1
|
Iqbal MW, Haider SZ, Nawaz MZ, Irfan M, Al-Ghanim KA, Sun X, Yuan Q. Molecular simulations guided drugs repurposing to inhibit human GPx1 enzyme for cancer therapy. Bioorg Chem 2025; 157:108279. [PMID: 39983407 DOI: 10.1016/j.bioorg.2025.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Overexpression of the antioxidant enzyme glutathione peroxidase-1 (GPx1) is associated with different cancer types. Inhibitors of GPx1, including mercaptosuccinic acid and pentathiepins derivatives, have been proposed previously and investigated as potent drugs to combat cancer. However, these compounds often lack specificity and demonstrate off-target effects, which necessitates the need for more targeted, non-toxic, and effective GPx1 inhibitors. This study utilized molecular docking and dynamic simulations based computational pipeline to repurpose drugs, approved by The Food and Drug Administration [1], as potent GPx1 inhibitors from a library containing 1615 synthetic compounds. The drug suitability and stability of the selected compounds were further investigated using ADMET, bioactivity probability, Molecular Mechanics-Generalized Born Surface Area (MM-GBSA), and Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) analyses. Initially, 13 compounds were virtually screened based on the Triangle Matcher algorithm, docking modules, and GBVI/WSA dG scoring function. Of these 13 screened compounds, three compounds, including dronedarone, nilotinib, and thonzonium, were rigorously selected based on their ADMET profiles, physicochemical properties, drug suitability, and stability and were subjected to Molecular Dynamic (MD) simulations. MD simulations further validated the stability of the dronedarone, nilotinib, and thonzonium complexes with GPx1 and provided further insights into the mechanism of their interaction. The in-silico approaches used herein revealed thonzonium, dronedarone, and nilotinib as potent GPx1 inhibitors.
Collapse
Affiliation(s)
- Muhammad Waleed Iqbal
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Syed Zeeshan Haider
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Zohaib Nawaz
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Irfan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Iqbal MW, Shahab M, Zheng G, Sun X, Yuan Q, Almaary KS, Wondmie GF, Bourhia M. Analysis of damaging non-synonymous SNPs in GPx1 gene associated with the progression of diverse cancers through a comprehensive in silico approach. Sci Rep 2024; 14:28690. [PMID: 39562776 PMCID: PMC11577101 DOI: 10.1038/s41598-024-78232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Glutathione Peroxidase 1 (GPx1) gene has been reported for its role in cellular redox homeostasis, and the dysregulation of its expression is linked with the progression of diverse cancers. Non-synonymous single nucleotide polymorphism (nsSNPs) have been emerged as the crucial factors, playing their role in GPx1 overexpression. To understand the deleterious mutational effects on the structure and function of GPx1 enzyme, we delved deeper into the exploration of possibly damaging nsSNPs using in-silico based approaches. Eight widely utilized computational tools were employed to roughly shortlist the deleterious nsSNPs. Their damaging effects on structure and function of the genes were evaluated by using different bioinformatics tools. Subsequently, the three final proposed deleterious mutants including mutations rs373838463, rs2107818892, and rs763687242, were docked with their reported binder, TNF receptor-associated factor 2 (TRAF2). The lowest binding affinity and stability of the docked mutant complexes as compared to the wild type GPx1 were validated by molecular dynamic simulation. Finally, the comparison of RMSD, RMSF, RoG and hydrogen bond analyses between wild-type and mutant's complexes validated the deleterious effects of proposed nsSNPs. This study successfully identified and verified the possibly damaging nsSNPs in GPx1 enzyme, which may be linked the progression of various types of cancer. Our findings underscore the value of in-silico approaches in mutational analysis and encourage further preclinical and clinical trials.
Collapse
Affiliation(s)
- Muhammad Waleed Iqbal
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Muhammad Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, Riyadh, 11451, Saudi Arabia
| | | | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, 80060, Morocco
| |
Collapse
|
3
|
Rao Y, Li J, Shi L, Chen X, Hu Y, Mao Y, Zhang X, Liu X. Silencing CK19 regulates ferroptosis by affecting the expression of GPX4 and ACSL4 in oral squamous cell carcinoma in vivo and in vitro. Sci Rep 2024; 14:15968. [PMID: 38987531 PMCID: PMC11237079 DOI: 10.1038/s41598-024-65079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
To analyze the mechanism of how interfering with the cytokeratin 19 (CK19) pathway via the ferroptosis pathway affects tumor biological behaviors in the process of oral squamous cell carcinoma (OSCC) development. TCGA was used to analyze the expression of CK19 in pan-cancer and head and neck squamous cell carcinoma (HNSC) and to explore the ferroptosis-related genes related to HNSC. The effect of silencing CK19 on the migration ability of HSC-4 cells was verified by wound healing and migration assay. HSC-4 cells with silencing of CK19 and tumor-bearing nude mouse model were constructed. RT-qPCR, immunofluorescence and western blot were used to analyze the expression of ferroptosis-related genes. CK19 is highly expressed in human OSCC and nude mice. The migration ability of cells in the CK19-silenced group was lower than that of the control group. In vivo and in vitro, CK19 was negatively correlated with the expression of ACSL4 and positively correlated with the expression of GPX4. Compared with the control group, GPX4 expression was down-regulated and ACSL4 expression was up-regulated in the CK19-silenced group. Silencing CK19 also increased intracellular Fe2+ content and MDA content. Silencing CK19 can affect the expression of GPX4 and ACSL4 to regulate ferroptosis and at the same time increase the content of MDA, Fe2+ and ROS levels, thereby activating the regulation of ferroptosis pathway in the development of OSCC.
Collapse
Affiliation(s)
- Yong Rao
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Lijuan Shi
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Xiao Chen
- Department of Oral Medicine, Sichuan Vocational College of Traditional Chinese Medicine, Mianyang, 621000, Sichuan, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, Sichuan, China
| | - Yun Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Yalin Mao
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Xiaoyan Zhang
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China.
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks and ferroptosis in cancer: novel therapeutic targets. Cell Death Dis 2024; 15:357. [PMID: 38778030 PMCID: PMC11111666 DOI: 10.1038/s41419-024-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Janelt K, Michalski M, Klymenko O, Matysiak N. Immunohistochemical Expression of Glutathione Peroxidase 1 (Gpx-1) as an Independent Prognostic Factor in Colon Adenocarcinoma Patients. Pharmaceuticals (Basel) 2023; 16:ph16050740. [PMID: 37242524 DOI: 10.3390/ph16050740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Several studies revealed that expression levels of glutathione peroxidase 1 (Gpx-1) can be associated with cancer development, mainly through its role in hydroperoxide scavenging by regulating intracellular reactive oxygen species (ROS) levels. Therefore, our aim was to investigate the expression of Gpx-1 protein in a population of Polish patients with colon adenocarcinoma in the absence of any therapy prior to radical surgery. The study was carried out using colon tissue from patients with adenocarcinoma of the colon confirmed by histopathological examination. Gpx-1 antibody was used to determine the immunohistochemical expression of Gpx-1. The Chi2test or Chi2Yatesa test were used to analyse the associations between the immunohistochemical expression of Gpx-1 and clinical parameters. The relationship between Gpx-1 expression, and 5-year patient survival was examined using Kaplan-Meier analysis and the log-rank test. Intracellular localisation of Gpx-1 was detected by the use of transmission electron microscopy (TEM). Western blot analysis was used for the evaluation of Gpx-1 protein expression levels in cancer cell lines in vitro. Immunohistochemical study revealed that the high expression of Gpx-1 was associated with the tumour's histological grade, proliferating cell nuclear antigen (PCNA) immunohistochemical expression, depth of invasion, and angioinvasion (all p < 0.001) (4). The high immunohistochemical expression of Gpx-1 is correlated with poor prognosis of colon adenocarcinoma patients.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Olesya Klymenko
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
6
|
Lu Y, Kou Y, Gao Y, Yang P, Liu S, Zhang F, Li M. Eldecalcitol inhibits the progression of oral cancer by suppressing the expression of GPx-1. Oral Dis 2023; 29:615-627. [PMID: 34431176 DOI: 10.1111/odi.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This study aimed to investigate the role of eldecalcitol in the progression of oral squamous cell carcinoma and to explore the related mechanism. MATERIALS AND METHODS The effects of eldecalcitol on the proliferation, cell cycle, apoptosis, and migration of oral cancer cells (SCC-15 and CAL-27) were evaluated with cell counting kit-8, flow cytometry, quantitative real-time polymerase chain reaction, western blotting, and scratch assay. Mouse xenograft tumor model was established to further confirm the role of eldecalcitol in the progression of oral cancer. Immunohistochemistry, quantitative real-time polymerase chain reaction, and western blotting were used to detect glutathione peroxidase-1 expression in oral cancer tissue and cells treated with eldecalcitol. RESULTS Eldecalcitol was found to inhibit the proliferation and migration of SCC-15 and CAL-27 cells significantly, block the cell cycle in the G0/G1 phase, and enhance the apoptosis. In addition, glutathione peroxidase-1 was downregulated by eldecalcitol and acted as an important medium of eldecalcitol in inhibiting the proliferation and migration of SCC-15 and CAL-27 cells, as well as promoting their apoptosis. CONCLUSIONS Eldecalcitol may inhibit the progression of oral cancer by suppressing the expression of glutathione peroxidase-1, which may provide new insight into the application of eldecalcitol as a potential anti-cancer drug.
Collapse
Affiliation(s)
- Yupu Lu
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.,Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yuying Kou
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.,Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yuan Gao
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.,Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Panpan Yang
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.,Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shanshan Liu
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.,Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fan Zhang
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.,Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Minqi Li
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.,Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
7
|
Ye S, Lin R, Guo X, Xing J, Liu K, Yang W, Guo N. Bioinformatics analysis on the expression of GPX family in gastric cancer and its correlation with the prognosis of gastric cancer. Heliyon 2022; 8:e12214. [PMID: 36636221 PMCID: PMC9830173 DOI: 10.1016/j.heliyon.2022.e12214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers of the digestive tract, with the fifth-highest incidence and third highest mortality rate in the world. Methods In this study, the Kaplan-Meier Plotter database was used to analyze the correlation between the expression of the glutathione peroxidase (GPX) family and the clinical prognosis of gastric cancer (GC). The prognostic value of increased GPX family mRNA expression in GC patients in different clinical stages, with different differentiation degrees, in different genders and human epidermal growth factor receptor-2 (HER2) status, and treated with different therapeutic regimens was also studied. Results The results showed that with the increase of GPX1 and GPX2 mRNA low expression levels, the overall survival (OS) of gastric cancer patients was longer. However, when the high expression levels of GPX3, GPX5 and GPX6 mRNA increased, gastric cancer patients presented good OS, while the increase of GPX4 mRNA expression level had no significant correlation with OS in gastric cancer patients. Conclusion The results of this study are expected to provide a reliable basis for the clinical treatment of GC and lay a foundation for the development of a novel GC treatment approach.
Collapse
Affiliation(s)
- Siping Ye
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Rui Lin
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Xiao Guo
- School of Pharmacy, Beihua University, Jilin 132012, China,Gongqing Institute of Science and Technology, Jiujiang 332020, China,Corresponding author.
| | - Jiaying Xing
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Keyi Liu
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Wenchuang Yang
- School of Pharmacy, Beihua University, Jilin 132012, China
| | - Naiyuan Guo
- School of Pharmacy, Beihua University, Jilin 132012, China
| |
Collapse
|
8
|
Chen X, Fu G, Li L, Zhao Q, Ke Z, Zhang R. Selenoprotein GPX1 is a prognostic and chemotherapy-related biomarker for brain lower grade glioma. J Trace Elem Med Biol 2022; 74:127082. [PMID: 36155420 DOI: 10.1016/j.jtemb.2022.127082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Glutathione peroxidase 1 (GPX1) is a major selenoprotein in most animal tissues, primarily expressed in the cytoplasm and mitochondria of cells and peroxidase structures of certain cells. GPX1 expression is highly correlated with carcinogenesis and disease progression. The goal of the study was to determine the association between GPX1 expression and tumor therapy, and to identify GPX1 prognostic value in various malignancies. METHODS The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) databases were used to detect the levels of GPX1 expression in human tumor tissues and normal tissues. Indeed, correlations between GPX1 and tumor purity, tumor mutation burden (TMB), microsatellite instability (MSI), and DNA mismatch repair genes (MMRs) were explored using the TCGA cohort. Functional and enrichment analyses were performed by the GeneMANIA database and Gene Set Enrichment Analysis (GSEA), respectively. Cox regression models and Kaplan - Meier curves were used to screen for independent risk factors and estimate brain lower-grade glioma (LGG) survival probability. The Chinese Glioma Genome Atlas (CGGA) database was used to determine whether GPX1 had a race-specific effect on overall survival (OS) in LGG. The cross-interaction between GPX1 and chemoradiotherapy on LGG OS was determined by Kaplan - Meier curves. Logistic regression models of multiplicative interactions were constructed. Furthermore, the relationship between GPX1 and LGG treatment regimens was also explored through the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS GPX1 was highly expressed in various tumors, GPX1 overexpression was significantly correlated with the poor prognosis of LGG. GPX1 was found to be an independent predictive factor for LGG in both univariate and multivariate Cox models. The nomogram showed a high predictive accuracy (C-index: 0.804, 95% CI: 0.74-0.86). In addition, GPX1 was significantly associated with TMB, MSI, and MMRs in diverse cancers. GPX1 was involved in IL6/JAK/STAT3, inflammatory response, and apoptosis signaling pathways. Besides, non-radiotherapy, chemotherapy, and low GPX1 expression were important factors affecting the better prognosis of LGG. GPX1 acted as a tumor promoter, which has taken the worst effect on LGG survival, but a multiplicative interaction of GPX1*chemoradiotherapy may improve the poor clinical outcome. GPX1 was negatively correlated with the half inhibition concentration (IC50) of temozolomide (TMZ) (Spearman = -0.44, P = 4.52 ×10-26). CONCLUSION In LGG patients, high GPX1 expression was linked to a shorter OS. The interaction between GPX1 and chemoradiotherapy exhibits a beneficial clinical effect and chemotherapy was recommended for LGG patients, especially for those with high GPX1 expression. Besides, high GPX1 expression can predict TMZ sensitivity in LGG, providing potential evidence for chemotherapy. On the whole, this study presents a wealth of biological as well as clinical significance for the roles of GPX1 in human tumors, particularly in LGG.
Collapse
Affiliation(s)
- Xueqin Chen
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Guotao Fu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Linglan Li
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Qianqian Zhao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Zunhua Ke
- Neurosurgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi 712046, PR China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China.
| |
Collapse
|
9
|
Glutathione peroxidase 4 expression predicts poor overall survival in patients with resected lung adenocarcinoma. Sci Rep 2022; 12:20462. [PMID: 36443446 PMCID: PMC9705709 DOI: 10.1038/s41598-022-25019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to evaluate the protein expression of glutathione peroxidase 4 (GPX4) in resected non-small cell lung cancer (NSCLC). The clinical relevance and prognostic significance of GPX4 expression were analyzed. We reviewed patients with resected NSCLCs at Taipei Veterans General Hospital between September 2002 and January 2018. Available paraffin-embedded specimens were retrieved for immunohistochemistry (IHC) staining to detect GPX4 expression. The cutoff value for defining GPX4 positivity was determined according to the percentage of tumor stained in the microscopic field. The correlation between immune expression, clinicopathologic data, overall survival (OS), and disease-free survival (DFS) were analyzed. A total of 265 NSCLC specimens were retrieved for IHC staining. GPX4 expression positive was in 192 (72.5%) according to a cutoff value of 5%. GPX4 was a significant prognostic factor for OS and DFS on multivariate analysis at both 5% and 25% cutoff values. GPX4 expression was associated with poor OS and DFS, especially in lung adenocarcinoma (p = 0.008, and 0.027, respectively). In conclusions, IHC analysis revealed that GPX4 expression was associated with poor survival outcomes in patients with resected lung adenocarcinoma. Further research is needed to understand the role of GPX4 in tumorigenesis and the underlying mechanism responsible for survival outcomes in patients with resected lung adenocarcinoma.
Collapse
|
10
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Zhao Y, Wang H, Zhou J, Shao Q. Glutathione Peroxidase GPX1 and Its Dichotomous Roles in Cancer. Cancers (Basel) 2022; 14:cancers14102560. [PMID: 35626163 PMCID: PMC9139801 DOI: 10.3390/cancers14102560] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
As the first identified selenoprotein, glutathione peroxidase 1 (GPX1) is a widely and abundantly expressed antioxidant enzyme. GPX1 utilizes glutathione as a substrate to catalyze hydrogen peroxide, lipid peroxide, and peroxynitrite, thereby reducing intracellular oxidative stress. The GPX1 gene is regulated at transcriptional, post-transcriptional, and translational levels. Numerous case-control studies and meta-analyses have assessed the association between a functional genetic polymorphism of the GPX1 gene, named Pro198Leu (rs1050450 C>T), and cancer susceptibility in different populations. GPX1 polymorphism has type-specific effects as a candidate marker for cancer risk, but the association between GPX1 variants and cancer susceptibility remains controversial in different studies. GPX1 is abnormally elevated in most types of cancer but has complex dichotomous roles as tumor suppressor and promoter in different cancers. GPX1 can participate in various signaling pathways to regulate tumor biological behaviors, including cell proliferation, apoptosis, invasion, immune response, and chemoresistance. In this review, we comprehensively summarize the controversial associations between GPX1 polymorphism and cancer risks and further discuss the relationships between the aberrant expressions of GPX1 and tumorigenesis. Further studies are needed to elucidate the clinical significance of GPX1 as a potential prognostic biomarker and novel therapeutic target in various malignancies.
Collapse
Affiliation(s)
- Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Jingdong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China
- Correspondence: (J.Z.); (Q.S.)
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an 223005, China
- Correspondence: (J.Z.); (Q.S.)
| |
Collapse
|
12
|
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F, Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022; 13:821344. [PMID: 35401182 PMCID: PMC8987160 DOI: 10.3389/fphar.2022.821344] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Collapse
|
13
|
Assessment of Glutathione Peroxidase-1 (GPX1) Gene Expression as a Specific Diagnostic and Prognostic Biomarker in Malignant Pleural Mesothelioma. Diagnostics (Basel) 2021; 11:diagnostics11122285. [PMID: 34943522 PMCID: PMC8700378 DOI: 10.3390/diagnostics11122285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor of the mesothelial lining of the thorax. It has been related to frequent exposure to asbestos. Diagnosis of malignant pleural mesothelioma is considered a criticizing problem for clinicians. Early diagnosis and sufficient surgical excision of MPM are considered the cornerstone success factors for the management of early MPM. Glutathione peroxidase-1 (GPX1) is an intracellular protein found to be extensively distributed in all cells, and it belongs to the GPX group. In the current study, we included ninety-eight patients with MPM that underwent surgery at the Zagazig University Hospital in Egypt. We assessed GPX1 gene expression level as it was thought to be related to pathogenicity of cancer in a variety of malignant tumors. We observed a significant elevation in GPX1-mRNA levels in MPM relative to the nearby normal pleural tissues. It was found to be of important diagnostic specificity in the differentiation of MPM from normal tissues. Moreover, we studied the survival of patients in correlation to the GPX1 expression levels and we reported that median overall survival was about 16 months in patients with high GPX1 expression levels, while it was found to be about 40 months in low GPX1 levels.
Collapse
|
14
|
Yuan X, Liu Y, Chen E, Wang J, Deng S, Chen P, Wang X, Deng S. MiR-646 regulates proliferation and migration of laryngeal carcinoma through the PI3K/AKT pathway via targeting GPX1. Oral Dis 2021; 27:1678-1686. [PMID: 33150676 DOI: 10.1111/odi.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
Laryngeal cancer is a common type of head and neck malignancy. microRNA is implicated in the development and progression of various tumours. The present study aimed to explore the potential roles and mechanisms of miR-646 in laryngeal carcinoma cells. We detected the expression of miR-646 and observed that miR-646 was reduced in laryngeal cell lines. Subsequently, the proliferation, migration and invasion of TU212 and TU686 cells were evaluated using CCK-8 assays, cell proliferation ELISA BrdU and transwell assays after transfection with miR-646 mimic. Overexpression of miR-646 attenuated the proliferative and invasive abilities of TU212 and TU686 cells. Dual luciferase reporter assay confirmed that glutathione peroxidase 1 (GPX1) is a direct target of miR-646. Interestingly, restoration of GPX1 promoted cell proliferation and migration, and reversed the biological activities of miR-646 in cell proliferation and migration. It is worth noting that miR-646 overexpression blocked the activation of PI3K/AKT pathway, and this was partly abrogated by GPX1. 740Y-P, a PI3K agonist abolished the effects of miR-646 on cell proliferation and invasion. Taken together, miR-646 prohibited the proliferation and invasion of laryngeal carcinoma cells through the PI3K/AKT pathway via targeting GPX1.
Collapse
Affiliation(s)
- Xuanju Yuan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yufeng Liu
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - E Chen
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Junhua Wang
- Nursing Department, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shouping Deng
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Ping Chen
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xianhe Wang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Shouheng Deng
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
15
|
Zhang J, Peng Y, He Y, Xiao Y, Wang Q, Zhao Y, Zhang T, Wu C, Xie Y, Zhou J, Yu W, Lu D, Bai H, Chen T, Guo P, Zhang Q. GPX1-associated prognostic signature predicts poor survival in patients with acute myeloid leukemia and involves in immunosuppression. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166268. [PMID: 34536536 DOI: 10.1016/j.bbadis.2021.166268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Treatment of acute myeloid leukemia (AML) remains a challenge. It is urgent to understand the microenvironment to improve therapy and prognosis. METHODS Bioinformatics methods were used to analyze transcription expression profile of AML patient samples with complete clinical information from UCSC Xena TCGA-AML datasets and validate with GEO datasets. Western blot, qPCR, RNAi and CCK8 assay were used to assay the effect of GPX1 expression on AML cell viability and the expression of genes of interest. RESULTS Our analyses revealed that highly expressed GPX1 in AML patients links to unfavorable prognosis. GPX1 expression was positively associated with not only fraction levels of myeloid-derived suppressor cells (MDSCs), monocytes and T cell exhaustion, the expression levels of MDSC markers, MDSC-promoting CCR2 and immune inhibitory checkpoints (TIM3/Gal-9, SIRPα and VISTA), but also negatively with low fraction levels of CD4+ and CD8+ T cells. Silencing GPX1 expression reduced AML cell viability and CCR2 expression. Moreover, GPX1-targetd kinases were PKC family, SRC family, SYK and PAK1, which promote AML progression and the resistance to therapy. Furthermore, Additionally, GPX1-associated prognostic signature (GPS) is an independent risk factor with high area under curve (AUC) values of receiver operating characteristic (ROC) curves. High risk group based on GPS enriched not only with endocytosis which transfers mitochondria to favor AML cell survival in response to chemotherapy, but also NOTCH, WNT and TLR signaling which promote therapy resistance. CONCLUSION Our results revealed the significant involvement of GPX1 in AML immunosuppression via and provided a prognostic signature for AML patients.
Collapse
MESH Headings
- Aged
- Antigens, Differentiation/genetics
- B7 Antigens/genetics
- Female
- Gene Expression Regulation, Leukemic/genetics
- Glutathione Peroxidase/genetics
- Hepatitis A Virus Cellular Receptor 2
- Humans
- Immune Tolerance/genetics
- Immunosuppression Therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/pathology
- Prognosis
- Receptors, CCR2/genetics
- Receptors, Immunologic/genetics
- Receptors, Notch/genetics
- Risk Factors
- Syk Kinase/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/genetics
- p21-Activated Kinases/genetics
- Glutathione Peroxidase GPX1
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuhui Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Tin Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Changxue Wu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Deqin Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Bai
- Medical Laboratory Center, the Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, Guizhou, China.
| | - Tenxiang Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guiyang 550004, Guizhou, China.
| | - Penxiang Guo
- Department of Hematology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang 550002, Guizhou, China.
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
16
|
Bélanger V, Benmoussa A, Napartuk M, Warin A, Laverdière C, Marcoux S, Levy E, Marcil V. The Role of Oxidative Stress and Inflammation in Cardiometabolic Health of Children During Cancer Treatment and Potential Impact of Key Nutrients. Antioxid Redox Signal 2021; 35:293-318. [PMID: 33386063 DOI: 10.1089/ars.2020.8143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: The 5-year survival rate of childhood cancers is now reaching 84%. However, treatments cause numerous acute and long-term side effects. These include cardiometabolic complications, namely hypertension, dyslipidemia, hyperglycemia, insulin resistance, and increased fat mass. Recent Advances: Many antineoplastic treatments can induce oxidative stress (OxS) and trigger an inflammatory response, which may cause acute and chronic side effects. Critical Issues: Clinical studies have reported a state of heightened OxS and inflammation during cancer treatment in children as the result of treatment cytotoxic action on both cancerous and noncancerous cells. Higher levels of OxS and inflammation are associated with treatment side effects and with the development of cardiometabolic complications. Key nutrients (omega-3 polyunsaturated fatty acids, dietary antioxidants, probiotics, and prebiotics) have the potential to modulate inflammatory and oxidative responses and, therefore, could be considered in the search for adverse complication prevention means as long as antineoplastic treatment efficiency is maintained. Future Directions: There is a need to better understand the relationship between cardiometabolic complications, OxS, inflammation and diet during pediatric cancer treatment, which represents the ultimate goal of this review. Antioxid. Redox Signal. 35, 293-318.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Abderrahim Benmoussa
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Alexandre Warin
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada
| | | | - Sophie Marcoux
- Department of Public Health & Preventive Medicine, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| |
Collapse
|
17
|
Wolff L, Bandaru SSM, Eger E, Lam HN, Napierkowski M, Baecker D, Schulzke C, Bednarski PJ. Comprehensive Evaluation of Biological Effects of Pentathiepins on Various Human Cancer Cell Lines and Insights into Their Mode of Action. Int J Mol Sci 2021; 22:ijms22147631. [PMID: 34299253 PMCID: PMC8305076 DOI: 10.3390/ijms22147631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Pentathiepins are polysulfur-containing compounds that exert antiproliferative and cytotoxic activity in cancer cells, induce oxidative stress and apoptosis, and inhibit glutathione peroxidase (GPx1). This renders them promising candidates for anticancer drug development. However, the biological effects and how they intertwine have not yet been systematically assessed in diverse cancer cell lines. In this study, six novel pentathiepins were synthesized to suit particular requirements such as fluorescent properties or improved water solubility. Structural elucidation by X-ray crystallography was successful for three derivatives. All six underwent extensive biological evaluation in 14 human cancer cell lines. These studies included investigating the inhibition of GPx1 and cell proliferation, cytotoxicity, and the induction of ROS and DNA strand breaks. Furthermore, selected hallmarks of apoptosis and the impact on cell cycle progression were studied. All six pentathiepins exerted high cytotoxic and antiproliferative activity, while five also strongly inhibited GPx1. There is a clear connection between the potential to provoke oxidative stress and damage to DNA in the form of single- and double-strand breaks. Additionally, these studies support apoptosis but not ferroptosis as the mechanism of cell death in some of the cell lines. As the various pentathiepins give rise to different biological responses, modulation of the biological effects depends on the distinct chemical structures fused to the sulfur ring. This may allow for an optimization of the anticancer activity of pentathiepins in the future.
Collapse
Affiliation(s)
- Lisa Wolff
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Universität Greifswald, 17489 Greifswald, Germany; (L.W.); (H.-N.L.); (M.N.); (D.B.)
| | | | - Elias Eger
- Pharmazeutische Mikrobiologie, Institut für Pharmazie, Universität Greifswald, 17489 Greifswald, Germany;
| | - Hoai-Nhi Lam
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Universität Greifswald, 17489 Greifswald, Germany; (L.W.); (H.-N.L.); (M.N.); (D.B.)
| | - Martin Napierkowski
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Universität Greifswald, 17489 Greifswald, Germany; (L.W.); (H.-N.L.); (M.N.); (D.B.)
| | - Daniel Baecker
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Universität Greifswald, 17489 Greifswald, Germany; (L.W.); (H.-N.L.); (M.N.); (D.B.)
| | - Carola Schulzke
- Bioanorganische Chemie, Institut für Biochemie, Universität Greifswald, 17489 Greifswald, Germany;
- Correspondence: (C.S.); (P.J.B.); Tel.: +49-3834-420-4321 (C.S.); +49-3834-420-4883 (P.J.B.)
| | - Patrick J. Bednarski
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Universität Greifswald, 17489 Greifswald, Germany; (L.W.); (H.-N.L.); (M.N.); (D.B.)
- Correspondence: (C.S.); (P.J.B.); Tel.: +49-3834-420-4321 (C.S.); +49-3834-420-4883 (P.J.B.)
| |
Collapse
|
18
|
Survival of Laryngeal Cancer Patients Depending on Zinc Serum Level and Oxidative Stress Genotypes. Biomolecules 2021; 11:biom11060865. [PMID: 34200699 PMCID: PMC8228711 DOI: 10.3390/biom11060865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/30/2023] Open
Abstract
Stress contributes to various aspects of malignancy and could influence survival in laryngeal cancer patients. Among antioxidant mechanisms, zinc and the antioxidant enzymes superoxide dismutase 2, catalase and glutathione peroxidase 1 play a major role. The aim of this study was a prospective evaluation of the survival of patients with laryngeal cancer in relation to serum levels of zinc in combination with functional genotype differences of three key antioxidant enzymes. The study group consisted of 300 patients treated surgically for laryngeal cancer. Serum zinc levels and common polymorphisms in SOD2, CAT and GPX1 were analyzed. The risk of death in patients with the lowest zinc levels was increased in comparison with patients with the highest levels. Polymorphisms of antioxidant genes by themselves were not correlated with survival, however, serum zinc level impact on survival was stronger for SOD2 TC/TT and CAT CC variants. GPX1 polymorphisms did not correlate with zinc levels regarding survival. In conclusion, serum zinc concentration appears to be an important prognostic factor for survival of patients diagnosed with laryngeal cancer. When higher zinc levels were correlated with polymorphisms in SOD2 and CAT a further increase in survival was observed.
Collapse
|
19
|
Zhao J, Chen W, Pan Y, Zhang Y, Sun H, Wang H, Yang F, Liu Y, Shen N, Zhang X, Mo X, Zang J. Structural insights into the recognition of histone H3Q5 serotonylation by WDR5. SCIENCE ADVANCES 2021; 7:7/25/eabf4291. [PMID: 34144982 PMCID: PMC8213231 DOI: 10.1126/sciadv.abf4291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/06/2021] [Indexed: 05/02/2023]
Abstract
Serotonylation of histone H3Q5 (H3Q5ser) is a recently identified posttranslational modification of histones that acts as a permissive marker for gene activation in synergy with H3K4me3 during neuronal cell differentiation. However, any proteins that specifically recognize H3Q5ser remain unknown. Here, we found that WDR5 interacts with the N-terminal tail of histone H3 and functions as a "reader" for H3Q5ser. Crystal structures of WDR5 in complex with H3Q5ser and H3K4me3Q5ser peptides revealed that the serotonyl group is accommodated in a shallow surface pocket of WDR5. Experiments in neuroblastoma cells demonstrate that H3K4me3 modification is hampered upon disruption of WDR5-H3Q5ser interaction. WDR5 colocalizes with H3Q5ser in the promoter regions of cancer-promoting genes in neuroblastoma cells, where it promotes gene transcription to induce cell proliferation. Thus, beyond revealing a previously unknown mechanism through which WDR5 reads H3Q5ser to activate transcription, our study suggests that this WDR5-H3Q5ser-mediated epigenetic regulation apparently promotes tumorigenesis.
Collapse
Affiliation(s)
- Jie Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, the first affiliated hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Wanbiao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the first affiliated hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Pan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yinfeng Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nan Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the first affiliated hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, the first affiliated hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| |
Collapse
|
20
|
Jia B, Zhao X, Wu D, Dong Z, Chi Y, Zhao J, Wu M, An T, Wang Y, Zhuo M, Li J, Chen X, Tian G, Long J, Yang X, Chen H, Wang J, Zhai X, Li S, Li J, Ma M, He Y, Kong L, Brcic L, Fang J, Wang Z. Identification of serum biomarkers to predict pemetrexed/platinum chemotherapy efficacy for advanced lung adenocarcinoma patients by data-independent acquisition (DIA) mass spectrometry analysis with parallel reaction monitoring (PRM) verification. Transl Lung Cancer Res 2021; 10:981-994. [PMID: 33718037 PMCID: PMC7947410 DOI: 10.21037/tlcr-21-153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Pemetrexed/platinum chemotherapy has been the standard chemotherapy regimen for lung adenocarcinoma patients, but the efficacy varies considerably. Methods To discover new serum biomarkers to predict the efficacy of pemetrexed/platinum chemotherapy, we analyzed 20 serum samples from advanced lung adenocarcinoma patients who received pemetrexed/platinum chemotherapy with the data-independent acquisition (DIA) quantitative mass spectrometry (MS). Results The 20 patients were categorized as “good response” [12 patients achieving partial response (PR)] and “poor response” [8 patients with progressive disease (PD)] groups. Altogether 23 significantly different expressed proteins were identified, which had relative ratios higher than 1.2 or lower than –0.83, with 7 proteins having an area under the curve (AUC) above 0.8. To further validate the DIA results, we used the parallel reaction monitoring (PRM) method to examine 16 candidate serum biomarkers in the study cohort of 20 patients and another cohort of 22 advanced lung adenocarcinoma patients (16 PR and 6 PD). Quantitative validation using PRM correlated well with the DIA results, and 10 promising proteins exhibited a similar up- or downregulation. It is worth noting that glutathione peroxidase 3 (GPX3) exhibits significant upregulation in the poor response group compared with the good response group, which was validated by both DIA and PRM methods. Conclusions Our study confirmed that combined DIA MS and PRM approaches were effective in identifying serum predictive biomarkers for advanced lung adenocarcinoma patients. Further studies are needed to explore the potential biological mechanism underlying these biomarkers.
Collapse
Affiliation(s)
- Bo Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinghui Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Di Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Dong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yujia Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tongtong An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoling Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guangming Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jieran Long
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanxiao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingjing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyu Zhai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Menglei Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuling He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lingdong Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
21
|
Robles-Fort A, García-Robles I, Fernando W, Hoskin DW, Rausell C, Real MD. Dual Antimicrobial and Antiproliferative Activity of TcPaSK Peptide Derived from a Tribolium castaneum Insect Defensin. Microorganisms 2021; 9:222. [PMID: 33499187 PMCID: PMC7912591 DOI: 10.3390/microorganisms9020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) found in the innate immune system of a wide range of organisms might prove useful to fight infections, due to the reported slower development of resistance to AMPs. Increasing the cationicity and keeping moderate hydrophobicity of the AMPs have been described to improve antimicrobial activity. We previously found a peptide derived from the Tribolium castaneum insect defensin 3, exhibiting antrimicrobial activity against several human pathogens. Here, we analyzed the effect against Staphyloccocus aureus of an extended peptide (TcPaSK) containing two additional amino acids, lysine and asparagine, flanking the former peptide fragment in the original insect defensin 3 protein. TcPaSK peptide displayed higher antimicrobial activity against S. aureus, and additionally showed antiproliferative activity against the MDA-MB-231 triple negative breast cancer cell line. A SWATH proteomic analysis revealed the downregulation of proteins involved in cell growth and tumor progression upon TcPaSK cell treatment. The dual role of TcPaSK peptide as antimicrobial and antiproliferative agent makes it a versatile molecule that warrants exploration for its use in novel therapeutic developments as an alternative approach to overcome bacterial antibiotic resistance and to increase the efficacy of conventional cancer treatments.
Collapse
Affiliation(s)
- Aida Robles-Fort
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (D.W.H.)
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (D.W.H.)
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - María Dolores Real
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| |
Collapse
|
22
|
The Effect of Glutathione Peroxidase-1 Knockout on Anticancer Drug Sensitivities and Reactive Oxygen Species in Haploid HAP-1 Cells. Antioxidants (Basel) 2020; 9:antiox9121300. [PMID: 33353055 PMCID: PMC7766971 DOI: 10.3390/antiox9121300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
The role of glutathione peroxidases (GPx) in cancer and their influence on tumor prognosis and the development of anticancer drug resistance has been extensively and controversially discussed. The aim of this study was to evaluate the influence of GPx1 expression on anticancer drug cytotoxicity. For this purpose, a GPx1 knockout of the near-haploid human cancer cell line HAP-1 was generated and compared to the native cell line with regards to morphology, growth and metabolic rates, and oxidative stress defenses. Furthermore, the IC50 values of two peroxides and 16 widely used anticancer drugs were determined in both cell lines. Here we report that the knockout of GPx1 in HAP-1 cells has no significant effect on cell size, viability, growth and metabolic rates. Significant increases in the cytotoxic potency of hydrogen peroxide and tert-butylhydroperoxide, the anticancer drugs cisplatin and carboplatin as well as the alkylating agents lomustine and temozolomide were found. While a concentration dependent increases in intracellular reactive oxygen species (ROS) levels were observed for both HAP-1 cell lines treated with either cisplatin, lomustine or temozolamide, no significant enhancement in ROS levels was observed in the GPx1 knockout compared to the native cell line except at the highest concentration of temozolamide. On the other hand, a ca. 50% decrease in glutathione levels was noted in the GPx1 knockout relative to the native line, suggesting that factors other than ROS levels alone play a role in the increased cytotoxic activity of these drugs in the GPx1 knockout cells.
Collapse
|
23
|
Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants (Basel) 2020; 9:E1151. [PMID: 33228209 PMCID: PMC7699519 DOI: 10.3390/antiox9111151] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer remains an elusive, highly complex disease and a global burden. Constant change by acquired mutations and metabolic reprogramming contribute to the high inter- and intratumor heterogeneity of malignant cells, their selective growth advantage, and their resistance to anticancer therapies. In the modern era of integrative biomedicine, realizing that a personalized approach could benefit therapy treatments and patients' prognosis, we should focus on cancer-driving advantageous modifications. Namely, reactive oxygen species (ROS), known to act as regulators of cellular metabolism and growth, exhibit both negative and positive activities, as do antioxidants with potential anticancer effects. Such complexity of oxidative homeostasis is sometimes overseen in the case of studies evaluating the effects of potential anticancer antioxidants. While cancer cells often produce more ROS due to their increased growth-favoring demands, numerous conventional anticancer therapies exploit this feature to ensure selective cancer cell death triggered by excessive ROS levels, also causing serious side effects. The activation of the cellular NRF2 (nuclear factor erythroid 2 like 2) pathway and induction of cytoprotective genes accompanies an increase in ROS levels. A plethora of specific targets, including those involved in thioredoxin (TRX) and glutathione (GSH) systems, are activated by NRF2. In this paper, we briefly review preclinical research findings on the interrelated roles of the NRF2 pathway and TRX and GSH systems, with focus given to clinical findings and their relevance in carcinogenesis and anticancer treatments.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (L.M.); (S.B.S.)
| |
Collapse
|
24
|
Lv S, Luo H, Huang K, Zhu X. The Prognostic Role of Glutathione Peroxidase 1 and Immune Infiltrates in Glioma Investigated Using Public Datasets. Med Sci Monit 2020; 26:e926440. [PMID: 33085656 PMCID: PMC7590522 DOI: 10.12659/msm.926440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Glutathione peroxidase 1 (GPX1) is an essential component of the intracellular antioxidant enzyme system, but little is known about the role of GPX1 in the progression of malignancy in gliomas. Using public datasets, this study investigated the prognostic role of GPX1 and immune infiltrates in glioma. MATERIAL AND METHODS We investigated GPX1 expression levels in different cancers using the ONCOMINE and Tumor Immune Estimation Resource (TIMER) datasets. We also explored the prognostic landscape of GPX1 in gliomas based on The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets. Some significant pathways were identified by function enrichment analysis. We then explored the association between GPX1 expression and levels of tumor-infiltrating immune cells based on TIMER and Gene Expression Profiling Interactive Analysis (GEPIA) datasets. RESULTS Expression of GPX1 in brain and central nervous system cancers is at a much high level than in normal tissues, and it is higher in glioblastoma (GBM) than in lower-grade glioma (LGG). We found GPX1 expression to be positively correlated with the malignant clinicopathologic characteristics of gliomas. Univariate analysis and multivariate analysis revealed that overexpression of GPX1 was correlated with a worse prognosis in patients, and a nomogram indicated that GPX1 expression can predict clinical prognosis of glioma. Function enrichment analysis showed that some important pathways are related to glioma malignancy. Expression of GPX1 was positively associated with infiltrating levels of 6 types of immune cells and most of their gene markers in GBM and LGG. CONCLUSIONS These results indicate that GPX1 is an independent prognostic factor and a novel biomarker for predicting the progression of malignancy in gliomas, which is associated with immune infiltration.
Collapse
Affiliation(s)
- Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,East China Institute of Digital Medical Engineering, Shangrao, Jiangxi, China (mainland)
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
25
|
Behnisch‐Cornwell S, Bandaru SSM, Napierkowski M, Wolff L, Zubair M, Urbainsky C, Lillig C, Schulzke C, Bednarski PJ. Pentathiepins: A Novel Class of Glutathione Peroxidase 1 Inhibitors that Induce Oxidative Stress, Loss of Mitochondrial Membrane Potential and Apoptosis in Human Cancer Cells. ChemMedChem 2020; 15:1515-1528. [PMID: 32311219 PMCID: PMC7496275 DOI: 10.1002/cmdc.202000160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Indexed: 12/21/2022]
Abstract
A novel class of glutathione peroxidase 1 (GPx1) inhibitors, namely tri- and tetracyclic pentathiepins, has been identified that is approximately 15 times more potent than the most active known GPx1 inhibitor, mercaptosuccinic acid. Enzyme kinetic studies with bovine erythrocyte GPx1 indicate that pentathiepins reversibly inhibit oxidation of the substrate glutathione (GSH). Moreover, no inhibition of superoxide dismutase, catalase, thioredoxin reductase or glutathione reductase was observed at concentrations that effectively inhibit GPx1. As well as potent enzyme inhibitory activity, the pentathiepins show strong anticancer activity in various human cancer cell lines, with IC50 values in a low-micromolar range. A representative tetracyclic pentathiepin causes the formation of reactive oxygen species in these cells, the fragmentation of nuclear DNA and induces apoptosis via the intrinsic pathway. Moreover, this pentathiepin leads to a rapid and strong loss of mitochondrial membrane potential in treated cancer cells. On the other hand, evidence for the induction of ferroptosis as a form of cell death was negative. These new findings show that pentathiepins possess interesting biological activities beyond those originally ascribed to these compounds.
Collapse
Affiliation(s)
- Steven Behnisch‐Cornwell
- Pharmazeutische/Medizinische ChemieInstitut für PharmazieUniversität Greifswald17489GreifswaldGermany
| | | | - Martin Napierkowski
- Pharmazeutische/Medizinische ChemieInstitut für PharmazieUniversität Greifswald17489GreifswaldGermany
| | - Lisa Wolff
- Pharmazeutische/Medizinische ChemieInstitut für PharmazieUniversität Greifswald17489GreifswaldGermany
| | - Muhammad Zubair
- Bioanorganische ChemieInstitut für BiochemieUniversität Greifswald17489GreifswaldGermany
| | - Claudia Urbainsky
- Institut für Medizinische Biochemie und Molekulare BiologieUniversitätsmedizinUniversität Greifswald17475GreifswaldGermany
| | - Christopher Lillig
- Institut für Medizinische Biochemie und Molekulare BiologieUniversitätsmedizinUniversität Greifswald17475GreifswaldGermany
| | - Carola Schulzke
- Bioanorganische ChemieInstitut für BiochemieUniversität Greifswald17489GreifswaldGermany
| | - Patrick J. Bednarski
- Pharmazeutische/Medizinische ChemieInstitut für PharmazieUniversität Greifswald17489GreifswaldGermany
| |
Collapse
|
26
|
Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165721. [PMID: 32057942 DOI: 10.1016/j.bbadis.2020.165721] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.
Collapse
|
27
|
Wei R, Qiu H, Xu J, Mo J, Liu Y, Gui Y, Huang G, Zhang S, Yao H, Huang X, Gan Z. Expression and prognostic potential of GPX1 in human cancers based on data mining. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:124. [PMID: 32175417 PMCID: PMC7049064 DOI: 10.21037/atm.2020.02.36] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glutathione peroxidase-1 (GPX1) is a member of the GPX family, which considered an enzyme that interacts with oxidative stress. GPX1 differential expression is closely correlated with carcinogenesis and disease progression. In this study, we used bioinformatics analysis to investigate GPX1 expression level and explore the prognostic information in different human cancers. METHODS Expression was analyzed via the Oncomine database and Gene Expression Profiling Interactive Analysis tool, and potential prognostic analysis was evaluated using the UALCAN, GEPIA, and DriverDBv3 databases. Then, the UALCAN database was used to find the promoter methylation of GPX1 in defied cancer types. While GPX1 related functional networks were found within the GeneMANIA interactive tool and Cytoscape software. Moreover, Metascape online website was used to analyze Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. RESULTS We found that GPX1 was commonly overexpressed in most human cancers. High expression of GPX1 could lead to poor outcomes in Brain Lower Grade Glioma, while GPX1 over expression was correlated with better prognosis in Kidney renal papillary cell carcinoma (KIPP). High GPX1 expression was marginally associated with poor prognosis in acute myeloid leukemia (AML). Gene regulation network suggested that GPX1 mainly involved in pathways including the glutathione metabolism, ferroptosis, TP53 regulates metabolic genes, reactive oxygen species (ROS) metabolic process, and several other signaling pathways. CONCLUSIONS Our findings revealed that GPX1 showed significant expression differences among cancers and served as a prognostic biomarker for defined cancer types. The data mining effectively revealed useful information about GPX1 expression, prognostic values, and potential functional networks in cancers, thus providing researchers with an available way to further explore the mechanism underlying carcinogenesis of genes of interest in different cancers.
Collapse
Affiliation(s)
- Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hongtu Qiu
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Juanmei Mo
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guangyou Huang
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| | - Shunrong Zhang
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| | - Hongfang Yao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoxiao Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhichuan Gan
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| |
Collapse
|
28
|
mTOR-Mediated Antioxidant Activation in Solid Tumor Radioresistance. JOURNAL OF ONCOLOGY 2019; 2019:5956867. [PMID: 31929797 PMCID: PMC6942807 DOI: 10.1155/2019/5956867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022]
Abstract
Radiotherapy is widely used for the treatment of cancer patients, but tumor radioresistance presents serious therapy challenges. Tumor radioresistance is closely related to high levels of mTOR signaling in tumor tissues. Therefore, targeting the mTOR pathway might be a strategy to promote solid tumor sensitivity to ionizing radiation. Radioresistance is associated with enhanced antioxidant mechanisms in cancer cells. Therefore, examination of the relationship between mTOR signaling and antioxidant mechanism-linked radioresistance is required for effective radiotherapy. In particular, the effect of mTOR signaling on antioxidant glutathione induction by the Keap1-NRF2-xCT pathway is described in this review. This review is expected to assist in the identification of therapeutic adjuvants to increase the efficacy of radiotherapy.
Collapse
|
29
|
Cheng Y, Xu T, Li S, Ruan H. GPX1, a biomarker for the diagnosis and prognosis of kidney cancer, promotes the progression of kidney cancer. Aging (Albany NY) 2019; 11:12165-12176. [PMID: 31844035 PMCID: PMC6949109 DOI: 10.18632/aging.102555] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney, and its diagnosis and prognosis still lack reliable biomarkers. Glutathione peroxidase 1 (GPX1) has been identified to be highly expressed in a variety of human malignancies. However, few studies have studied the expression of GPX1 and its biological functions in RCC. We attempted to assess the potential of GPX1 as a promising biomarker for RCC diagnosis and prognosis. In this study, we analyzed and explored the public cancer databases (TCGA and ONCOMINE) to conclude that GPX1 is highly expressed in RCC. Meanwhile, we evaluated the expression of GPX1 at the levels of RCC cells and tissues to verify the results of the database. Moreover, high GPX1 levels were positively correlated with short overall survival time, distant metastasis, lymphatic metastasis, and tumor stage. Receiver operating characteristic curve (ROC) analysis showed that high GPX1 levels could distinguish RCC patients from normal subjects (p < 0.0001). Kaplan-Meier curve analysis revealed that high GPX1 levels predicted shorter overall survival time (p = 0.0009). Finally, the functional roles of GPX1 were examined using a GPX1 sh-RNA knockdown method in RCC cell lines. In summary, our results suggest that GPX1 may have the potential to serve as a diagnostic and prognostic biomarker for RCC patients. Moreover, targeting GPX1 may represent as a new therapeutic strategy and direction for RCC patients.
Collapse
Affiliation(s)
- Yongbiao Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
30
|
Attenuation of Equine Lentivirus Alters Mitochondrial Protein Expression Profile from Inflammation to Apoptosis. J Virol 2019; 93:JVI.00653-19. [PMID: 31391270 DOI: 10.1128/jvi.00653-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Equine infectious anemia virus (EIAV) is an equine lentivirus similar to HIV-1, targets host immune cells, and causes a life-long infection in horses. The Chinese live EIAV vaccine is attenuated from long-term passaging of a highly virulent strain in vitro The parent pathogenic strain (EIAVDLV34) induces a host inflammatory storm to cause severe pathological injury of animals. However, the vaccine strain (EIAVDLV121) induces a high level of apoptosis to eliminate infected cells. To investigate how these processes are regulated, we performed a comparative proteomics analysis and functional study in equine monocyte-derived macrophages (eMDMs) and found that the divergent mitochondrial protein expression profiles caused by EIAV strains with different virulence led to disparate mitochondrial function, morphology, and metabolism. This in turn promoted the distinct transformation of macrophage inflammatory polarization and intrinsic apoptosis. In EIAVDLV34-infected cells, a high level of glycolysis and increased mitochondrial fragmentation were induced, resulting in the M1-polarized proinflammatory-type transformation of macrophages and the subsequent production of a strong inflammatory response. Following infection with EIAVDLV121, the infected cells were transformed into M2-polarized anti-inflammatory macrophages by inhibition of glycolysis. In this case, a decrease in the mitochondrial membrane potential and impairment of the electron transport chain led to increased levels of apoptosis and reactive oxygen species. These results correlated with viral pathogenicity loss and may help provide an understanding of the key mechanism of lentiviral attenuation.IMPORTANCE Following viral infection, the working pattern and function of the cell can be transformed through the impact on mitochondria. It still unknown how the mitochondrial response changes in cells infected with viruses in the process of virulence attenuation. EIAVDLV121 is the only effective lentiviral vaccine for large-scale use in the world. EIAVDLV34 is the parent pathogenic strain. Unlike EIAVDLV34-induced inflammation storms, EIAVDLV121 can induce high levels of apoptosis. For the first time, we found that, after the mitochondrial protein expression profile is altered, EIAVDLV34-infected cells are transformed into M1-polarized-type macrophages and cause inflammatory injury and that the intrinsic apoptosis pathway is activated in EIAVDLV121-infected cells. These studies shed light on how the mitochondrial protein expression profile changes between cells infected by pathogenic lentivirus strains and cells infected by attenuated lentivirus strains to drive different cellular responses, especially from inflammation to apoptosis.
Collapse
|
31
|
A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Budach V, Tinhofer I. Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: a systematic review. Lancet Oncol 2019; 20:e313-e326. [DOI: 10.1016/s1470-2045(19)30177-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023]
|
33
|
Over-expression of low-density lipoprotein receptor-related Protein-1 is associated with poor prognosis and invasion in pancreatic ductal adenocarcinoma. Pancreatology 2019; 19:429-435. [PMID: 30902418 DOI: 10.1016/j.pan.2019.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/16/2019] [Accepted: 02/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Low-density lipoprotein receptor-Related Protein-1 (LRP-1) has been reported to involve in tumor development. However, its role in pancreatic cancer has not been elucidated. The present study was designed to evaluate the expression of LRP-1 in Pancreatic Ductal Adenocarcinoma Cancer (PDAC) as well as its association with prognosis. METHODS Here, 478 pancreatic cancers were screened for suitable primary PDAC tumors. The samples were analyzed using qRT-PCR, western blotting, and Immunohistochemistry (IHC) staining as well as LRP-1 expression in association with clinicopathological features. RESULTS The relative LRP-1 mRNA expression was up-regulated in 82.3% (42/51) of the PDAC tumors and its expression (3.72 ± 1.25) was significantly higher than that in pancreatic normal margins (1.0 ± 0.23, P < 0.05). This up-regulation was stage dependent (P < 0.05). A similar pattern of LRP-1 protein expression was discovered (P < 0.05). The high expression of LRP-1 in the PDAC tissues was strongly correlated with the low survival time (P = 0.001), TNM classification (P = 0.001), low differentiations status (P = 0.001), lymphatic invasion (P = 0.01) and Perineural Invasion (PNI) status (P = 0.001). CONCLUSIONS Our finding for the first time revealed that LRP-1 expression inversely associated with poor prognosis and PNI in PDAC tumor.
Collapse
|
34
|
Aashique M, Roy A, Diamond A, Bera S. Subcellular compartmentalization of glutathione peroxidase 1 allelic isoforms differentially impact parameters of energy metabolism. J Cell Biochem 2019; 120:3393-3400. [PMID: 30394058 PMCID: PMC6336513 DOI: 10.1002/jcb.27610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Specific genetic variations in the gene for the selenium-containing antioxidant protein glutathione peroxidase 1 (GPX1) are associated with the risk of a variety of common diseases, including cancer, diabetes, and cardiovascular disorders. Two common variations have been focused upon, one resulting in leucine or proline at codon 198 and another resulting in 5, 6, or 7 alanine repeats were previously shown to affect the distribution of GPX1 between the cytoplasm and mitochondria. Human MCF7 cells engineered to exclusively express GPX1 with five alanine repeats at amino terminus and proline at codon 198 (A5P) and seven alanine repeats at amino terminus and leucine at codon 198 (A7L), as well as derivatives targeted to the mitochondria by the addition of a mitochondrial localization sequence (mA5P and mA7L) were used to assess the consequences of the expression of these proteins on the cellular redox state and bioenergetics. Ectopic expression of A5P and A7L reduced the levels of reactive oxygen species, and the mitochondrially targeted derivatives exhibited better activity in these assays. Bioenergetics and mitochondrial integrity were assessed by measuring mitochondrial membrane potential, oxygen consumption, adenosine triphosphate (ATP) levels, and the levels of lactate dehydrogenase. The results of these assays indicated distinctively, and sometimes opposing, patterns with regard to differences between the consequences of the expression of A5P, A7L, mA5P, and mA7L. These data provide new information on the consequences of differences in the primary structure and cellular location of GPX1 proteins and contribute to the understanding of how these effects might contribute to human disease.
Collapse
Affiliation(s)
- Md Aashique
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Amrita Roy
- Department of Biotechnology, Indian Academy Degree College, Bangalore, Karnataka, India
| | - Alan Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, USA
| | - Soumen Bera
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamilnadu, India,Address for correspondence: Soumen Bera, School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamilnadu, India; ; Tel: +91 44 22759200; Fax: +91 44 22750520
| |
Collapse
|
35
|
Dickinson A, Saraswat M, Mäkitie A, Silén R, Hagström J, Haglund C, Joenväärä S, Silén S. Label-free tissue proteomics can classify oral squamous cell carcinoma from healthy tissue in a stage-specific manner. Oral Oncol 2018; 86:206-215. [PMID: 30409303 DOI: 10.1016/j.oraloncology.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES No prognostic or predictive biomarkers for oral squamous cell carcinoma (OSCC) exist. We aimed to discover novel proteins, altered in OSCC, to be further investigated as potential biomarkers, and to improve understanding about pathways involved in OSCC. MATERIALS AND METHODS Proteomic signatures of seven paired healthy and OSCC tissue samples were identified using ultra-definition quantitative mass spectrometry, then analysed and compared using Anova, principal component analysis, hierarchical clustering and OPLS-DA modelling. A selection of significant proteins that were also altered in the serum from a previous study (PMID: 28632724) were validated immunohistochemically on an independent cohort (n = 66) to confirm immunopositivity and location within tumour tissue. Ingenuity Pathways Analysis was employed to identify altered pathways. RESULTS Of 829 proteins quantified, 257 were significant and 72 were able to classify healthy vs OSCC using OPLS-DA modelling. We identified 19 proteins not previously known to be upregulated in OSCC, including prosaposin and alpha-taxilin. KIAA1217 and NDRG1 were upregulated in stage IVa compared with stage I tumours. Altered pathways included calcium signalling, cellular movement, haematological system development and function, and immune cell trafficking, and involved NF-kB and MAPK networks. CONCLUSIONS We found a set of proteins reliably separating OSCC tumour from healthy tissue, and multiple proteins differing between stage I and stage IVa OSCC. These potential biomarkers can be studied and validated in larger cohorts.
Collapse
Affiliation(s)
- Amy Dickinson
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland.
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Robert Silén
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland.
| | - Jaana Hagström
- HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland; Department of Pathology, University of Helsinki, Finland.
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki, University Hospital, Helsinki, Finland; Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland.
| | - Suvi Silén
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Liu K, Jin M, Xiao L, Liu H, Wei S. Distinct prognostic values of mRNA expression of glutathione peroxidases in non-small cell lung cancer. Cancer Manag Res 2018; 10:2997-3005. [PMID: 30214294 PMCID: PMC6118261 DOI: 10.2147/cmar.s163432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Glutathione peroxidases (GPxs) constitutes an enzyme family which has the ability to reduce free hydrogen peroxide to water and lipid hydroperoxides to their corresponding alcohols, and its main biological roles are to protect organisms from oxidative stress-induced damage. GPxs include eight members in different tissues of the body, and they play essential roles in carcinogenesis. However, the prognostic value of individual GPx in non-small cell lung cancer (NSCLC) remains elusive. Materials and methods In the current study, we investigated the prognostic value of GPxs in NSCLC patients through the “Kaplan–Meier plotter” database, wherein updated gene expression data and survival information from a total of 1,926 NSCLC patients are included. Results High expression of GPx1 mRNA was correlated with worse overall survival (OS) in adenocarcinoma patients. High expression of GPx2 mRNA was correlated with worse OS for all NSCLC patients. In contrast, high expression of GPx3 mRNA was associated with better OS for all NSCLC patients. High expression of GPx4 mRNA was significantly correlated with worsening adenocarcinoma in these patients. GPx5 mRNA high expression correlated with worsening OS for all NSCLC patients. Discussion The current findings of prognostic values of individual mRNA expression of GPxs in NSCLC patients indicate some GPxs may have prognostic value in NSCLC patients, and this needs further study.
Collapse
Affiliation(s)
- Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Li Xiao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| |
Collapse
|
37
|
Expression and characterization of glutathione peroxidase of the liver fluke, Fasciola gigantica. Parasitol Res 2018; 117:3487-3495. [DOI: 10.1007/s00436-018-6046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022]
|
38
|
Corso CR, Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit Rev Oncol Hematol 2018; 128:43-57. [DOI: 10.1016/j.critrevonc.2018.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
|
39
|
Liang HH, Huang CY, Chou CW, Makondi PT, Huang MT, Wei PL, Chang YJ. Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation. Life Sci 2018; 209:43-51. [PMID: 30056019 DOI: 10.1016/j.lfs.2018.07.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 01/14/2023]
Abstract
The problem of therapeutic resistance and chemotherapeutic efficacy is tricky and critical in the management of colorectal cancer (CRC). Curcumin is a promising anti-cancer agent. Heat shock protein 27 (HSP27) is correlated with CRC progression and is said to affect CRC response to different therapies. However, the role of HSP27 on the therapeutic efficacy of curcumin remains unknown. HSP27 was silenced using small hairpin RNA (shRNA) technique. The cytotoxic and apoptotic effects of curcumin were assessed by sulforhodamine B (SRB) colorimetric assay, flow cytometric cell cycle analysis, and annexin V/propidium iodide (PI) double-labeling assays. Total reactive oxygen species (ROS)/superoxide and autophagy detection were performed, and the levels of apoptosis-related proteins were examined by Western blotting. It was found that the silencing of HSP27 (HSP27-KD) resulted in increased treatment resistance to curcumin in CRC cells. In addition, cell cycle analysis showed that the curcumin treatment caused cell cycle arrest at the G2/M phase in the control group, and apoptosis was reduced in the HSP27-KD group. Curcumin treatment also resulted in a decrease in anti-apoptotic proteins, p-Akt, Akt, Bcl-2 and p-Bad, and increase in pro-apoptotic proteins Bad and c-PARP levels in the control cells but not in the HSP27-KD cells. This was also followed by low reactive oxygen/nitrogen species (ROS/RNS), superoxide and autophagy induction levels in the HSP27-KD cells as compared to the control cells. Therefore, as silencing of HSP27 increases curcumin resistance by reducing apoptosis and reactive oxidative stress production, HSP27 is a potential selective target for curcumin treatment in CRC.
Collapse
Affiliation(s)
- Hung-Hua Liang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Wen Chou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Precious Takondwa Makondi
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Te Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|