1
|
São Marcos BDF, dos Santos DL, de Sousa GF, Cruz LCDO, Barros BRDS, de Sena MGAM, Santos VEP, Oliveira THDA, Lagos de Melo CM, de Freitas AC. Immune Response Modulation by HPV16 Oncoproteins in Lung Cancer: Insights from Clinical and In Vitro Investigations. Viruses 2024; 16:1731. [PMID: 39599846 PMCID: PMC11599038 DOI: 10.3390/v16111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Lung cancer has the highest mortality rates worldwide, and Human Papillomavirus (HPV) has been associated with its carcinogenesis. In this study, HPV16 genes' expressions were investigated in patient samples, along with the immunological response promoted by lymphocytes and monocytes in A549 cells transfected with HPV oncogenes and co-cultured with PBMC. An increase in the expression of E5 was observed in the patients' samples. In the in vitro analysis, a decrease in the number of monocytes and cytotoxic cells was observed when co-stimulated by E6 and E7, and it promoted an increase in the Th2 profile. In contrast, the high proliferation of cytotoxic cells in A549 cells transfected with E5, associated with the high expression of costimulatory molecules in monocytes, suggests a low capacity of E5 to inhibit the presentation of antigens by antigen-presenting cells (APC) and a possible use of E5 in future therapeutic strategies against lung cancers associated with HPV.
Collapse
Affiliation(s)
- Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| | - Daffany Luana dos Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| | - Georon Ferreira de Sousa
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.)
- Immunological and Antitumor Analysis Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Leonardo Carvalho de Oliveira Cruz
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.)
- Immunological and Antitumor Analysis Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Bárbara Rafaela da Silva Barros
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.)
- Immunological and Antitumor Analysis Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Matheus Gardini Amâncio Marques de Sena
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| | - Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| | | | - Cristiane Moutinho Lagos de Melo
- Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (G.F.d.S.); (L.C.d.O.C.); (B.R.d.S.B.)
- Immunological and Antitumor Analysis Laboratory, Department of Antibiotics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária Recife, Recife 50670-901, PE, Brazil; (B.d.F.S.M.); (D.L.d.S.); (M.G.A.M.d.S.); (V.E.P.S.)
| |
Collapse
|
2
|
Sequeira T, Pinto R, Cardoso C, Almeida C, Aragão R, Almodovar T, Bicho M, Bicho MC, Bárbara C. HPV and Lung Cancer: A Systematic Review. Cancers (Basel) 2024; 16:3325. [PMID: 39409943 PMCID: PMC11475761 DOI: 10.3390/cancers16193325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This systematic review aims to explore the diagnostic criteria, epidemiology, etiology, and prognosis of Human Papillomavirus (HPV) infection in lung cancer. This PRISMA-guided review searched the PubMed® and EmbaseTM databases for "lung cancer AND HPV" on 10 June 2023, filtering human subject papers. A total of 97 studies encompassing 9098 patients worldwide, revealing varied HPV infection rates in lung cancer, ranging from 0% to 69%, were analyzed. While HPV16/18 was predominant in some regions, its association with lung cancer remained inconclusive due to conflicting findings. Studies from Asia reported lower HPV infection rates compared to Western populations. Some studies suggested a limited role of HPV in lung carcinogenesis, particularly in non-smokers. However, intriguing associations were noted, including HPV's potential role in lung adenocarcinoma and squamous cell carcinoma. Discrepancies in HPV detection methods and sample sources highlight the need for further research with standardized methodologies to elucidate HPV's role in lung carcinogenesis and its clinical implications. Overall, this systematic review offers insights into HPV's role in lung cancer epidemiology and clinical characteristics. Despite inconclusive evidence, intriguing associations between HPV and lung adenocarcinoma and squamous cell carcinoma have emerged. Further research with standardized methodologies and larger cohorts is needed for clarity.
Collapse
Affiliation(s)
- Telma Sequeira
- Serviço de Pneumologia, Instituto Português de Oncologia (IPO), Rua Lima Basto, 1099-023 Lisboa, Portugal; (C.A.); (R.A.); (T.A.)
- Laboratório Associado TERRA, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.B.); (C.B.)
| | - Rui Pinto
- Joaquim Chaves Saúde, Rua Aníbal Bettencourt, n° 3, Edifício CORE, 2790-225 Oeiras, Portugal; (R.P.); (C.C.)
| | - Carlos Cardoso
- Joaquim Chaves Saúde, Rua Aníbal Bettencourt, n° 3, Edifício CORE, 2790-225 Oeiras, Portugal; (R.P.); (C.C.)
| | - Catarina Almeida
- Serviço de Pneumologia, Instituto Português de Oncologia (IPO), Rua Lima Basto, 1099-023 Lisboa, Portugal; (C.A.); (R.A.); (T.A.)
| | - Rita Aragão
- Serviço de Pneumologia, Instituto Português de Oncologia (IPO), Rua Lima Basto, 1099-023 Lisboa, Portugal; (C.A.); (R.A.); (T.A.)
| | - Teresa Almodovar
- Serviço de Pneumologia, Instituto Português de Oncologia (IPO), Rua Lima Basto, 1099-023 Lisboa, Portugal; (C.A.); (R.A.); (T.A.)
| | - Manuel Bicho
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal;
| | - Maria Clara Bicho
- Laboratório Associado TERRA, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.B.); (C.B.)
| | - Cristina Bárbara
- Laboratório Associado TERRA, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.B.); (C.B.)
- Unidade Local de Saúde de Santa Maria, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
3
|
Parama D, BharathwajChetty B, Jayaprakash S, Lee EHC, Khatoon E, Alqahtani MS, Abbas M, Kumar AP, Kunnumakkara AB. The emerging role of human papillomavirus in lung cancer. Life Sci 2024; 351:122785. [PMID: 38851420 DOI: 10.1016/j.lfs.2024.122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Lung cancer stands as one of the most lethal diseases and is the foremost cause of cancer-related mortalities worldwide. The pathophysiology of lung cancer is multifaceted, and it includes multiple cell signaling pathways and other complex factors such as oxidative stress and genetics. The association of HPV with lung carcinogenesis was first proposed in 1979, and since then, scientists worldwide have been putting forward several hypotheses to establish a relationship between this virus and lung cancer. Although studies have reported the presence of HPV in lung cancer, the exact mechanism of entry and the route of transmission have not been elucidated clearly till date. Numerous studies across the globe have detected differentially expressed HPV oncoproteins in lung cancer patients and found their association with the critical cell signaling pathways that leads to the development and progression of lung cancer. Many reports have also provided evidence stating the involvement of HPV in determining the survival status of lung cancer patients. The present review recapitulates the studies evincing the association of HPV and lung cancer, its route of transmission and mechanism of action; the detection of the virus and treatment opportunities for HPV-positive lung cancer; and the severity associated with this disease. Therefore, this will provide an explicit idea and would help to develop preventive measures and specific as well as effective treatment for HPV-associated lung carcinogenesis.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, U.K
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Alikanoğlu AS, Karaçay İA. Detection of High-Risk Human Papillomavirus (HPV), p16 and EGFR in Lung Cancer: Insights from the Mediterranean Region of Turkey. Viruses 2024; 16:1201. [PMID: 39205175 PMCID: PMC11360564 DOI: 10.3390/v16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Human papillomavirus (HPV) is an oncogenic DNA virus that plays a role in different cancer types. The aim of this study was to detect the prevalence and types of HPV and its relation with p16, EGFR and clinical findings in lung cancer. HPV and EGFR detection and genotyping of HPV were performed by polymerase chain reaction (PCR) and p16 by immunohistochemistry. Fifty lung cancer patients and seven patients with non-neoplastic lung disease were enrolled in this study. HPV was positive in 78% (39/50) of lung cancer cases. HPV 51 was the most frequent type, followed by HPV 16. Moreover, p16 was positive in 24% (12/50) of the cancer patients, and all of these patients were HPV-positive, while 27 HPV-positive patients showed no p16 expression. There was no relationship between HPV infection and p16 (p = 0.05), gender (p = 0.42), age (p = 0.38), or smoking history (p = 0.68). Although not statistically significant, the HPV prevalence was found to be higher in cancer patients compared to non-neoplastic patients. The prevalence of HPV in lung cancer varies across different studies, which may be due to differences in the detection methods, number of patients, geographic regions, and vaccination status. Further studies are necessary to understand the role of HPV in lung cancer pathogenesis.
Collapse
Affiliation(s)
- Arsenal Sezgin Alikanoğlu
- Pathology Department, Antalya Education and Research Hospital, Health Sciences University, Antalya 07100, Turkey
| | - İrem Atalay Karaçay
- Pathology Department, Alanya Alaaddin Keykubat University, Antalya 07400, Turkey
| |
Collapse
|
5
|
Nachira D, Congedo MT, D’Argento E, Meacci E, Evangelista J, Sassorossi C, Calabrese G, Nocera A, Kuzmych K, Santangelo R, Rindi G, Margaritora S. The Role of Human Papilloma Virus (HPV) in Primary Lung Cancer Development: State of the Art and Future Perspectives. Life (Basel) 2024; 14:110. [PMID: 38255725 PMCID: PMC10817459 DOI: 10.3390/life14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Notably, the incidence of lung cancer among never-smokers, predominantly women, has been rising in recent years. Among the various implicated risk factors, human papilloma virus (HPV) may play a role in the development of NSCLC in a certain subset of patients. The prevalence of high-risk HPV-DNA within human neoplastic lung cells varies across the world; however, the carcinogenetic role of HPV in NSCLC has not been completely understood. Bloodstream could be one of the routes of transmission from infected sites to the lungs, along with oral (through unprotected oral sex) and airborne transmission. Previous studies reported an elevated risk of NSCLC in patients with prior HPV-related tumors, such as cervical, laryngeal, or oropharyngeal cancer, with better prognosis for HPV-positive lung cancers compared to negative forms. On the other hand, 16% of NSCLC patients present circulating HPV-DNA in peripheral blood along with miRNAs expression. Typically, these patients have a poorly differentiated NSCLC, often diagnosed at an advanced stage. However, HPV-positive lung cancers seem to have a better response to target therapies (EGFR) and immune checkpoint inhibitors and show an increased sensitivity to platinum-based treatments. This review summarizes the current evidence regarding the role of HPV in NSCLC development, especially among patients with a history of HPV-related cancers. It also examines the diagnostic and prognostic significance of HPV, investigating new future perspectives to enhance cancer screening, diagnostic protocols, and the development of more targeted therapies tailored to specific cohorts of NSCLC patients with confirmed HPV infection.
Collapse
Affiliation(s)
- Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Maria Teresa Congedo
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Ettore D’Argento
- Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Elisa Meacci
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Jessica Evangelista
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Carolina Sassorossi
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Giuseppe Calabrese
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Adriana Nocera
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Khrystyna Kuzmych
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| | - Rosaria Santangelo
- Institute of Microbiology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Guido Rindi
- Institute of Pathology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Stefano Margaritora
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.T.C.); (E.M.); (J.E.); (C.S.); (G.C.); (A.N.); (K.K.); (S.M.)
| |
Collapse
|
6
|
Silva AJD, de Moura IA, da Gama MATM, Leal LRS, de Pinho SS, Espinoza BCF, dos Santos DL, Santos VEP, Sena MGAMD, Invenção MDCV, de Macêdo LS, de França Neto PL, de Freitas AC. Advancing Immunotherapies for HPV-Related Cancers: Exploring Novel Vaccine Strategies and the Influence of Tumor Microenvironment. Vaccines (Basel) 2023; 11:1354. [PMID: 37631922 PMCID: PMC10458729 DOI: 10.3390/vaccines11081354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The understanding of the relationship between immunological responses and cancers, especially those related to HPV, has allowed for the study and development of therapeutic vaccines against these neoplasias. There is a growing number of studies about the composition and influence of the tumor microenvironment (TME) in the progression or establishment of the most varied types of cancer. Hence, it has been possible to structure immunotherapy approaches based on therapeutic vaccines that are even more specific and directed to components of TME and the immune response associated with tumors. Among these components are dendritic cells (DCs), which are the main professional antigen-presenting cells (APCs) already studied in therapy strategies for HPV-related cancers. On the other hand, tumor-associated macrophages are also potential targets since the profile present in tumor infiltrates, M1 or M2, influences the prognosis of some types of cancer. These two cell types can be targets for therapy or immunomodulation. In this context, our review aims to provide an overview of immunotherapy strategies for HPV-positive tumors, such as cervical and head and neck cancers, pointing to TME immune cells as promising targets for these approaches. This review also explores the potential of immunotherapy in cancer treatment, including checkpoint inhibitors, cytokine immunotherapies, immunotherapy vaccines, and cell therapies. Furthermore, it highlights the importance of understanding the TME and its effect on the design and achievement of immunotherapeutic methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (A.J.D.S.); (I.A.d.M.); (M.A.T.M.d.G.); (L.R.S.L.); (S.S.d.P.); (B.C.F.E.); (D.L.d.S.); (V.E.P.S.); (M.G.A.M.D.S.); (M.D.C.V.I.); (L.S.d.M.); (P.L.d.F.N.)
| |
Collapse
|
7
|
Zhou Z, Wu X, Zhan R, Li X, Cheng D, Chen L, Wang T, Yu H, Zhang G, Tang X. Exosomal epidermal growth factor receptor is involved in HPV-16 E7-induced epithelial-mesenchymal transition of non-small cell lung cancer cells: A driver of signaling in vivo? Cancer Biol Ther 2022; 23:1-13. [PMID: 36224722 PMCID: PMC9559043 DOI: 10.1080/15384047.2022.2133332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Our previous studies have demonstrated that human papillomavirus (HPV)-16 E7 oncoprotein promoted epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) cells. Moreover, recent studies have found that exosomes can mediate EMT of NSCLC cells and epidermal growth factor receptor (EGFR) is related to the progression of NSCLC. Here, we further investigated the role of exosomal EGFR in HPV-16 E7-induced EMT of NSCLC cells. Our results showed that the exosomes derived from the stable HPV-16 E7-overexpressing A549 and NCI-H460 NSCLC cells (E7 Exo) significantly increased migration, invasion, and proliferation abilities of NSCLC cells as compared with the exosomes derived from empty vector-infected NSCLC cells (ev Exo). Moreover, both in vitro and in vivo results demonstrated that E7 Exo dramatically enhanced EMT of NSCLC cells and promoted the growth of subcutaneous NSCLC xenografts. Additionally, HPV-16 E7 enhanced the expression of EGFR and p-EGFR in both NSCLC cells and exosomes. Furthermore, the inhibition of EGFR activation or exosome secretion suppressed E7 Exo-induced migration, invasion, and EMT of NSCLC. Moreover, 12 kinds of differentially expressed miRNAs between E7 Exo and ev Exo (fold change≥2, P ≤ .05) were screened out, of which 7 miRNAs were up-regulated while 5 miRNAs were down-regulated in A549 E7 Exo. Taken together, our findings suggest that exosomal EGFR is involved in HPV-16 E7-induced EMT of NSCLC cells, which may play a key role in the progression of HPV-related NSCLC.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Xiaofeng Wu
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China,Center for Laboratory Medicine, Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Riming Zhan
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China,Center for Laboratory Medicine, Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Dazhao Cheng
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Li Chen
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Tianyu Wang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Hua Yu
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Guihong Zhang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China,CONTACT Xudong Tang ; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, 2 Wenming Donglu, Xiashan, Zhanjiang, Guangdong524023, P.R. China
| |
Collapse
|
8
|
Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens 2022; 11:pathogens11121444. [PMID: 36558778 PMCID: PMC9781236 DOI: 10.3390/pathogens11121444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Prophylactic vaccines against human papillomavirus (HPV) have proven efficacy in those who have not been infected by the virus. However, they do not benefit patients with established tumors. Therefore, the development of therapeutic options for HPV-related malignancies is critical. Third-generation vaccines based on nucleic acids are fast and simple approaches to eliciting adaptive immune responses. However, techniques to boost immunogenicity, reduce degradation, and facilitate their capture by immune cells are frequently required. One option to overcome this constraint is to employ delivery systems that allow selective antigen absorption and help modulate the immune response. This review aimed to discuss the influence of these different systems on the response generated by nucleic acid vaccines. The results indicate that delivery systems based on lipids, polymers, and microorganisms such as yeasts can be used to ensure the stability and transport of nucleic acid vaccines to their respective protein synthesis compartments. Thus, in view of the limitations of nucleic acid-based vaccines, it is important to consider the type of delivery system to be used-due to its impact on the immune response and desired final effect.
Collapse
|
9
|
High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives. BIOLOGY 2022; 11:biology11121691. [PMID: 36552201 PMCID: PMC9775033 DOI: 10.3390/biology11121691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Lung cancer is a very prevalent and heterogeneous group of malignancies, and most of them are etiologically associated with tobacco smoking. However, viral infections have been detected in lung carcinomas, with high-risk human papillomaviruses (HR-HPVs) being among them. The role of HR-HPVs in lung cancer has been considered to be controversial. This issue is due to the highly variable presence of this virus in lung carcinomas worldwide, and the low viral load frequently that is detected. In this review, we address the epidemiological and mechanistic findings regarding the role of HR-HPVs in lung cancer. Some mechanisms of HR-HPV-mediated lung carcinogenesis have been proposed, including (i) HPV works as an independent carcinogen in non-smoker subjects; (ii) HPV cooperates with carcinogenic compounds present in tobacco smoke; (iii) HPV promotes initial alterations being after cleared by the immune system through a "hit and run" mechanism. Additional research is warranted to clarify the role of HPV in lung cancer.
Collapse
|
10
|
Khan A, Das BC, Abiha U, Sisodiya S, Chikara A, Nazir SU, Das AM, Rodrigues AG, Passari AK, Tanwar P, Hussain S, Rashid S, Rashid S. Insights into the role of complement regulatory proteins in HPV mediated cervical carcinogenesis. Semin Cancer Biol 2022; 86:583-589. [PMID: 34087416 DOI: 10.1016/j.semcancer.2021.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 01/27/2023]
Abstract
The persistent infection of high-risk Human papillomavirus (HR-HPV) induced cervical cancer remains a challenge in women worldwide including India. Recent advances in cancer research have paved the way for advanced cancer treatment modalities including immunotherapy by manipulating the function or number of cytotoxic T cells. It is well established that anaphylatoxins like C3a and C5a of complement system influence tumor growth by evading apoptosis leading to progression of cancer. The role of the complement system, particularly the complement regulatory proteins (CRPs) which are important determinants of immune response play a crucial role in carcinogenesis. In a tumor microenvironment (TME) assisted suppression of immune effector cells may be achieved through CRPs. However, recent advances in pharmacogenomics including drug designing and combination of these approaches have provided a holistic understanding of signaling pathways and their crosstalk, to regulate cellular communications.This review describes the role of complement system; particularly CRPs in HPV induced cervical carcinogenesis which may be used for designing anti- HPV or cervical cancer therapeutics.
Collapse
Affiliation(s)
- Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Health & Allied Sciences Amity University, Noida, India
| | - Umme Abiha
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sandeep Sisodiya
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Atul Chikara
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sheeraz Un Nazir
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India
| | - Ankan M Das
- Amity Institute of Public Health, Amity University, Noida, India
| | - Alexandre Gomes Rodrigues
- Alpha & Omega Labor, Messe-Alle, 23, 04158, Leipzig, Germany; University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Ajit Kumar Passari
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Pranay Tanwar
- Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Showket Hussain
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India.
| | - Sabia Rashid
- Queen Elizabeth Hospital & King's College Hospital, Stadium Road, London, United Kingdom.
| | - Shazia Rashid
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
11
|
Correlation between HPV PCNA, p16, and p21 Expression in Lung Cancer Patients. Cell Microbiol 2022. [DOI: 10.1155/2022/9144334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose. Evaluate if human papillomavirus (HPV) infection in lung cancer patients might be helping cancer development by altering p16, p21, and PCNA, key human genes involved in cell proliferation and tumor development. Methods. 63 fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) samples from lung tumor patients were used to detect HPV by PCR, followed by genotype through sequencing. The host gene expressions of p21, p16, and PCNA were quantified by qPCR in both FF and FFPE samples, and the expression of viral oncogenes E5, E6, and E7 was also measured by qPCR in 19 FF samples. Results. 74.6% of samples were positive for HPV, 33/44 FFPE samples and 14/19 FF samples. HPV-16 and HPV-18 were detected in 31/33 and 7/33 FFPE, respectively, and HPV-16 was the only type in FF samples. E5, E6, and E7 were expressed in 10/19, 2/19, and 4/19 FF samples, respectively. The p16 RNAm expression was higher in FF HPV+ samples and FFPE+FF HPV+ samples, while p21 showed higher expression in all HPV- samples. In turn, the PCNA expression was higher in HPV+ FF samples; however, in FFPE and FFPE+FF samples, PCNA was higher in HPV- samples. In FF samples, PCNA, p16, and p21 showed a significant positive correlation as well as E5 and E7, and E5 was inversely correlated to p21. In FFPE, also, a positive correlation was observed between PCNA HPV+ and p21 HPV+ and PCNA HPV+ and p16 HPV. In FF+FFPE analysis, a direct correlation was found between PCNA HPV+ and p21 HPV+, p21 HPV+ and p16 HPV+, and PCNA HPV- and p16 HPV-, and an inverse correlation between PCNA HPV+ and p16 HPV+. Also, the p16 protein was positive in 10 HPV+ samples and 1 HPV-. Conclusions. Our data show that lung cancer patients from Northeast Brazil have a high prevalence of HPV, and the virus also expresses its oncogenes and correlates with key human genes involved in tumor development. This data could instigate the development of studies focused on preventive strategies, such as vaccination, used as a prognostic indicator and/or individualized therapy.
Collapse
|
12
|
Liu H, Dong Z. Cancer Etiology and Prevention Principle: "1 + X". Cancer Res 2021; 81:5377-5395. [PMID: 34470778 DOI: 10.1158/0008-5472.can-21-1862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Cancer was previously thought to be an inevitable aspect of human health with no effective treatments. However, the results of in-depth cancer research suggest that most types of cancer may be preventable. Therefore, a comprehensive understanding of the disparities in cancer burden caused by different risk factors is essential to inform and improve cancer prevention and control. Here, we propose the cancer etiology and prevention principle "1 + X," where 1 denotes the primary risk factor for a cancer and X represents the secondary contributing risk factors for the cancer. We elaborate upon the "1 + X" principle with respect to risk factors for several different cancer types. The "1 + X" principle can be used for precise prevention of cancer by eliminating the main cause of a cancer and minimizing the contributing factors at the same time.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Wang D, Cheng J, Zhang J, Zhou F, He X, Shi Y, Tao Y. The Role of Respiratory Microbiota in Lung Cancer. Int J Biol Sci 2021; 17:3646-3658. [PMID: 34512172 PMCID: PMC8416743 DOI: 10.7150/ijbs.51376] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Recently, the impact of microorganisms on tumor growth and metastasis has attracted great attention. The pathogenesis and progression of lung cancer are related to an increase in respiratory bacterial load as well as changes in the bacterial community because the microbiota affects tumors in many ways, including canceration, metastasis, angiogenesis, and treatment. The microbiota may increase tumor susceptibility by altering metabolism and immune responses, promoting inflammation, and increasing toxic effects. The microbiota can regulate tumor metastasis by altering multiple cell signaling pathways and participate in tumor angiogenesis through vascular endothelial growth factors (VEGF), endothelial cells (ECs), inflammatory factors and inflammatory cells. Tumor angiogenesis not only maintains tumor growth at the primary site but also promotes tumor metastasis and invasion. Therefore, angiogenesis is an important mediator of the interaction between microorganisms and tumors. The microbiota also plays a part in antitumor therapy. Alteration of the microbiota caused by antibiotics can regulate tumor growth and metastasis. Moreover, the microbiota also influences the efficacy and toxicity of tumor immunotherapy and chemotherapy. Finally, the effects of air pollution, a risk factor for lung cancer, on microorganisms and the possible role of respiratory microorganisms in the effects of air pollution on lung cancer are discussed.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jingyi Cheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jia Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Fangyu Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Xiao He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| |
Collapse
|
14
|
Karnosky J, Dietmaier W, Knuettel H, Freigang V, Koch M, Koll F, Zeman F, Schulz C. HPV and lung cancer: A systematic review and meta-analysis. Cancer Rep (Hoboken) 2021; 4:e1350. [PMID: 33624444 PMCID: PMC8388180 DOI: 10.1002/cnr2.1350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Lung cancer has emerged as a global public health problem and is the most common cause of cancer deaths by absolute cases globally. Besides tobacco, smoke infectious diseases such as human papillomavirus (HPV) might be involved in the pathogenesis of lung cancer. However, data are inconsistent due to differences in study design and HPV detection methods. AIM A systematic meta-analysis was performed to examine the presence of HPV-infection with lung cancer. METHODS AND RESULTS All studies in all languages were considered for the search concepts "lung cancer" and "HPV" if data specific to HPV prevalence in lung cancer tissue were given. This included Journal articles as well as abstracts and conference reports. As detection method, only HPV PCR results from fresh frozen and paraffin-embedded tissue were included. Five bibliographic databases and three registers of clinical trials including MEDLINE, Embase, Cochrane Library, and ClinicalTrials.gov were searched through February 2020. A total 4298 publications were identified, and 78 publications were selected, resulting in 9385 included lung cancer patients. A meta-analysis of 15 case-control studies with n = 2504 patients showed a weighted overall prevalence difference of 22% (95% CI: 12%-33%; P < .001) and a weighted overall 4.7-fold (95% CI: 2.7-8.4; P < .001) increase of HPV prevalence in lung cancer patients compared to controls. Overall, HPV prevalence amounted to 13.5% being highest in Asia (16.6%), followed by America (12.8%), and Europe (7.0%). A higher HPV prevalence was found in squamous cell carcinoma (17.9%) compared to adenocarcinoma (P < .01) with significant differences in geographic patterns. HPV genotypes 16 and 18 were the most prevalent high-risk genotypes identified. CONCLUSION In conclusion, our review provides convincing evidence that HPV infection increases the risk of developing lung cancer.
Collapse
Affiliation(s)
- Julia Karnosky
- Klinik und Poliklinik für Innere Medizin II, Bereich PneumologieKlinikum der Universität RegensburgRegensburgGermany
| | | | - Helge Knuettel
- UniversitätsbibliothekUniversität RegensburgRegensburgGermany
| | - Viola Freigang
- Klinik und Poliklinik für UnfallchirurgieKlinikum der Universität RegensburgRegensburgGermany
| | - Myriam Koch
- Klinik und Poliklinik für Innere Medizin II, Bereich PneumologieKlinikum der Universität RegensburgRegensburgGermany
| | - Franziska Koll
- Klinik und Poliklinik für Innere Medizin II, Bereich PneumologieKlinikum der Universität RegensburgRegensburgGermany
| | - Florian Zeman
- Zentrum für Klinische StudienKlinikum der Universität RegensburgRegensburgGermany
| | - Christian Schulz
- Klinik und Poliklinik für Innere Medizin II, Bereich PneumologieKlinikum der Universität RegensburgRegensburgGermany
| |
Collapse
|
15
|
Dong Z, Hu R, Du Y, Tan L, Li L, Du J, Bai L, Ma Y, Cui H. Immunodiagnosis and Immunotherapeutics Based on Human Papillomavirus for HPV-Induced Cancers. Front Immunol 2021; 11:586796. [PMID: 33488587 PMCID: PMC7820759 DOI: 10.3389/fimmu.2020.586796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Infection with human papillomavirus (HPV) is one of the main causes of malignant neoplasms, especially cervical, anogenital, and oropharyngeal cancers. Although we have developed preventive vaccines that can protect from HPV infection, there are still many new cases of HPV-related cancers worldwide. Early diagnosis and therapy are therefore important for the treatment of these diseases. As HPVs are the major contributors to these cancers, it is reasonable to develop reagents, kits, or devices to detect and eliminate HPVs for early diagnosis and therapeutics. Immunological methods are precise strategies that are promising for the accurate detection and blockade of HPVs. During the last decades, the mechanism of how HPVs induce neoplasms has been extensively elucidated, and several oncogenic HPV early proteins, including E5, E6, and E7, have been shown to be positively related to the oncogenesis and malignancy of HPV-induced cancers. These oncoproteins are promising biomarkers for diagnosis and as targets for the therapeutics of HPV-related cancers. Importantly, many specific monoclonal antibodies (mAbs), or newly designed antibody mimics, as well as new immunological kits, devices, and reagents have been developed for both the immunodiagnosis and immunotherapeutics of HPV-induced cancers. In the current review, we summarize the research progress in the immunodiagnosis and immunotherapeutics based on HPV for HPV-induced cancers. In particular, we depict the most promising serological methods for the detection of HPV infection and several therapeutical immunotherapeutics based on HPV, using immunological tools, including native mAbs, radio-labelled mAbs, affitoxins (affibody-linked toxins), intracellular single-chain antibodies (scFvs), nanobodies, therapeutical vaccines, and T-cell-based therapies. Our review aims to provide new clues for researchers to develop novel strategies and methods for the diagnosis and treatment of HPV-induced tumors.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yan Du
- Department of Ultrasound, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of Immunology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Juan Du
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longchang Bai
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yingkang Ma
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
16
|
Tang JY, Li DY, He L, Qiu XS, Wang EH, Wu GP. HPV 16 E6/E7 Promote the Glucose Uptake of GLUT1 in Lung Cancer Through Downregulation of TXNIP Due to Inhibition of PTEN Phosphorylation. Front Oncol 2020; 10:559543. [PMID: 33282728 PMCID: PMC7689016 DOI: 10.3389/fonc.2020.559543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
High-risk human papillomavirus (HPV) infection play an important role in the development of lung cancer. Our previously study showed that E6 and E7 in HPV16 upregulated the expression of GLUT1 in lung cancer cells. However, whether they can promote the glucose uptake by GLUT1 and the underlying molecular mechanism has not been identified. It has been reported that thioredoxin interacting protein (TXNIP) regulates both the expression of GLUT1 and its glucose uptake. We speculate that high risk HPV16 infection may be closely related to TXNIP expression. Therefore, we associate HPV16 with TXNIP to explore the potential molecular mechanism of their regulation of GLUT1 expression and glucose uptake. Using double directional genetic manipulation in lung cancer cells, we showed that HPV16 E6/E7 proteins downregulated the expression of p-PTEN in lung cancer cells, the knockdown of PTEN further inhibited the expression of TXNIP, the inhibition of TXNIP further promoted the accumulation of HIF-1α by inhibiting the translocation of nuclear HIF-1α to the cytoplasm, and subsequently upregulated the expression of GLUT1 at the protein and mRNA levels. More interestingly, we found that the knockdown of TXNIP played a decisive role to promote the glucose uptake by GLUT1. Together, these findings suggested that the PTEN-TXNIP-HIF-1α axis might be related to the E6/E7-mediated expression of GLUT1 and its glucose uptake.
Collapse
Affiliation(s)
- Jia-Yi Tang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dong-Yu Li
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysms, Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling He
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Hu Y, Ren S, He Y, Wang L, Chen C, Tang J, Liu W, Yu F. Possible Oncogenic Viruses Associated with Lung Cancer. Onco Targets Ther 2020; 13:10651-10666. [PMID: 33116642 PMCID: PMC7585805 DOI: 10.2147/ott.s263976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the most common cause of cancer death worldwide. Tobacco smoking is the most predominant etiology for lung cancer. However, only a small percentage of heavy smokers develop lung cancer, which suggests that other cofactors are required for lung carcinogenesis. Viruses have been central to modern cancer research and provide profound insights into cancer causes. Nevertheless, the role of virus in lung cancer is still unclear. In this article, we reviewed the possible oncogenic viruses associated with lung cancer.
Collapse
Affiliation(s)
- Yan Hu
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Siying Ren
- Department of Respiratory Medicine, Hunan Centre for Evidence-Based Medicine, Research Unit of Respiratory Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Yu He
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Li Wang
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Chen Chen
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Wenliang Liu
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| |
Collapse
|
18
|
Hu Y, Wu MZ, Gu NJ, Xu HT, Li QC, Wu GP. Human papillomavirus 16 (HPV 16) E6 but not E7 inhibits the antitumor activity of LKB1 in lung cancer cells by downregulating the expression of KIF7. Thorac Cancer 2020; 11:3175-3180. [PMID: 32945133 PMCID: PMC7606012 DOI: 10.1111/1759-7714.13640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The E6 and E7 proteins in human papillomavirus 16 (HPV 16) are the main oncogenes in the occurrence of lung cancer. In recent studies, we found that E6 and E7 downregulated the expression of LKB1 in lung cancer cells. However, it is still unclear how E6 and E7 regulate LKB1 in lung cancer cells. METHODS Double directional genetic manipulation and nuclear plasma separation technology were performed to explore the molecular mechanism of E6 and E7 inhibiting the antitumor activity of LKB1 in well-established lung cancer cell lines. RESULTS E6 but not E7 significantly downregulated the expression of tumor suppressor KIF7 at protein level, and the inhibition of KIF7 further reduced the expression of LKB1 both in the nuclei and in the cytoplasm, whereas reduced the expression of p-LKB1 in the cytoplasm only. This suggested that HPV 16 E6 but not E7 downregulates the antitumor activity of LKB1 by downregulating the expression of p-LKB1 in the cytoplasm only. CONCLUSIONS Here, we demonstrated for the first time that E6 but not E7 inhibits the antitumor activity of LKB1 in lung cancer cells by downregulating the expression of KIF7. Our findings provide new evidence to support the important role of KIF7 in the pathogenesis of lung cancer and suggests new therapeutic targets.
Collapse
Affiliation(s)
- Yue Hu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ming-Zhe Wu
- Departments of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Na-Jin Gu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hong-Tao Xu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qing-Chang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
19
|
Huang B, Zhou Z, Liu J, Wu X, Li X, He Q, Zhang P, Tang X. The role of monoamine oxidase A in HPV-16 E7-induced epithelial-mesenchymal transition and HIF-1α protein accumulation in non-small cell lung cancer cells. Int J Biol Sci 2020; 16:2692-2703. [PMID: 32792865 PMCID: PMC7415426 DOI: 10.7150/ijbs.46966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous studies have found that human papillomavirus (HPV)-16 E7 oncoprotein promotes epithelial-mesenchymal transition (EMT) and hypoxia-inducible factor-1α (HIF-1α) protein accumulation in non-small cell lung cancer (NSCLC) cells and monoamine oxidase A (MAOA) is highly expressed in NSCLC tissues. Here, we further explored the role of MAOA in HPV-16 E7-induced EMT and HIF-1α protein accumulation in A549 and NCI-H460 NSCLC cells. Our results showed that HPV-16 E7 enhanced MAOA expression in NSCLC cells. Additionally, MAOA knockout inhibited HPV-16 E7-induced migration, invasion, and EMT, and significantly reduced HPV-16 E7-induced ROS generation and HIF-1α protein accumulation via promoting its degradation. Furthermore, MAOA knockout suppressed HPV-16 E7-induced ERK1/2 activation. In vivo, MAOA knockout inhibited tumor growth, metastasis, and the expression of EMT-related markers and HIF-1α proteins induced by HPV-16 E7 in NCI-H460 NSCLC subcutaneous xenograft and in situ intrapulmonary models of nude mice. Taken together, our findings provide evidence that MAOA plays a key role in EMT and HIF-1α protein accumulation induced by HPV-16 E7 in NSCLC cells, suggesting that MAOA may be a potential therapeutic target for HPV-related NSCLC.
Collapse
Affiliation(s)
- Bingyu Huang
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zhiyuan Zhou
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Jiao Liu
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xin Wu
- Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Qiang He
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P.R. China
| | - Peihua Zhang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P.R. China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P.R. China
| |
Collapse
|
20
|
Zhang C, Mi J, Deng Y, Deng Z, Long D, Liu Z. DNMT1 Enhances the Radiosensitivity of HPV-Positive Head and Neck Squamous Cell Carcinomas via Downregulating SMG1. Onco Targets Ther 2020; 13:4201-4211. [PMID: 32523356 PMCID: PMC7237113 DOI: 10.2147/ott.s227395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/18/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Head and neck squamous cell carcinoma (HNSCC), which rank the 7th malignant tumors worldwide, is closely related to methylation and HPV infection. Ionizing radiation therapy is the main strategy for HNSCC patients in advanced stage. Previously, HPV-positive HNSCC predict better prognosis than HPV-negative HNSCCs under radiotherapy, however its molecular mechanism is unresolved. SMG1 serves as a potential tumor suppressor in various cancers, including HNSCC. Methods The mRNAs and proteins expression of HPV E6/E7, p16, p53, DNMT1, SMG1 were detected after different treatments by qPCR and Western blot. The clone formation ability was measured in radiation dose after different treatments. Results In our study, the expression of HPV16 E6, DNA Methyltransferase 1(DNMT1) and SMG1 in head and neck carcinomas cell lines was detected by RT-qPCR and Western blot. Forced E6 level in HPV-negative cells by overexpression plasmid promoted the expression of DNMT1, which resulted in decreased SMG1 expression. Silenced SMG1 in HPV-negative HNSCC cells elicited increased radiation sensitivity, suggesting that SMG1 may be an effective switch to regulate the effect of radiotherapy in HNSCC. Conclusion Our study indicated that DNMT1 enhances the radiosensitivity of HPV-positive head and neck squamous cell carcinomas via downregulating SMG1.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiaoping Mi
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sun University, Zunyi, People's Republic of China
| | - Yuan Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dan Long
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China.,The Graduate School of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zhaohui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
21
|
Papillomavirus DNA is not Amplifiable from Bladder, Lung, or Mammary Gland Cancers in Dogs or Cats. Animals (Basel) 2019; 9:ani9090668. [PMID: 31500370 PMCID: PMC6770269 DOI: 10.3390/ani9090668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Papillomaviruses (PVs) are well established to cause genital and oral cancer in humans. Additionally, some evidence suggests that these viruses may also have a role in the development of human lung, breast, and bladder cancer. Recent studies have revealed that PVs can influence the development of some cancers in cats and, less frequently, in dogs. In the present study, 47 lung, mammary gland, and bladder cancers in dogs and 25 cancers in cats were evaluated for evidence of any role PVs may have in cancer development. Histology did not reveal any lesions suggestive of PV infection, and no PV DNA was amplified from any cancer. Therefore, these findings suggest that PVs do not frequently infect these tissues and are therefore unlikely to be significant factors in the development of lung, mammary gland, or bladder cancer in either dogs or cats. Abstract Papillomaviruses (PVs) cause around 5% of all human cancers, including most cervical cancers and around a quarter of all oral cancers. Additionally, some studies have suggested that PVs could cause a proportion of human lung, breast, and bladder cancers. As PVs have been associated with skin cancer in cats and, more rarely, dogs, it was hypothesized that these viruses could also contribute to epithelial cancers of the lung, mammary gland, and bladder of dogs and cats. Formalin-fixed paraffin-embedded samples of 47 canine and 25 feline cancers were examined histologically for evidence of PV infection. Additionally, three sets of consensus PCR primers were used to amplify PV DNA from the samples. No histological evidence of PV infection was visible in any of the cancers. DNA from a bovine PV type was amplified from one sample, while two different samples were found to contain human PV DNA. However, these were considered to be contaminants, and no canine or feline PV types were amplified from any of the cancers. These results suggest that PVs do not frequently infect the lung, mammary gland, or bladder of dogs and cats and therefore are unlikely to be significant factors in the development of cancers in these tissues.
Collapse
|
22
|
Human papillomavirus is not associated to non-small cell lung cancer: data from a prospective cross-sectional study. Infect Agent Cancer 2019; 14:18. [PMID: 31388352 PMCID: PMC6679449 DOI: 10.1186/s13027-019-0235-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background The pathogenesis of lung cancer is triggered by a combination of genetic and environmental factors, being the tobacco smoke the most important risk factor. Nevertheless, the incidence of lung cancer in non-smokers is gradually increasing, which demands the search for different other etiological factors such as occupational exposure, previous lung disease, diet among others. In the early 80’s a theory linked specific types of human papillomavirus (HPV) to lung cancer due to morphological similarities of a subset of bronchial squamous cell carcinomas with other HPV-induced cancers. Since then, several studies revealed variable rates of HPV DNA detection. The current study aimed to provide accurate information on the prevalence of HPV DNA in lung cancer. Methods Biopsies were collected from 77 newly diagnosed non-small cell lung cancer (NSCLC) patients treated at the Thoracic Oncology Department at Barretos Cancer Hospital. The samples were formalin fixed and paraffin embedded (FFPE), histologic analysis was performed by an experienced pathologist. DNA was extracted from FFPE material using a commercial extraction kit and HPV DNA detection was evaluated by multiplex PCR and HPV16 specific real-time PCR. Results HPV was not identified in any of the samples analysed (69). Conclusions Our data demonstrated a lack of HPV DNA in a series of NSCL cancers.
Collapse
|
23
|
Human papillomavirus and lung cancer: an overview and a meta-analysis. J Cancer Res Clin Oncol 2019; 145:1919-1937. [PMID: 31236668 DOI: 10.1007/s00432-019-02960-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE This review is devoted to assessing the prevalence of human papillomavirus (HPV) in lung cancer (LC) in the world. HPV is recognized as the etiological factor of cervical cancer, however, there is widespread evidence that this virus is detected not only in gynecological carcinomas, but also in tumors of other organs, in particular the upper respiratory tract and digestive tract. MATERIALS AND METHODS A search was conducted to a depth of 29 years in the PubMed, Web of Science, Scopus, databases. The review includes 95 articles. RESULTS Of all the analyzed studies (9195 patients), 12 works showed a complete absence of HPV in the biological material in patients with LC. The absence of a virus among lung cancer patients has been established for Canada, the Netherlands and Singapore. The highest average percent of occurrence of this virus is shown for such countries as: Brazil, Korea, Greece and Taiwan (more than 40%). But the highest percentage of HPV occurrence by region is observed in Latin America (33.5%), followed by the Asian countries (31%), in European countries the frequency is 18%. Interestingly, the highest occurrence of high oncogenic types (16 and 18) is observed in Asia (40.3%), then in Latin America (33.6%), Europe (25.6%) and North America (15.4%). Low-oncogenic types (6 and 11) are also predominantly observed in Asia (39.9%), while in Europe and North America 30% and 12.8%, respectively. A meta-analysis of the prevalence of HPV was conducted using Comprehensive Meta-Analysis 3.0. Program, which included 26 studies, the results of which revealed: the prevalence of HPV infection in tumor lung tissue was compared with normal lung tissue OR (95% CI) = 5.38 (3.21-9.00) p < 0.0001, significance was also found for Chinese studies OR = 6.3, 95% CI 3.42-11.53, p < 0.0001, I2 = 71.8% and for nine studies in Europe OR = 6.3, 95% CI 1.8-22.18, p = 0.004, I2 = 51.0%. However, given the fact that the frequency of occurrence of HPV in lung tumor tissue varies greatly, a question may arise about the real role of HPV in LC carcinogenesis, which makes further research relevant and promising.
Collapse
|
24
|
Santos JMO, Peixoto da Silva S, Costa NR, Gil da Costa RM, Medeiros R. The Role of MicroRNAs in the Metastatic Process of High-Risk HPV-Induced Cancers. Cancers (Basel) 2018; 10:cancers10120493. [PMID: 30563114 PMCID: PMC6316057 DOI: 10.3390/cancers10120493] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
High-risk human papillomavirus (HPV)-driven cancers represent a major health concern worldwide. Despite the constant effort to develop and promote vaccination against HPVs, there is still a high percentage of non-vaccinated population. Furthermore, secondary prevention programs are not ubiquitous worldwide and not widely followed. Metastatic disease is the cause of the great majority of cancer-associated deaths, making it essential to determine its underlying mechanisms and to identify actionable anti-metastatic targets. Within certain types of cancer (e.g., head and neck), HPV-positive tumors show different dissemination patterns when compared with their HPV-negative counterparts, implicating HPV-related factors in the metastatic process. Among the many groups of biomolecules dysregulated by HPV, microRNAs have recently emerged as key regulators of carcinogenesis, able to control complex processes like cancer metastization. In this review, we present recent data on the role of microRNAs in the metastization of HPV-related cancers and on their possible clinical relevance as biomarkers of metastatic disease and/or as therapeutic targets.
Collapse
Affiliation(s)
- Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
- Research Department of the Portuguese League Against Cancer⁻Regional Nucleus of the North (Liga Portuguesa Contra o Cancro⁻Núcleo Regional do Norte), 4200-177 Porto, Portugal.
| | - Sara Peixoto da Silva
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
| | - Natália R Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
- Research Department of the Portuguese League Against Cancer⁻Regional Nucleus of the North (Liga Portuguesa Contra o Cancro⁻Núcleo Regional do Norte), 4200-177 Porto, Portugal.
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|