits anticancer activity by impacting different molecular pathways, such as AMP-inducible protein kinase (AMPK)-dependent and AMPK-independent pathways. Additionally, Metformin indirectly inhibits IGF-1R signaling, which is highly activated in breast malignancy. On the other hand, breast cancer is one of the major causes of cancer-related morbidity and mortality worldwide, where the human epidermal growth factor receptor-positive (HER2-positive) subtype is one of the most aggressive ones with a high rate of lymph node metastasis. In this review, we summarize the association between diabetes and human cancer, listing recent evidence of metformin's anticancer activity. A special focus is dedicated to HER2-positive breast cancer with regards to the interaction between HER2 and IGF-1R. Then, we discuss combination therapy strategies of metformin and other anti-diabetic drugs in HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sarah Khalaf
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, PO. Box 2713, Doha, Qatar; Oncology Department, McGill University, Montreal, Quebec H3A 0G4, Canada.
| |
Collapse
|
3
|
Zhang X, Ogihara T, Zhu M, Gantumur D, Li Y, Mizoi K, Kamioka H, Tsushima Y. Effect of metformin on 18F-fluorodeoxyglucose uptake and positron emission tomographic imaging. Br J Radiol 2022; 95:20200810. [PMID: 34705528 PMCID: PMC8822544 DOI: 10.1259/bjr.20200810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Metformin is widely used to treat diabetes, but induces changes in glucose uptake in both normal organs and tumors. Here, we review the effects of metformin on the uptake of 18F-fludeoxyglucose (18F-FDG) in tissues and tumors, and its influence on 18F-FDG positron emission tomographic imaging (18F-FDG PET), as well as the mechanisms involved. This is an important issue, because metformin has diverse effects on tissue uptake of 18F-FDG, and this can affect the quality and interpretation of PET images. Metformin increases glucose uptake in the gastrointestinal tract, cerebral white matter, and the kidney, while regions of the cerebrum associated with memory show decreased glucose uptake, and the myocardium shows no change. Hepatocellular carcinoma and breast cancer show increased glucose uptake after metformin administration, while thyroid cancer shows decreased uptake, and colon and pancreatic cancers show no change. A high-energy diet increases 18F-FDG uptake, but this effect is blocked by metformin. Withdrawal of metformin 48 h before PET image acquisition is widely recommended. However, based on our review of the literature, we propose that the differentiation of metformin discontinuation could be reasonable. But future clinical trials are still needed to support our viewpoint.
Collapse
Affiliation(s)
| | | | - Min Zhu
- Weifang Community Health Service Center, Pudong New District, Shanghai, China
| | - Dolgormaa Gantumur
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | | | | |
Collapse
|
4
|
El Massry M, Alaeddine LM, Ali L, Saad C, Eid AA. Metformin: A Growing Journey from Glycemic Control to the Treatment of Alzheimer's Disease and Depression. Curr Med Chem 2021; 28:2328-2345. [PMID: 32900343 DOI: 10.2174/0929867327666200908114902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Metabolic stress, transduced as an altered cellular redox and energy status, presents as the main culprit in many diseases, including diabetes. However, its role in the pathology of neurological disorders is still not fully elucidated. Metformin, a biguanide compound, is an FDA approved antidiabetic drug generally used for the treatment of type 2 diabetes. The recently described wide spectrum of action executed by this drug suggests a potential therapeutic benefit in a panoply of disorders. Current studies imply that metformin could play a neuroprotective role by reversing hallmarks of brain injury (metabolic dysfunction, neuronal dystrophy and cellular loss), in addition to cognitive and behavioral alterations that accompany the onset of certain brain diseases such as Alzheimer's disease (AD) and depression. However, the mechanisms by which metformin exerts its protective effect in neurodegenerative disorders are not yet fully elucidated. The aim of this review is to reexamine the mechanisms through which metformin performs its function while concentrating on its effect on reestablishing homeostasis in a metabolically disturbed milieu. We will also highlight the importance of metabolic stress, not only as a component of many neurological disorders, but also as a primary driving force for neural insult. Of interest, we will explore the involvement of metabolic stress in the pathobiology of AD and depression. The derangement in major metabolic pathways, including AMPK, insulin and glucose transporters, will be explored and the potential therapeutic effects of metformin administration on the reversal of brain injury in such metabolism dependent diseases will be exposed.
Collapse
Affiliation(s)
- Mohamed El Massry
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Lynn M Alaeddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Leen Ali
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Celine Saad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| |
Collapse
|
5
|
Khan HJ, Rohondia SO, Othman Ahmed ZS, Zalavadiya N, Dou QP. Increasing opportunities of drug repurposing for treating breast cancer by the integration of molecular, histological, and systemic approaches. DRUG REPURPOSING IN CANCER THERAPY 2020:121-172. [DOI: 10.1016/b978-0-12-819668-7.00005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Samuel SM, Varghese E, Kubatka P, Triggle CR, Büsselberg D. Metformin: The Answer to Cancer in a Flower? Current Knowledge and Future Prospects of Metformin as an Anti-Cancer Agent in Breast Cancer. Biomolecules 2019; 9:E846. [PMID: 31835318 PMCID: PMC6995629 DOI: 10.3390/biom9120846] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022] Open
Abstract
Interest has grown in studying the possible use of well-known anti-diabetic drugs as anti-cancer agents individually or in combination with, frequently used, chemotherapeutic agents and/or radiation, owing to the fact that diabetes heightens the risk, incidence, and rapid progression of cancers, including breast cancer, in an individual. In this regard, metformin (1, 1-dimethylbiguanide), well known as 'Glucophage' among diabetics, was reported to be cancer preventive while also being a potent anti-proliferative and anti-cancer agent. While meta-analysis studies reported a lower risk and incidence of breast cancer among diabetic individuals on a metformin treatment regimen, several in vitro, pre-clinical, and clinical studies reported the efficacy of using metformin individually as an anti-cancer/anti-tumor agent or in combination with chemotherapeutic drugs or radiation in the treatment of different forms of breast cancer. However, unanswered questions remain with regards to areas such as cancer treatment specific therapeutic dosing of metformin, specificity to cancer cells at high concentrations, resistance to metformin therapy, efficacy of combinatory therapeutic approaches, post-therapeutic relapse of the disease, and efficacy in cancer prevention in non-diabetic individuals. In the current article, we discuss the biology of metformin and its molecular mechanism of action, the existing cellular, pre-clinical, and clinical studies that have tested the anti-tumor potential of metformin as a potential anti-cancer/anti-tumor agent in breast cancer therapy, and outline the future prospects and directions for a better understanding and re-purposing of metformin as an anti-cancer drug in the treatment of breast cancer.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
7
|
Metformin in breast cancer: preclinical and clinical evidence. Curr Probl Cancer 2019; 44:100488. [PMID: 31235186 DOI: 10.1016/j.currproblcancer.2019.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Metformin, a well-acknowledged biguanide, safety profile and multiaction drug with low cost for management of type 2 diabetes, makes a first-class candidate for repurposing. The off-patent drug draws huge attention for repositioned for anticancer drug delivery recently. Still few unanswered questions are challenging, among them one leading question; can metformin use as a generic therapy for all breast cancer subtypes? And is metformin able to get over the problem of drug resistance? The review focused on the mechanisms of metformin action specifically for breast cancer therapy and overcoming the resistance; also discusses preclinical and ongoing and completed clinical trials. The existing limitation such as therapeutic dose specifically for cancer treatment, resistance of metformin in breast cancer and organic cation transporters heterogeneity of the drug opens up a new pathway for improved understanding and successful application as repurposed effective chemotherapeutics for breast cancer. However, much more additional research is needed to confirm the accurate efficacy of metformin treatment for prevention of cancer and its recurrence.
Collapse
|
8
|
Tan M, Wu A, Liao N, Liu M, Guo Q, Yi J, Wang T, Huang Y, Qiu B, Zhou W. Inhibiting ROS-TFE3-dependent autophagy enhances the therapeutic response to metformin in breast cancer. Free Radic Res 2018; 52:872-886. [PMID: 29865970 DOI: 10.1080/10715762.2018.1485075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Miduo Tan
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Anshang Wu
- Department of Oncology, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Ni Liao
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Min Liu
- Department of Oncology, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Qiong Guo
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Jiansheng Yi
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Taoli Wang
- Department of Pathology, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Yan Huang
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Bo Qiu
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Wei Zhou
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| |
Collapse
|
9
|
Davies G, Lobanova L, Dawicki W, Groot G, Gordon JR, Bowen M, Harkness T, Arnason T. Metformin inhibits the development, and promotes the resensitization, of treatment-resistant breast cancer. PLoS One 2017; 12:e0187191. [PMID: 29211738 PMCID: PMC5718420 DOI: 10.1371/journal.pone.0187191] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
Multiple drug resistant (MDR) malignancy remains a predictable and often terminal event in cancer therapy, and affects individuals with many cancer types, regardless of the stage at which they were originally diagnosed or the interval from last treatment. Protein biomarkers of MDR are not globally used for clinical decision-making, but include the overexpression of drug-efflux pumps (ABC transporter family) such as MDR-1 and BCRP, as well as HIF1α, a stress responsive transcription factor found elevated within many MDR tumors. Here, we present the important in vitro discovery that the development of MDR (in breast cancer cells) can be prevented, and that established MDR could be resensitized to therapy, by adjunct treatment with metformin. Metformin is prescribed globally to improve insulin sensitivity, including in those individuals with Type 2 Diabetes Mellitus (DM2). We demonstrate the effectiveness of metformin in resensitizing MDR breast cancer cell lines to their original treatment, and provide evidence that metformin may function through a mechanism involving post-translational histone modifications via an indirect histone deacetylase inhibitor (HDACi) activity. We find that metformin, at low physiological concentrations, reduces the expression of multiple classic protein markers of MDR in vitro and in preliminary in vivo models. Our demonstration that metformin can prevent MDR development and resensitize MDR cells to chemotherapy in vitro, provides important medical relevance towards metformin’s potential clinical use against MDR cancers.
Collapse
Affiliation(s)
- Gerald Davies
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Liubov Lobanova
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wojciech Dawicki
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gary Groot
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John R. Gordon
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew Bowen
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Terra Arnason
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
10
|
Paiva-Oliveira DI, Martins-Neves SR, Abrunhosa AJ, Fontes-Ribeiro C, Gomes CMF. Therapeutic potential of the metabolic modulator Metformin on osteosarcoma cancer stem-like cells. Cancer Chemother Pharmacol 2017; 81:49-63. [PMID: 29086064 DOI: 10.1007/s00280-017-3467-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Osteosarcoma is the most common primary bone tumour appearing in children and adolescents. Recent studies demonstrate that osteosarcoma possesses a stem-like cell subset, so-called cancer stem-like cells, refractory to conventional chemotherapeutics and pointed out as responsible for relapses frequently observed in osteosarcoma patients. Here, we explored the therapeutic potential of Metformin on osteosarcoma stem-like cells, alone and as a chemosensitizer of doxorubicin. METHODS Stem-like cells were isolated from human osteosarcoma cell lines, MNNG/HOS and MG-63, using the sphere-forming assay. Metformin cytotoxicity alone and combined with doxorubicin were evaluated using MTT/BrdU assays. Protein levels of AMPK and AKT were evaluated by Western Blot. Cellular metabolic status was assessed based on [18F]-FDG uptake and lactate production measurements. Sphere-forming efficiency and expression of pluripotency transcription factors analysed by qRT-PCR were tested as readout of Metformin effects on stemness features. RESULTS Metformin induced a concentration-dependent decrease in the metabolic activity and proliferation of sphere-forming cells and improved doxorubicin-induced cytotoxicity. This drug also down-regulated the expression of master regulators of pluripotency (OCT4, SOX2, NANOG), and decreased spheres' self-renewal ability. Metformin effects on mitochondria led to the activation and phosphorylation of the energetic sensor AMPK along with an upregulation of the pro-survival AKT pathway in both cell populations. Furthermore, Metformin-induced mitochondrial stress increased [18F]-FDG uptake and lactate production in parental cells but not in the quiescent stem-like cells, suggesting the inability of the latter to cope with the energy crisis induced by metformin. CONCLUSIONS This preclinical study suggests that Metformin may be a potentially useful therapeutic agent and chemosensitizer of osteosarcoma stem-like cells to doxorubicin.
Collapse
Affiliation(s)
- Daniela I Paiva-Oliveira
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Sara R Martins-Neves
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Carlos Fontes-Ribeiro
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Célia M F Gomes
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, Coimbra, Portugal. .,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Zhao W, Zhang X, Liu J, Sun B, Tang H, Zhang H. miR-27a-mediated antiproliferative effects of metformin on the breast cancer cell line MCF-7. Oncol Rep 2016; 36:3691-3699. [DOI: 10.3892/or.2016.5199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
|
12
|
Niccoli T, Cabecinha M, Tillmann A, Kerr F, Wong CT, Cardenes D, Vincent AJ, Bettedi L, Li L, Grönke S, Dols J, Partridge L. Increased Glucose Transport into Neurons Rescues Aβ Toxicity in Drosophila. Curr Biol 2016; 26:2291-300. [PMID: 27524482 PMCID: PMC5026704 DOI: 10.1016/j.cub.2016.07.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 06/09/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Abstract
Glucose hypometabolism is a prominent feature of the brains of patients with Alzheimer's disease (AD). Disease progression is associated with a reduction in glucose transporters in both neurons and endothelial cells of the blood-brain barrier. However, whether increasing glucose transport into either of these cell types offers therapeutic potential remains unknown. Using an adult-onset Drosophila model of Aβ (amyloid beta) toxicity, we show that genetic overexpression of a glucose transporter, specifically in neurons, rescues lifespan, behavioral phenotypes, and neuronal morphology. This amelioration of Aβ toxicity is associated with a reduction in the protein levels of the unfolded protein response (UPR) negative master regulator Grp78 and an increase in the UPR. We further demonstrate that genetic downregulation of Grp78 activity also protects against Aβ toxicity, confirming a causal effect of its alteration on AD-related pathology. Metformin, a drug that stimulates glucose uptake in cells, mimicked these effects, with a concomitant reduction in Grp78 levels and rescue of the shortened lifespan and climbing defects of Aβ-expressing flies. Our findings demonstrate a protective effect of increased neuronal uptake of glucose against Aβ toxicity and highlight Grp78 as a novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Teresa Niccoli
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Melissa Cabecinha
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Anna Tillmann
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Fiona Kerr
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Chi T Wong
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Dalia Cardenes
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Alec J Vincent
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Lucia Bettedi
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Li Li
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - Jacqueline Dols
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment (GEE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.
| |
Collapse
|
13
|
Smith TAD, Phyu SM. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells. PLoS One 2016; 11:e0151179. [PMID: 26959405 PMCID: PMC4784930 DOI: 10.1371/journal.pone.0151179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho) metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined. METHODS MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U)]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK), CTP:phosphocholine cytidylyl transferase (CCT) and PtdCho-phospholipase C (PLC) were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography. RESULTS Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U)]glucose. CONCLUSION This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.
Collapse
Affiliation(s)
- Tim A. D. Smith
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Su M. Phyu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|