1
|
Dong ZK, Wang YF, Li WP, Jin WL. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol Ther 2024; 264:108750. [PMID: 39527999 DOI: 10.1016/j.pharmthera.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cancer neuroscience, as an emerging converging discipline, provides us with new perspectives on the interactions between the nervous system and cancer progression. As the sympathetic nervous system, in particular adrenergic signaling, plays an important role in the regulation of tumor activity at every hierarchical level of life, from the tumor cell to the tumor microenvironment, and to the tumor macroenvironment, it is highly desirable to dissect its effects. Considering the far-reaching implications of drug repurposing for antitumor drug development, such a large number of adrenergic receptor antagonists on the market has great potential as one of the means of antitumor therapy, either as primary or adjuvant therapy. Therefore, this review aims to summarize the impact of adrenergic signaling on cancer development and to assess the status and prospects of intervening in adrenergic signaling as a therapeutic tool against tumors.
Collapse
Affiliation(s)
- Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Ping Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Urology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
3
|
Drug Repositioning of the α 1-Adrenergic Receptor Antagonist Naftopidil: A Potential New Anti-Cancer Drug? Int J Mol Sci 2020; 21:ijms21155339. [PMID: 32727149 PMCID: PMC7432507 DOI: 10.3390/ijms21155339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022] Open
Abstract
Failure of conventional treatments is often observed in cancer management and this requires the development of alternative therapeutic strategies. However, new drug development is known to be a high-failure process because of the possibility of a lower efficacy than expected for the drug or appearance of non-manageable side effects. Another way to find alternative therapeutic drugs consists in identifying new applications for drugs already approved for a particular disease: a concept named "drug repurposing". In this context, several studies demonstrated the potential anti-tumour activity exerted by α1-adrenergic receptor antagonists and notably renewed interest for naftopidil as an anti-cancer drug. Naftopidil is used for benign prostatic hyperplasia management in Japan and a retrospective study brought out a reduced incidence of prostate cancer in patients that had been prescribed this drug. Further studies showed that naftopidil exerted anti-proliferative and cytotoxic effects on prostate cancer as well as several other cancer types in vitro, as well as ex vivo and in vivo. Moreover, naftopidil was demonstrated to modulate the expression of Bcl-2 family pro-apoptotic members which could be used to sensitise cancer cells to targeting therapies and to overcome resistance of cancer cells to apoptosis. For most of these anti-cancer effects, the molecular pathway is either not fully deciphered or shown to involve α1-adrenergic receptor-independent pathway, suggesting off target transduction signals. In order to improve its efficacy, naftopidil analogues were designed and shown to be effective in several studies. Thereby, naftopidil appears to display anti-cancer properties on different cancer types and could be considered as a candidate for drug repurposing although its anti-cancerous activities need to be studied more deeply in prospective randomized clinical trials.
Collapse
|
4
|
Li Y, Zhang B, Xiang L, Xia S, Kucuk O, Deng X, Boise LH, Dong JT. TGF-β causes Docetaxel resistance in Prostate Cancer via the induction of Bcl-2 by acetylated KLF5 and Protein Stabilization. Am J Cancer Res 2020; 10:7656-7670. [PMID: 32685011 PMCID: PMC7359077 DOI: 10.7150/thno.44567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in the United States. As a first line treatment for hormone-refractory prostate cancer, docetaxel (DTX) treatment leads to suboptimal effect since almost all patients eventually develop DTX resistance. In this study, we investigated whether and how TGF-β affects DTX resistance of prostate cancer. Methods: Cytotoxicity of DTX in DU 145 and PC-3 cells was measured by CCK-8 and Matrigel colony formation assays. Resistance to DTX in DU 145 cells was examined in a xenograft tumorigenesis model. A luciferase reporter system was used to determine transcriptional activities. Gene expression was analyzed by RT-qPCR and Western blotting. Results: We found that KLF5 is indispensable in TGF-β-induced DTX resistance. Moreover, KLF5 acetylation at lysine 369 mediates DTX resistance in vitro and in vivo. We showed that the TGF-β/acetylated KLF5 signaling axis activates Bcl-2 expression transcriptionally. Furthermore, DTX-induced Bcl-2 degradation depends on a proteasome pathway, and TGF-β inhibits DTX-induced Bcl-2 ubiquitination. Conclusion: Our study demonstrated that the TGF-β-acetylated KLF5-Bcl-2 signaling axis mediates DTX resistance in prostate cancer and blockade of this pathway could provide clinical insights into chemoresistance of prostate cancer.
Collapse
|
5
|
Florent R, Weiswald LB, Lambert B, Brotin E, Abeilard E, Louis MH, Babin G, Poulain L, N'Diaye M. Bim, Puma and Noxa upregulation by Naftopidil sensitizes ovarian cancer to the BH3-mimetic ABT-737 and the MEK inhibitor Trametinib. Cell Death Dis 2020; 11:380. [PMID: 32424251 PMCID: PMC7235085 DOI: 10.1038/s41419-020-2588-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Ovarian cancer represents the first cause of mortality from gynecologic malignancies due to frequent chemoresistance occurrence. Increasing the [BH3-only Bim, Puma, Noxa proapoptotic]/[Bcl-xL, Mcl-1 antiapoptotic] proteins ratio was proven to efficiently kill ovarian carcinoma cells and development of new molecules to imbalance Bcl-2 member equilibrium are strongly required. Drug repurposing constitutes an innovative approach to rapidly develop therapeutic strategies through exploitation of established drugs already approved for the treatment of noncancerous diseases. This strategy allowed a renewed interest for Naftopidil, an α1-adrenergic receptor antagonist commercialized in Japan for benign prostatic hyperplasia. Naftopidil was reported to decrease the incidence of prostate cancer and its derivative was described to increase BH3-only protein expression in some cancer models. Based on these arguments, we evaluated the effects of Naftopidil on ovarian carcinoma and showed that Naftopidil reduced cell growth and increased the expression of the BH3-only proteins Bim, Puma and Noxa. This effect was independent of α1-adrenergic receptors blocking and involved ATF4 or JNK pathway depending on cellular context. Finally, Naftopidil-induced BH3-only members sensitized our models to ABT-737 and Trametinib treatments, in vitro as well as ex vivo, in patient-derived organoid models.
Collapse
Affiliation(s)
- Romane Florent
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France
- UNICANCER, Cancer Center François Baclesse, Caen, France
| | - Louis-Bastien Weiswald
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France
- UNICANCER, Cancer Center François Baclesse, Caen, France
| | - Bernard Lambert
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France
- UNICANCER, Cancer Center François Baclesse, Caen, France
- CNRS-Regional Delegation of Normandy, Caen, France
| | - Emilie Brotin
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France
- UNICANCER, Cancer Center François Baclesse, Caen, France
| | - Edwige Abeilard
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France
- UNICANCER, Cancer Center François Baclesse, Caen, France
| | - Marie-Hélène Louis
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France
- UNICANCER, Cancer Center François Baclesse, Caen, France
| | - Guillaume Babin
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France
- UNICANCER, Cancer Center François Baclesse, Caen, France
| | - Laurent Poulain
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France
- UNICANCER, Cancer Center François Baclesse, Caen, France
- Biological Ressources Center «OvaRessources», Cancer Center François Baclesse, Caen, France
| | - Monique N'Diaye
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France.
- UNICANCER, Cancer Center François Baclesse, Caen, France.
| |
Collapse
|
6
|
Ishii K, Matsuoka I, Sasaki T, Nishikawa K, Kanda H, Imai H, Hirokawa Y, Iguchi K, Arima K, Sugimura Y. Loss of Fibroblast-Dependent Androgen Receptor Activation in Prostate Cancer Cells is Involved in the Mechanism of Acquired Resistance to Castration. J Clin Med 2019; 8:jcm8091379. [PMID: 31484364 PMCID: PMC6780155 DOI: 10.3390/jcm8091379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Loss of androgen receptor (AR) dependency in prostate cancer (PCa) cells is associated with progression to castration-resistant prostate cancer (CRPC). The tumor stroma is enriched in fibroblasts that secrete AR-activating factors. To investigate the roles of fibroblasts in AR activation under androgen deprivation, we used three sublines of androgen-sensitive LNCaP cells (E9 and F10 cells: low androgen sensitivity; and AIDL cells: androgen insensitivity) and original fibroblasts derived from patients with PCa. We performed in vivo experiments using three sublines of LNCaP cells and original fibroblasts to form homotypic tumors. The volume of tumors derived from E9 cells plus fibroblasts was reduced following androgen deprivation therapy (ADT), whereas that of F10 or AIDL cells plus fibroblasts was increased even after ADT. In tumors derived from E9 cells plus fibroblasts, serum prostate-specific antigen (PSA) decreased rapidly after ADT, but was still detectable. In contrast, serum PSA was increased even in F10 cells inoculated alone. In indirect cocultures with fibroblasts, PSA production was increased in E9 cells. Epidermal growth factor treatment stimulated Akt and p44/42 mitogen-activated protein kinase phosphorylation in E9 cells. Notably, AR splice variant 7 was detected in F10 cells. Overall, we found that fibroblast-secreted AR-activating factors modulated AR signaling in E9 cells after ADT and loss of fibroblast-dependent AR activation in F10 cells may be responsible for CRPC progression.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Izumi Matsuoka
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kohei Nishikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Hideki Kanda
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Hiroshi Imai
- Pathology Division, Mie University Hospital, Tsu, Mie 514-8507, Japan.
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Gifu 501-1196, Japan.
| | - Kiminobu Arima
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
7
|
Pirfenidone, an Anti-Fibrotic Drug, Suppresses the Growth of Human Prostate Cancer Cells by Inducing G₁ Cell Cycle Arrest. J Clin Med 2019; 8:jcm8010044. [PMID: 30621175 PMCID: PMC6351920 DOI: 10.3390/jcm8010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022] Open
Abstract
Pirfenidone (PFD) is an anti-fibrotic drug used to treat idiopathic pulmonary fibrosis by inducing G1 cell cycle arrest in fibroblasts. We hypothesize that PFD can induce G1 cell cycle arrest in different types of cells, including cancer cells. To investigate the effects of PFD treatment on the growth of human prostate cancer (PCa) cells, we used an androgen-sensitive human PCa cell line (LNCaP) and its sublines (androgen-low-sensitive E9 and F10 cells and androgen-insensitive AIDL cells), as well as an androgen-insensitive human PCa cell line (PC-3). PFD treatment suppressed the growth of all PCa cells. Transforming growth factor β1 secretion was significantly increased in PFD-treated PCa cells. In both LNCaP and PC-3 cells, PFD treatment increased the population of cells in the G0/G1 phase, which was accompanied by a decrease in the S/G2 cell population. CDK2 protein expression was clearly decreased in PFD-treated LNCaP and PC-3 cells, whereas p21 protein expression was increased in only PFD-treated LNCaP cells. In conclusion, PFD may serve as a novel therapeutic drug that induces G1 cell cycle arrest in human PCa cells independently of androgen sensitivity. Thus, in the tumor microenvironment, PFD might target not only fibroblasts, but also heterogeneous PCa cells of varying androgen-sensitivity levels.
Collapse
|
8
|
Liu XW, Rong Y, Zhang XF, Huang JJ, Cai Y, Huang BY, Zhu L, Wu B, Hou N, Luo CF. Human UDP-Glucuronosyltransferase 2B4 and 2B7 Are Responsible for Naftopidil Glucuronidation in Vitro. Front Pharmacol 2018; 8:984. [PMID: 29375383 PMCID: PMC5769128 DOI: 10.3389/fphar.2017.00984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/22/2017] [Indexed: 01/28/2023] Open
Abstract
Naftopidil (NAF) is widely used for the treatment of benign prostatic hyperplasia and prevention of prostate cancer in elderly men. These patients receive a combination of drugs, which involves high risk for drug–drug interaction. NAF exhibits superior efficacy but must be administered at a much higher dosage than other therapeutic drugs. We previously showed that extensive glucuronidation of NAF enantiomers caused poor bioavailability. However, the metabolic pathway and mechanism of action of NAF enantiomer remain to be elucidated. The present study was performed to identify the human UDP-glucuronosyltransferases (UGTs) responsible for the glucuronidation of NAF enantiomers and to investigate the potential inhibition of UGT activity by NAF. The major metabolic sites examined were liver and kidney, which were compared with intestine. Screening of 12 recombinant UGTs showed that UGT2B7 primarily contributed to the metabolism of both enantiomers. Moreover, enzyme kinetics for R(+)-NAF, UGT2B7 (mean Km, 21 μM; mean Vmax, 1043 pmol/min/mg) showed significantly higher activity than observed for UGT2B4 and UGT1A9. UGT2B4 (mean Km, 55 μM; mean Vmax, 1976 pmol/min/mg) and UGT2B7 (mean Km, 38 μM; mean Vmax, 1331 pmol/min/mg) showed significantly higher catalysis of glucuronidation of S(-)-NAF than UGT1A9. In human liver microsomes, R(+)-NAF and S(-)-NAF also inhibited UGT1A9: mean Ki values for R(+)-NAF and S(-)-NAF were 10.0 μM and 11.5 μM, respectively. These data indicate that UGT2B7 was the principal enzyme mediating glucuronidation of R(+)-NAF and S(-)-NAF. UGT2B4 plays the key role in the stereoselective metabolism of NAF enantiomers. R(+)-NAF and S(-)-NAF may inhibit UGT1A9. Understanding the metabolism of NAF enantiomers, especially their interactions with metabolic enzymes, will help to elucidate potential drug–drug interactions and to optimize the administration of this medicine.
Collapse
Affiliation(s)
- Xia-Wen Liu
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Rong
- State Key Laboratory of Drug Metabolism, Hematological Pharmacology, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xing-Fei Zhang
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun-Jun Huang
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Cai
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bi-Yun Huang
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liu Zhu
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bo Wu
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ning Hou
- Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng-Feng Luo
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|