1
|
Krushkal J, Zhao Y, Roney K, Zhu W, Brooks A, Wilsker D, Parchment RE, McShane LM, Doroshow JH. Association of changes in expression of HDAC and SIRT genes after drug treatment with cancer cell line sensitivity to kinase inhibitors. Epigenetics 2024; 19:2309824. [PMID: 38369747 PMCID: PMC10878021 DOI: 10.1080/15592294.2024.2309824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
Histone deacetylases (HDACs) and sirtuins (SIRTs) are important epigenetic regulators of cancer pathways. There is a limited understanding of how transcriptional regulation of their genes is affected by chemotherapeutic agents, and how such transcriptional changes affect tumour sensitivity to drug treatment. We investigated the concerted transcriptional response of HDAC and SIRT genes to 15 approved antitumor agents in the NCI-60 cancer cell line panel. Antitumor agents with diverse mechanisms of action induced upregulation or downregulation of multiple HDAC and SIRT genes. HDAC5 was upregulated by dasatinib and erlotinib in the majority of the cell lines. Tumour cell line sensitivity to kinase inhibitors was associated with upregulation of HDAC5, HDAC1, and several SIRT genes. We confirmed changes in HDAC and SIRT expression in independent datasets. We also experimentally validated the upregulation of HDAC5 mRNA and protein expression by dasatinib in the highly sensitive IGROV1 cell line. HDAC5 was not upregulated in the UACC-257 cell line resistant to dasatinib. The effects of cancer drug treatment on expression of HDAC and SIRT genes may influence chemosensitivity and may need to be considered during chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Kyle Roney
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC, USA
| | - Weimin Zhu
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alan Brooks
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E. Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
2
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
3
|
Nguyen DT, Yang W, Renganathan A, Weimholt C, Angappulige DH, Nguyen T, Sprung RW, Andriole GL, Kim EH, Mahajan NP, Mahajan K. Acetylated HOXB13 Regulated Super Enhancer Genes Define Therapeutic Vulnerabilities of Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:4131-4145. [PMID: 35849143 PMCID: PMC9481728 DOI: 10.1158/1078-0432.ccr-21-3603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/01/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Androgen receptor (AR) antagonism is exacerbated by HOXB13 in castration-resistant prostate cancers (CRPC). However, it is unclear when and how HOXB13 primes CRPCs for AR antagonism. By mass-spectrometry analysis of CRPC extract, we uncovered a novel lysine 13 (K13) acetylation in HOXB13 mediated by CBP/p300. To determine whether acetylated K13-HOXB13 is a clinical biomarker of CRPC development, we characterized its role in prostate cancer biology. EXPERIMENTAL DESIGN We identified tumor-specific acK13-HOXB13 signal enriched super enhancer (SE)-regulated targets. We analyzed the effect of loss of HOXB13K13-acetylation on chromatin binding, SE proximal target gene expression, self-renewal, enzalutamide sensitivity, and CRPC tumor growth by employing isogenic parental and HOXB13K13A mutants. Finally, using primary human prostate organoids, we evaluated whether inhibiting an acK13-HOXB13 target, ACK1, with a selective inhibitor (R)-9b is superior to AR antagonists in inhibiting CRPC growth. RESULTS acK13-HOXB13 promotes increased expression of lineage (AR, HOXB13), prostate cancer diagnostic (FOLH1), CRPC-promoting (ACK1), and angiogenesis (VEGFA, Angiopoietins) genes early in prostate cancer development by establishing tumor-specific SEs. acK13-HOXB13 recruitment to key SE-regulated targets is insensitive to enzalutamide. ACK1 expression is significantly reduced in the loss of function HOXB13K13A mutant CRPCs. Consequently, HOXB13K13A mutants display reduced self-renewal, increased sensitivity to enzalutamide, and impaired xenograft tumor growth. Primary human prostate tumor organoids expressing HOXB13 are significantly resistant to AR antagonists but sensitive to (R)-9b. CONCLUSIONS In summary, acetylated HOXB13 is a biomarker of clinically significant prostate cancer. Importantly, PSMA-targeting agents and (R)-9b could be new therapeutic modalities to target HOXB13-ACK1 axis regulated prostate cancers.
Collapse
Affiliation(s)
- Duy T Nguyen
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Mayo Clinic Graduate School of Biomedical Science, College of Medicine & Science, Rochester, Minnesota
| | - Wei Yang
- Genome Technology Access Center, Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Arun Renganathan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Duminduni H Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Thanh Nguyen
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Robert W Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Gerald L Andriole
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,National Capital Region, Johns Hopkins Medicine, Sibley Memorial Hospital, Washington, District of Columbia.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Eric H Kim
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
4
|
Wang A, Pei J, Shuai W, Lin C, Feng L, Wang Y, Lin F, Ouyang L, Wang G. Small Molecules Targeting Activated Cdc42-Associated Kinase 1 (ACK1/TNK2) for the Treatment of Cancers. J Med Chem 2021; 64:16328-16348. [PMID: 34735773 DOI: 10.1021/acs.jmedchem.1c01030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activated Cdc42-associated kinase 1 (ACK1/TNK2) is a nonreceptor tyrosine kinase with a unique structure. It not only can act as an activated transmembrane effector of receptor tyrosine kinases (RTKs) to transmit various RTK signals but also can play a corresponding role in epigenetic regulation. A number of studies have shown that ACK1 is a carcinogenic factor. Blockage of ACK1 has been proven to be able to inhibit cancer cell survival, proliferation, migration, and radiation resistance. Thus, ACK1 is a promising potential antitumor target. To date, despite many efforts to develop ACK1 inhibitors, no specific small molecule inhibitors have entered clinical trials. This Perspective provides an overview of the structural features, biological functions, and association with diseases of ACK1 and in vitro and in vivo activities, selectivity, and therapeutic potential of small molecule ACK1 inhibitors with different chemotypes.
Collapse
Affiliation(s)
- Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Congcong Lin
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Feng Lin
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Ghildiyal R, Sawant M, Renganathan A, Mahajan K, Kim EH, Luo J, Dang HX, Maher CA, Feng FY, Mahajan NP. Loss of long non-coding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res 2021; 82:155-168. [PMID: 34740892 DOI: 10.1158/0008-5472.can-20-3845] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) signaling continues to play a dominant role in all stages of prostate cancer (PC), including castration-resistant prostate cancers (CRPC) that have developed resistance to second-generation AR antagonists such as enzalutamide. In this study, we identified a long non-coding RNA (lncRNA), NXTAR (LOC105373241), that is located convergent with the AR gene and is repressed in human prostate tumors and cell lines. NXTAR bound upstream of the AR promoter and promoted EZH2 recruitment, causing significant loss of AR (and AR-V7) expression. Paradoxically, AR bound the NXTAR promoter, and inhibition of AR by the ACK1/TNK2 small molecule inhibitor (R)-9b excluded AR from the NXTAR promoter. The histone acetyltransferase GCN5 bound and deposited H3K14 acetylation marks, enhancing NXTAR expression. Application of an oligonucleotide derived from NXTAR exon 5 (NXTAR-N5) suppressed AR/AR-V7 expression and prostate cancer cell proliferation, indicating the translational relevance of the negative regulation of AR. In addition, pharmacological restoration of NXTAR using (R)-9b abrogated enzalutamide-resistant prostate xenograft tumor growth. Overall, this study uncovers a positive feedback loop, wherein NXTAR acts as a novel prostate tumor-suppressing lncRNA by inhibiting AR/AR-V7 expression, which in turn upregulates NXTAR levels, compromising enzalutamide-resistant prostate cancer. The restoration of NXTAR could serve as a new therapeutic modality for patients who have acquired resistance to second-generation AR antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Kim
- Siteman Cancer Center, Moffitt Cancer Center
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine
| | - Ha X Dang
- Internal Medicine, Washington University in St. Louis
| | | | - Felix Y Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | | |
Collapse
|
6
|
Pons M, Zeyn Y, Zahn S, Mahendrarajah N, Page BDG, Gunning PT, Moriggl R, Brenner W, Butter F, Krämer OH. Oncogenic Kinase Cascades Induce Molecular Mechanisms That Protect Leukemic Cell Models from Lethal Effects of De Novo dNTP Synthesis Inhibition. Cancers (Basel) 2021; 13:3464. [PMID: 34298678 PMCID: PMC8304262 DOI: 10.3390/cancers13143464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
The ribonucleotide reductase inhibitor hydroxyurea suppresses de novo dNTP synthesis and attenuates the hyperproliferation of leukemic blasts. Mechanisms that determine whether cells undergo apoptosis in response to hydroxyurea are ill-defined. We used unbiased proteomics to uncover which pathways control the transition of the hydroxyurea-induced replication stress into an apoptotic program in chronic and acute myeloid leukemia cells. We noted a decrease in the serine/threonine kinase RAF1/c-RAF in cells that undergo apoptosis in response to clinically relevant doses of hydroxyurea. Using the RAF inhibitor LY3009120, we show that RAF activity determines the sensitivity of leukemic cells toward hydroxyurea. We further disclose that pharmacological inhibition of the RAF downstream target BCL-XL with the drug navitoclax and RNAi combine favorably with hydroxyurea against leukemic cells. BCR-ABL1 and hyperactive FLT3 are tyrosine kinases that causally contribute to the development of leukemia and induce RAF1 and BCL-XL. Accordingly, the ABL inhibitor imatinib and the FLT3 inhibitor quizartinib sensitize leukemic cells to pro-apoptotic effects of hydroxyurea. Moreover, hydroxyurea and navitoclax kill leukemic cells with mutant FLT3 that are resistant to quizartinib. These data reveal cellular susceptibility factors toward hydroxyurea and how they can be exploited to eliminate difficult-to-treat leukemic cells with clinically relevant drug combinations.
Collapse
Affiliation(s)
- Miriam Pons
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| | - Yanira Zeyn
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| | - Stella Zahn
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| | - Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| | - Brent D. G. Page
- Faculty of Pharmaceutical Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, University Medical Center, 55131 Mainz, Germany;
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany;
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| |
Collapse
|
7
|
Brandao R, Kwa MQ, Yarden Y, Brakebusch C. ACK1 is dispensable for development, skin tumor formation, and breast cancer cell proliferation. FEBS Open Bio 2021; 11:1579-1592. [PMID: 33730447 PMCID: PMC8167857 DOI: 10.1002/2211-5463.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022] Open
Abstract
Activated Cdc42‐associated kinase 1 (ACK1), a widely expressed nonreceptor tyrosine kinase, is often amplified in cancer and has been shown to interact with Cell division cycle 42 (Cdc42), Epidermal growth factor receptor (EGFR), and several other cancer‐relevant molecules, suggesting a possible role for ACK1 in development and tumor formation. To directly address this scenario, we generated mice lacking a functional ACK1 gene (ACK1 ko) using CRISPR genome editing. ACK1 ko mice developed normally, displayed no obvious defect in tissue maintenance, and were fertile. Primary ACK1‐null keratinocytes showed normal phosphorylation of EGFR, but a tendency toward reduced activation of AKT serine/threonine kinase 1 (Akt) and Mitogen‐activated protein kinase 1 (Erk). DMBA/TPA‐induced skin tumor formation did not reveal significant differences between ACK1 ko and control mice. Deletion of the ACK1 gene in the breast cancer cell lines MDA‐MB‐231, 67NR, MCF7, 4T1, and T47D caused no differences in growth. Furthermore, EGF‐induced phosphorylation kinetics of Erk, Akt, and p130Cas were not detectably altered in T47D cells by the loss of ACK1. Finally, loss of ACK1 in MDA‐MB‐231 and T47D breast cancer cells had a very limited or no effect on directed cell migration. These data do not support a major role for ACK1 in Cdc42 and EGFR signaling, development, or tumor formation.
Collapse
Affiliation(s)
- Rafael Brandao
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| | - Mei Qi Kwa
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| | | | - Cord Brakebusch
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| |
Collapse
|
8
|
Tetley GJN, Murphy NP, Bonetto S, Ivanova-Berndt G, Revell J, Mott HR, Cooley RN, Owen D. The discovery and maturation of peptide biologics targeting the small G-protein Cdc42: A bioblockade for Ras-driven signaling. J Biol Chem 2020; 295:2866-2884. [PMID: 31959628 DOI: 10.1074/jbc.ra119.010077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/24/2019] [Indexed: 01/10/2023] Open
Abstract
Aberrant Ras signaling drives 30% of cancers, and inhibition of the Rho family small GTPase signaling has been shown to combat Ras-driven cancers. Here, we present the discovery of a 16-mer cyclic peptide that binds to Cdc42 with nanomolar affinity. Affinity maturation of this sequence has produced a panel of derived candidates with increased affinity and modulated specificity for other closely-related small GTPases. The structure of the tightest binding peptide was solved by NMR, and its binding site on Cdc42 was determined. Addition of a cell-penetrating sequence allowed the peptides to access the cell interior and engage with their target(s), modulating signaling pathways. In Ras-driven cancer cell models, the peptides have an inhibitory effect on proliferation and show suppression of both invasion and motility. As such, they represent promising candidates for Rho-family small GTPase inhibitors and therapeutics targeting Ras-driven cancers. Our data add to the growing literature demonstrating that peptides are establishing their place in the biologics arm of drug discovery.
Collapse
Affiliation(s)
- George J N Tetley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd., Cambridge CB2 1GA, United Kingdom
| | - Natasha P Murphy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd., Cambridge CB2 1GA, United Kingdom
| | - Stephane Bonetto
- Isogenica Ltd., Chesterford Research Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Gabriela Ivanova-Berndt
- Isogenica Ltd., Chesterford Research Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Jefferson Revell
- MedImmune, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd., Cambridge CB2 1GA, United Kingdom.
| | - R Neil Cooley
- Isogenica Ltd., Chesterford Research Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd., Cambridge CB2 1GA, United Kingdom.
| |
Collapse
|
9
|
Histone deacetylase inhibitors dysregulate DNA repair proteins and antagonize metastasis-associated processes. J Cancer Res Clin Oncol 2020; 146:343-356. [PMID: 31932908 PMCID: PMC6985217 DOI: 10.1007/s00432-019-03118-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Purpose We set out to determine whether clinically tested epigenetic drugs against class I histone deacetylases (HDACs) affect hallmarks of the metastatic process. Methods We treated permanent and primary renal, lung, and breast cancer cells with the class I histone deacetylase inhibitors (HDACi) entinostat (MS-275) and valproic acid (VPA), the replicative stress inducer hydroxyurea (HU), the DNA-damaging agent cis-platinum (L-OHP), and the cytokine transforming growth factor-β (TGFβ). We used proteomics, quantitative PCR, immunoblot, single cell DNA damage assays, and flow cytometry to analyze cell fate after drug exposure. Results We show that HDACi interfere with DNA repair protein expression and trigger DNA damage and apoptosis alone and in combination with established chemotherapeutics. Furthermore, HDACi disrupt the balance of cell adhesion protein expression and abrogate TGFβ-induced cellular plasticity of transformed cells. Conclusion HDACi suppress the epithelial–mesenchymal transition (EMT) and compromise the DNA integrity of cancer cells. These data encourage further testing of HDACi against tumor cells. Electronic supplementary material The online version of this article (10.1007/s00432-019-03118-4) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Zhang T, Wei D, Lu T, Ma D, Yu K, Fang Q, Zhang Z, Wang W, Wang J. CAY10683 and imatinib have synergistic effects in overcoming imatinib resistance via HDAC2 inhibition in chronic myeloid leukemia. RSC Adv 2020; 10:828-844. [PMID: 35494464 PMCID: PMC9048251 DOI: 10.1039/c9ra07971h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Imatinib (IM) is utilized for targeting the BCR-ABL fusion protein and as such, chronic myeloid leukemia (CML) is considered to be a curable disorder for which patients can achieve a long survival. However, 15-20% CML cases end up with IM resistance that will develop into the accelerated stage and eventually the blast crisis, thereby restricting the treatment choices and giving rise to a dismal survival rate. Histone deacetylases (HDACs) have been identified to modulate the oncogene as well as tumor suppressor gene activities, and they play crucial parts in tumorigenesis. It is found recently that IM combined with HDAC inhibitors (HDACi) can serve as a promising means of overcoming IM resistance in CML cases. Santacruzamate A (CAY10683) has been developed as one of the selective and powerful HDACi to resist HDAC2. Therefore, in this study, we aimed to examine whether CAY10683 combined with IM could serve as the candidate antitumor treatment for CML cases with IM resistance. The influences of CAY10683 combined with IM on the cell cycle arrest, apoptosis, and viability of CML cells with IM resistance were investigated, and it was discovered that the combined treatment exerted synergistic effects on managing the IM resistance. Moreover, further studies indicated that CAY10683 combined with IM mainly exerted synergistic effects through inhibiting HDAC2 in K562-R and LAMA84-R cells with IM resistance. Besides, the PI3K/Akt signal transduction pathway was found to mediate the HDAC2 regulation of CML cells with IM resistance. Eventually, it was also discovered, based on the xenograft mouse model, that the combined treatment dramatically suppressed CML proliferation in vivo. To sum up, findings in the current study indicate that CAY10683 combined with IM can be potentially used as the candidate treatment for CML with IM resistance.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Danna Wei
- Department of Hematology and Oncology, Guiyang Maternal and Child Health Hospital Guiyang 550002 PR China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China
| | - Zhaoyuan Zhang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Weili Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Jishi Wang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| |
Collapse
|
11
|
HDAC1,2 Knock-Out and HDACi Induced Cell Apoptosis in Imatinib-Resistant K562 Cells. Int J Mol Sci 2019; 20:ijms20092271. [PMID: 31071955 PMCID: PMC6539538 DOI: 10.3390/ijms20092271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Since imatinib (Glivec or Gleevec) has been used to target the BCR-ABL fusion protein, chronic myeloid leukemia (CML) has become a manageable chronic disease with long-term survival. However, 15%–20% of CML patients ultimately develop resistance to imatinib and then progress to an accelerated phase and eventually to a blast crisis, limiting treatment options and resulting in a poor survival rate. Thus, we investigated whether histone deacetylase inhibitors (HDACis) could be used as a potential anticancer therapy for imatinib-resistant CML (IR-CML) patients. By applying a noninvasive apoptosis detection sensor (NIADS), we found that panobinostat significantly enhanced cell apoptosis in K562 cells. A further investigation showed that panobinostat induced apoptosis in both K562 and imatinib-resistant K562 (IR-K562) cells mainly via H3 and H4 histone acetylation, whereas panobinostat targeted cancer stem cells (CSCs) in IR-K562 cells. Using CRISPR/Cas9 genomic editing, we found that HDAC1 and HDAC2 knockout cells significantly induced cell apoptosis, indicating that the regulation of HDAC1 and HDAC2 is extremely important in maintaining K562 cell survival. All information in this study indicates that regulating HDAC activity provides therapeutic benefits against CML and IR-CML in the clinic.
Collapse
|
12
|
Korfei M, Stelmaszek D, MacKenzie B, Skwarna S, Chillappagari S, Bach AC, Ruppert C, Saito S, Mahavadi P, Klepetko W, Fink L, Seeger W, Lasky JA, Pullamsetti SS, Krämer OH, Guenther A. Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS One 2018; 13:e0207915. [PMID: 30481203 PMCID: PMC6258535 DOI: 10.1371/journal.pone.0207915] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with a poor prognosis. Pirfenidone is the first antifibrotic agent to be approved for IPF-treatment as it is able to slow down disease progression. However, there is no curative treatment other than lung transplantation. Because epigenetic alterations are associated with IPF, histone deacetylase (HDAC)-inhibitors have recently been proven to attenuate fibrotic remodeling in vitro and in vivo. This study compared the effects of pirfenidone with the pan-HDAC-inhibitor panobinostat/LBH589, a FDA-approved drug for the treatment of multiple myeloma, head-to-head on survival, fibrotic activity and proliferation of primary IPF-fibroblasts in vitro. Methods Primary fibroblasts from six IPF-patients were incubated for 24h with vehicle (0.25% DMSO), panobinostat (LBH589, 85 nM) or pirfenidone (2.7 mM), followed by assessment of proliferation and expression analyses for profibrotic and anti-apoptosis genes, as well as for ER stress and apoptosis-markers. In addition, the expression status of all HDAC enzymes was examined. Results Treatment of IPF-fibroblasts with panobinostat or pirfenidone resulted in a downregulated expression of various extracellular matrix (ECM)-associated genes, as compared to vehicle-treated cells. In agreement, both drugs decreased protein level of phosphorylated (p)-STAT3, a transcription factor mediating profibrotic responses, in treated IPF-fibroblasts. Further, an increase in histone acetylation was observed in response to both treatments, but was much more pronounced and excessive in panobinostat-treated IPF-fibroblasts. Panobinostat, but not pirfenidone, led to a significant suppression of proliferation in IPF-fibroblasts, as indicated by WST1- and BrdU assay and markedly diminished levels of cyclin-D1 and p-histone H3. Furthermore, panobinostat-treatment enhanced α-tubulin-acetylation, decreased the expression of survival-related genes Bcl-XL and BIRC5/survivin, and was associated with induction of ER stress and apoptosis in IPF-fibroblasts. In contrast, pirfenidone-treatment maintained Bcl-XL expression, and was neither associated with ER stress-induction nor any apoptotic signaling. Pirfenidone also led to increased expression of HDAC6 and sirtuin-2, and enhanced α-tubulin-deacetylation. But in line with its ability to increase histone acetylation, pirfenidone reduced the expression of HDAC enzymes HDAC1, -2 and -9. Conclusions We conclude that, beside other antifibrotic mechanisms, pirfenidone reduces profibrotic signaling also through STAT3 inactivation and weak epigenetic alterations in IPF-fibroblasts, and permits survival of (altered) fibroblasts. The pan-HDAC-inhibitor panobinostat reduces profibrotic phenotypes while inducing cell cycle arrest and apoptosis in IPF-fibroblasts, thus indicating more efficiency than pirfenidone in inactivating IPF-fibroblasts. We therefore believe that HDAC-inhibitors such as panobinostat can present a novel therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Martina Korfei
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- * E-mail:
| | - Daniel Stelmaszek
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - BreAnne MacKenzie
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Sylwia Skwarna
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Shashipavan Chillappagari
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anna C. Bach
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
| | - Shigeki Saito
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, Vienna General Hospital, Vienna, Austria
- European IPF Network and European IPF Registry, Giessen, Germany
| | - Ludger Fink
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
- Institute of Pathology and Cytology, Wetzlar, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Joseph A. Lasky
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Soni S. Pullamsetti
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
- European IPF Network and European IPF Registry, Giessen, Germany
- Agaplesion Lung Clinic Waldhof Elgershausen, Greifenstein, Germany
| |
Collapse
|
13
|
Synergistic activity of imatinib and AR-42 against chronic myeloid leukemia cells mainly through HDAC1 inhibition. Life Sci 2018; 211:224-237. [DOI: 10.1016/j.lfs.2018.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 02/01/2023]
|
14
|
Yin X, Wu Q, Monga J, Xie E, Wang H, Wang S, Zhang H, Wang ZY, Zhou T, Shi Y, Rogers J, Lin H, Min J, Wang F. HDAC1 Governs Iron Homeostasis Independent of Histone Deacetylation in Iron-Overload Murine Models. Antioxid Redox Signal 2018; 28:1224-1237. [PMID: 29113455 DOI: 10.1089/ars.2017.7161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Iron-overload disorders are common and could lead to significant morbidity and mortality worldwide. Due to limited treatment options, there is a great need to develop novel strategies to remove the excess body iron. To discover potential epigenetic modulator in hepcidin upregulation and subsequently decreasing iron burden, we performed an epigenetic screen. The in vivo effects of the identified compounds were further tested in iron-overload mouse models, including Hfe-/-, Hjv-/-, and hepatocyte-specific Smad4 knockout (Smad4fl/fl;Alb-Cre+) mice. RESULTS Entinostat (MS-275), the clinical used histone deacetylase 1 (HDAC1) inhibitor, was identified the most potent hepcidin agonist. Consistently, Hdac1-deficient mice also presented higher hepcidin levels than wild-type controls. Notably, the long-term treatment with entinostat in Hfe-/- mice significantly alleviated iron overload through upregulating hepcidin transcription. In contrast, entinostat showed no effect on hepcidin expression and iron levels in Smad4fl/fl;Alb-Cre+ mice. Further mechanistic studies revealed that HDAC1 suppressed expression of hepcidin through interacting with SMAD4 rather than deacetylation of SMAD4 or histone-H3 on the hepcidin promoter. INNOVATION The findings uncovered HDAC1 as a novel hepcidin suppressor through complexing with SMAD4 but not deacetylation of either histone 3 or SMAD4. In addition, our study suggested a novel implication of entinostat in treating iron-overload disorders. CONCLUSIONS Based on our results, we conclude that entinostat strongly activated hepcidin in vivo and in vitro. HDAC1 could serve as a novel hepcidin suppressor by binding to SMAD4, effect of which is independent of BMP/SMAD1/5/8 signaling. Antioxid. Redox Signal. 28, 1224-1237.
Collapse
Affiliation(s)
- Xiangju Yin
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China .,2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China .,3 Institute of Resources and Environment, Henan Polytechnic University , Jiaozuo, China
| | - Qian Wu
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China .,2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
| | - Jitender Monga
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Enjun Xie
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Hao Wang
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China .,2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
| | - Shufen Wang
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Huizhen Zhang
- 2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
| | - Zhan-You Wang
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Tianhua Zhou
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Yujun Shi
- 4 Laboratory of Pathology, West China Hospital, Sichuan University , Chengdu, China
| | - Jack Rogers
- 5 Neurochemistry Laboratory, Departments of Psychiatry and Pediatrics, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Hening Lin
- 6 Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University , Ithaca, New York
| | - Junxia Min
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Fudi Wang
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China .,2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
| |
Collapse
|
15
|
Leonhardt M, Sellmer A, Krämer OH, Dove S, Elz S, Kraus B, Beyer M, Mahboobi S. Design and biological evaluation of tetrahydro-β-carboline derivatives as highly potent histone deacetylase 6 (HDAC6) inhibitors. Eur J Med Chem 2018; 152:329-357. [PMID: 29738953 DOI: 10.1016/j.ejmech.2018.04.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
Abstract
Various diseases are related to epigenetic modifications. Histone deacetylases (HDACs) and histone acetyl transferases (HATs) determine the pattern of histone acetylation, and thus are involved in the regulation of gene expression. First generation histone deacetylase inhibitors (HDACi) are unselective, hinder all different kinds of zinc dependent HDACs and additionally cause several side effects. Subsequently, selective HDACi are gaining more and more interest. Especially, selective histone deacetylase 6 inhibitors (HDAC6i) are supposed to be less toxic. Here we present a successful optimization study of tubastatin A, the synthesis and biological evaluation of new inhibitors based on hydroxamic acids linked to various tetrahydro-β-carboline derivatives. The potency of our selective HDAC6 inhibitors, exhibiting IC50 values in a range of 1-10 nM towards HDAC6, was evaluated with the help of a recombinant human HDAC6 enzyme assay. Selectivity was proofed in cellular assays by the hyperacetylation of surrogate parameter α-tubulin in the absence of acetylated histone H3 analyzed by Western Blot. We show that all synthesized compounds, with varies modifications of the rigid cap group, were selective and potent HDAC6 inhibitors.
Collapse
Affiliation(s)
- Michel Leonhardt
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, 55131, Mainz, Germany
| | - Stefan Dove
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Birgit Kraus
- Institute of Pharmacy, Department of Pharmaceutical Biology, University of Regensburg, 93040, Regensburg, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, 55131, Mainz, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
16
|
Tao H, Song ZY, Ding XS, Yang JJ, Shi KH, Li J. Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification. Heart Fail Rev 2018; 23:789-799. [DOI: 10.1007/s10741-018-9694-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Loss of Wilms tumor 1 protein is a marker for apoptosis in response to replicative stress in leukemic cells. Arch Toxicol 2018; 92:2119-2135. [PMID: 29589053 DOI: 10.1007/s00204-018-2202-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin. We additionally treated cells with the pro-apoptotic kinase inhibitor staurosporine. Our data show that these agents promote apoptosis to a variable extent in a panel of 12 leukemic cell lines and that caspases cleave WT1 during apoptosis. A chemical inhibition of caspases as well as an overexpression of mitochondrial, anti-apoptotic BCL2 family proteins significantly reduces the processing of WT1 and cell death in hydroxyurea-sensitive acute promyelocytic leukemia cells. Although the reduction of WT1 correlates with the pharmacological efficiency of chemotherapeutics in various leukemic cells, the elimination of WT1 by different strategies of RNA interference (RNAi) does not lead to changes in the cell cycle of chronic myeloid leukemia K562 cells. RNAi against WT1 does also not increase the extent of apoptosis and the accumulation of γH2AX in K562 cells exposed to hydroxyurea. Likewise, a targeted genetic depletion of WT1 in primary oviduct cells does not increase the levels of γH2AX. Our findings position WT1 as a downstream target of the apoptotic process that occurs in response to cytotoxic forms of replicative stress and DNA damage.
Collapse
|
18
|
Mahendrarajah N, Borisova ME, Reichardt S, Godmann M, Sellmer A, Mahboobi S, Haitel A, Schmid K, Kenner L, Heinzel T, Beli P, Krämer OH. HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3. Cell Signal 2017; 39:9-17. [DOI: 10.1016/j.cellsig.2017.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|