1
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Ghafouri-Fard S, Dashti S, Taheri M. Erratum to "The HOTTIP (HOXA transcript at the distal tip) lncRNA: Review of oncogenic roles in human" [Biomed. Pharmacother. 127(2020) 110158]. Biomed Pharmacother 2025:117868. [PMID: 39863493 DOI: 10.1016/j.biopha.2025.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chen JF, Ye SZ, Wang KJ, Meng XY, Yang BB, Wu KR, Ma Q. Long non-coding RNA OSTM1-AS1 promotes renal cell carcinoma progression by sponging miR-491-5p and upregulating MMP-9. Sci Rep 2025; 15:359. [PMID: 39747324 PMCID: PMC11696353 DOI: 10.1038/s41598-024-83154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as essential regulators in various human malignancies. Hundreds of lncRNAs were known to be abnormally expressed in renal cell carcinoma (RCC) through a lncRNA expression microarray, among which lncRNA OSTM1 antisense RNA 1(OSTM1-AS1) was revealed as one of the most abundant lncRNAs. However, the function of OSTM1-AS1 in RCC remains unknown. Here, we examined OSTM1-AS1 functional roles and mechanism in RCC development. OSTM1-AS1 expression was significantly highly expressed among RCC tissue specimens and cell lines. Functionally, OSTM1-AS1 knockdown significantly suppressed cell proliferation, migration along with metastasis of RCC cells. Mechanistically, miR-491-5p was targeted via OSTM1-AS1, and down-regulation of miR-491-5p reversed OSTM1-AS1 knockdown impact on RCC migration and invasion. MMP-9 was targeted via miR-491-5p, and MMP-9 overexpression reversed miR-491-5p or OSTM1-AS1 knockdown impact on cell migration and invasion. MMP-9 abundance was decreased by OSTM1-AS1 silence, that was reduced by miR-491-5p deficiency. Importantly, our investigation revealed that OSTM1-AS1 has the ability to interact with miR-491-5p, thereby increasing the MMP-9 expression. The in vivo trial demonstrated that OSTM1-AS1 suppression resulted in tumor growth inhibition among nude mice. In summary, our findings indicate, for the first time, at least to the best of our knowledge, that OSTM1-AS1 serves as an oncogene among RCC by promoting proliferation, invasion, and metastasis through its targeting of the miR-491-5p/MMP9 axis. Therefore, this axis could represent a promising alternative therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Jun-Feng Chen
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Bin-Bin Yang
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke Rong Wu
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Yi-Huan Genitourinary Cancer Group, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
4
|
Yuan Z, He J, Li Z, Fan B, Zhang L, Man X. Targeting autophagy in urological system cancers: From underlying mechanisms to therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189196. [PMID: 39426690 DOI: 10.1016/j.bbcan.2024.189196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiani He
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Fan
- Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xiaojun Man
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Mirinejad S, Salimi S, Sargazi S, Heidari Nia M, Sheervalilou R, Majidpour M, Harati-Sadegh M, Sarhadi M, Shahraki S, Ghasemi M. Association of Genetic Polymorphisms in Long Noncoding RNA HOTTIP with Risk of Idiopathic Recurrent Spontaneous Abortion. Biochem Genet 2024; 62:2884-2906. [PMID: 38038774 DOI: 10.1007/s10528-023-10571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
The clustered homeobox gene family known as the Hox family plays a fundamental role in the morphogenesis of the vertebrate's embryo. A long noncoding RNA (lncRNA), known as HOTTIP (HOXA transcript at the distal tip), has been functionally characterized and contributed to the pathogenesis of various conditions. The current case-control study was undertaken to examine the gene frequencies and shared alleles of the HOTTIP gene in Iranian participants with or without idiopathic recurrent spontaneous abortion (RSA). Both ARMS-PCR reaction and RFLP-PCR techniques were employed to detect three HOTTIP polymorphisms (rs2023843C/T, rs78248039A/T, and rs1859168C/A) in a DNA sample of 161 women with RSA and 177 healthy women. We found that the TT genotype of the HOTTIP rs2023843 C/T polymorphism was associated with a lower risk for idiopathic RSA. In contrast, the TT genotype of the HOTTIP rs78248039 A/T polymorphism was correlated with an enhanced risk of RSA. The presence of the A-allele for HOTTIP rs1859168 C/A polymorphism was associated with an increased risk for idiopathic RSA. Haplotype analysis showed that the T/T/A, C/T/A, T/T/C, and T/A/A haplotypes of rs2023843/rs78248039/rs1859168 enhanced RSA susceptibility. Computational analysis predicted that this lncRNA might act as a potential sponge for some microRNAs; therefore, affecting the expression of genes being targeted by them. In addition, both rs2023843 and rs1859168 variants could alter the local secondary structure of HOTTIP. Our results showed that HOTTIP rs2023843C/T, rs78248039A/T, and rs1859168C/A polymorphisms may confer genetic susceptibility to idiopathic RSA in an Iranian population.
Collapse
Affiliation(s)
- Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Harati-Sadegh
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Marzieh Ghasemi
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Moloud Infertility Center, Ali ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
6
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. Critical roles of lncRNA-mediated autophagy in urologic malignancies. Front Pharmacol 2024; 15:1405199. [PMID: 38939836 PMCID: PMC11208713 DOI: 10.3389/fphar.2024.1405199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Urologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers. The intricate network involving different lncRNAs, target genes, and mediated signaling pathways plays a crucial role in urological malignancies by modulating the autophagic process. Dysregulated expression of lncRNAs can disrupt autophagy, leading to tumorigenesis, progression, and enhanced resistance to therapy. Consequently, targeting particular lncRNAs that control autophagy could serve as a dependable diagnostic tool and a promising prognostic biomarker in urologic oncology, while also holding potential as an effective therapeutic approach.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Identification and Validation of the Prognostic Panel in Clear Cell Renal Cell Carcinoma Based on Resting Mast Cells for Prediction of Distant Metastasis and Immunotherapy Response. Cells 2023; 12:cells12010180. [PMID: 36611973 PMCID: PMC9818872 DOI: 10.3390/cells12010180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) has a high metastatic rate, and its incidence and mortality are still rising. The aim of this study was to identify the key tumor-infiltrating immune cells (TIICs) affecting the distant metastasis and prognosis of patients with ccRCC and to construct a relevant prognostic panel to predict immunotherapy response. Based on ccRCC bulk RNA sequencing data, resting mast cells (RMCs) were screened and verified using the CIBERSORT algorithm, survival analysis, and expression analysis. Distant metastasis-associated genes were identified using single-cell RNA sequencing data. Subsequently, a three-gene (CFB, PPP1R18, and TOM1L1) panel with superior distant metastatic and prognostic performance was established and validated, which stratified patients into high- and low-risk groups. The high-risk group exhibited lower infiltration of RMCs, higher tumor mutation burden (TMB), and worse prognosis. Therapeutically, the high-risk group was more sensitive to anti-PD-1 and anti-CTLA-4 immunotherapy, whereas the low-risk group displayed a better response to anti-PD-L1 immunotherapy. Furthermore, two immune clusters revealing distinct immune, clinical, and prognosis heterogeneity were distinguished. Immunohistochemistry of ccRCC samples verified the expression patterns of the three key genes. Collectively, the prognostic panel based on RMCs is able to predict distant metastasis and immunotherapy response in patients with ccRCC, providing new insight for the treatment of advanced ccRCC.
Collapse
|
8
|
Liu T, Zhao H. Long Non-Coding RNAs: A Double-Edged Sword in Renal Cell Carcinoma Carcinogenesis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1537.1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
10
|
Liu G, Xiong D, Che Z, Chen H, Jin W. A novel inflammation‑associated prognostic signature for clear cell renal cell carcinoma. Oncol Lett 2022; 24:307. [PMID: 35949606 PMCID: PMC9353224 DOI: 10.3892/ol.2022.13427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) are typically situated in a complex inflammatory and immune microenvironment, which has been reported to contribute to the unfavorable prognosis of patients with ccRCC. There would be beneficial clinical implications for elucidating the roles of its molecular characteristics in the inflammatory microenvironment. This is because it would facilitate the development of reliable biomarkers for pre-stratification prior to the designation of individualized treatment strategies. In the present study, RNA-sequencing data from 607 patients were retrospectively analyzed to elucidate the profile of inflammatory molecules. Based on this, an inflammatory prognostic signature (IPS) was developed and further validated using clinical ccRCC samples. Subsequently, the associated mechanisms in terms of the immune microenvironment and molecular pathways were then investigated. This proposed IPS was found to exhibit superior accuracy compared with the criterion of a good prognostic model for the prediction of patient prognosis from ccRCC [area under the receiver operating characteristic curve (AUC)=0.811] in addition to being an independent factor for prognostic risk stratification [hazard ratio: 11.73 (95% CI, 26.98-5.10); log-rank test, P<0.001]. Pathologically, ccRCC cells identified as high-risk according to their IPS presented with a more malignant tumor structure, including voluminous eosinophilic cytoplasm, acinar/lamellar/tubular growth patterns and atypic nuclei. High-risk ccRCC also exhibited higher infiltration levels by four types of immune cells, including T regulatory cells, but lower infiltration levels by mast cells. Pathways associated with immune-inflammation interaction, including the IL-17 pathway, were found to be upregulated in IPS-identified high-risk ccRCC. Furthermore, by combining the IPS with clinical factors, an integrated prognostic index was developed and validated for increasing the accuracy of patient risk-stratification for ccRCC (AUC=0.911). In conclusion, the complex regulatory mechanisms and molecular characteristics involved in ccRCC-inflammation interaction, coupled with their prognostic potential, were systematically elucidated in the present study. This may have important implications in furthering the understanding into the molecular mechanisms underlying this ccRCC-inflammation interaction, which can in turn be exploited for identifying high-risk patients with ccRCC prior to designing their clinical treatment strategy.
Collapse
Affiliation(s)
- Gangcheng Liu
- Department of Urology Surgery, Affiliated Renhe Hospital of China Three Gorges University Second Clinical Medical College of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Donglan Xiong
- Department of Respiratory Medicine, Affiliated Renhe Hospital of China Three Gorges University Second Clinical Medical College of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Zhifei Che
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Hualei Chen
- Department of Urology Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Wenyi Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
11
|
Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022; 49:7025-7037. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Cancer widely affects the world's health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell's self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.
Collapse
|
12
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Iron oxide nanoparticles loaded with paclitaxel inhibits glioblastoma by enhancing autophagy-dependent ferroptosis pathway. Eur J Pharmacol 2022; 921:174860. [DOI: 10.1016/j.ejphar.2022.174860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
|
14
|
Liu T, Xu S, Liu X. LINC00628 is differentially expressed between lung adenocarcinoma and squamous cell carcinoma and is associated with the prognosis of NSCLC. Oncol Lett 2022; 23:55. [PMID: 34992687 PMCID: PMC8721862 DOI: 10.3892/ol.2021.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most frequent malignancy worldwide, and lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) represent two major subtypes. LINC00628 has been demonstrated to promote LUAD progression; however, its clinical role in NSCLC remains elusive. The aim of the present study was to analyze the expression of long intergenic non-protein coding RNA 628 (LINC00628) in NSCLC, including in the LUAD and LUSC subtypes. In addition, its roles in NSCLC development and prognosis were also examined. Data from The Cancer Genome Atlas (TCGA) database were first used to assess the expression and prognostic potential in both LUAD and LUSC, then LINC00628 expression in 128 NSCLC tissues was measured using reverse transcription-quantitative PCR. A receiver operating characteristic curve was used to assess the ability of LINC00628 to discriminate between patients with LUAD and LUSC. Kaplan-Meier curves were used to analyze the relationship between LINC00628 expression and the overall survival of patients. Cox regression analysis was used to explore the potential prognostic factors that might be independently associated with NSCLC overall survival. Both in silico and tissue analysis data indicated that the expression of LINC00628 was significantly upregulated in NSCLC tissue compared with matched normal controls (P<0.001). LINC00628 expression levels were also significantly higher in LUAD cases than in patients with LUSC (P<0.001). In addition, LINC00628 could discriminate LUAD from LUSC cases. The expression of LINC00628 was significantly associated with tumor size (P=0.013), histological type (P=0.009), lymph node metastasis (P=0.021) and TNM stage (P=0.008). Survival analysis based on data from both TCGA and patients included in the present study identified an association between LINC00628 and overall survival in LUAD, but this relationship was not observed in LUSC for TCGA data. Cox regression analysis demonstrated that high LINC00628 expression was associated with poor overall survival in patients with LUAD (P=0.001), but not in patients with LUSC (P=0.088). In conclusion, LINC00628 expression was upregulated in NSCLC and associated with patient prognosis. Patients with LUAD had higher LINC00628 expression levels than those with LUSC, and increased LINC00628 served as an independent prognostic factor in LUAD, but not LUSC.
Collapse
Affiliation(s)
- Tingting Liu
- Health Management Center, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Shuangshuang Xu
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaoxin Liu
- Emergency Department, Weifang People's Hospital Brain Hospital, Weifang, Shandong 100191, P.R. China
| |
Collapse
|
15
|
Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer 2021; 1876:188642. [PMID: 34715268 DOI: 10.1016/j.bbcan.2021.188642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022]
Abstract
Autophagy, usually referred to as macroautophagy, is a cytoprotective behavior that helps cells, especially cancer cells, escape crises. However, the role of autophagy in cancer remains controversial. The induction of autophagy is favorable for tumor growth, as it can degrade damaged cell components accumulated during nutrient deficiency, chemotherapy, or other stresses in a timely manner. Whereas the antitumor effect of autophagy might be closely related to its crosstalk with metabolism, immunomodulation, and other pathways. Recent studies have verified that lncRNAs and circRNAs modulate autophagy in carcinogenesis, cancer cells proliferation, apoptosis, metastasis, and chemoresistance via multiple mechanisms. A comprehensive understanding of the regulatory relationships between ncRNAs and autophagy in cancer might resolve chemoresistance and also offer intervention strategies for cancer therapy. This review systematically displays the regulatory effects of lncRNAs and circRNAs on autophagy in the contexts of cancer initiation, progression, and resistance to chemo- or radiotherapy and provides a novel insight into cancer therapy.
Collapse
|
16
|
LncRNAs in the Regulation of Genes and Signaling Pathways through miRNA-Mediated and Other Mechanisms in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011193. [PMID: 34681854 PMCID: PMC8539140 DOI: 10.3390/ijms222011193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
The fundamental novelty in the pathogenesis of renal cell carcinoma (RCC) was discovered as a result of the recent identification of the role of long non-coding RNAs (lncRNAs). Here, we discuss several mechanisms for the dysregulation of the expression of protein-coding genes initiated by lncRNAs in the most common and aggressive type of kidney cancer-clear cell RCC (ccRCC). A model of competitive endogenous RNA (ceRNA) is considered, in which lncRNA acts on genes through the lncRNA/miRNA/mRNA axis. For the most studied oncogenic lncRNAs, such as HOTAIR, MALAT1, and TUG1, several regulatory axes were identified in ccRCC, demonstrating a number of sites for various miRNAs. Interestingly, the LINC00973/miR-7109/Siglec-15 axis represents a novel agent that can suppress the immune response in patients with ccRCC, serving as a valuable target in addition to the PD1/PD-L1 pathway. Other mechanisms of action of lncRNAs in ccRCC, involving direct binding with proteins, mRNAs, and genes/DNA, are also considered. Our review briefly highlights methods by which various mechanisms of action of lncRNAs were verified. We pay special attention to protein targets and signaling pathways with which lncRNAs are associated in ccRCC. Thus, these new data on the different mechanisms of lncRNA functioning provide a novel basis for understanding the pathogenesis of ccRCC and the identification of new prognostic markers and targets for therapy.
Collapse
|
17
|
Xu T, Xu X, Chu Y, Jiang D, Xu G. Long‑chain non‑coding RNA GAS5 promotes cell autophagy by modulating the miR‑181c‑5p/ ATG5 and miR‑1192/ ATG12 axes. Int J Mol Med 2021; 48:209. [PMID: 34608496 PMCID: PMC8510682 DOI: 10.3892/ijmm.2021.5042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The main aim of the present study was to explore the role of long-chain non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in macrophage autophagy. Firstly, the expression of lncRNA GAS5 during cell starvation or following treatment with 3-methyladenine was determined using reverse transcription-quantitative PCR (RT-qPCR). Additionally, fluorescent in situ hybridization (FISH) assay was utilized to determine the localization of the expression of lncRNA GAS5 in RAW264.7 cells. In vitro cell models were established through the transfection of LV5-lncRNA GAS5 (LV5-GAS5) or LV3-shRNA-lnc GAS5 (sh-GAS5), in order to overexpress or knockdown lncRNA GAS5 expression in RAW264.7 cells. The potential target microRNAs (miRNAs/miRs) of lncRNA GAS5 were analyzed using bioinformatics. The formation of autophagic bodies was detected with the use of laser confocal and transmission electron microscopy. Dual-luciferase reporter assay was performed to determine the target specificities of miR-181c-5p or miR-1192 to lncRNA GAS5 and autophagy-related gene (ATG) or ATG12. The mRNA levels of miR181c-5p, miR-1192, as well as ATG5 and ATG12 were detected using RT-qPCR. The protein levels of microtubule-associated proteins 1A/1B light chain 3B (LC3), p62, ATG5 and ATG12 were measured using western blot analysis. It was revealed that lncRNA GAS5 expression in RAW264.7 macrophages increased significantly during starvation-induced autophagy, and that lncRNA GAS5 overexpression was able to markedly promote the formation of autophagic bodies. Bioinformatics analysis demonstrated that miR-181c-5p and miR-1192 were potential targets of lncRNA GAS5, which was further confirmed by RT-qPCR, western blot analysis and the dual-luciferase reporter assay. Finally, it was confirmed that lncRNA GAS5 promoted autophagy by sponging miR-181c-5p and miR-1192, and upregulating the expression levels of the key autophagic regulators, ATG5 and ATG12. On the whole, the present study demonstrates that total, lncRNA GAS5 promotes macrophage autophagy by targeting the miR-181c-5p/ATG5 and miR-1192/ATG12 axes.
Collapse
Affiliation(s)
- Tao Xu
- Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xiangrong Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yuankui Chu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Dan Jiang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guangxian Xu
- Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
18
|
Cui Y, Zhang S, Miao C, Liang C, Chen X, Yan T, Bu H, Dong H, Li J, Li J, Wang Z, Liu B. Identification of autophagy-related long non-coding RNA prognostic and immune signature for clear cell renal cell carcinoma. Transl Androl Urol 2021; 10:3317-3331. [PMID: 34532256 PMCID: PMC8421821 DOI: 10.21037/tau-21-278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Studies over the past decade have shown that long non-coding RNAs (lncRNAs) play an essential role in the tumorigenesis and progression of kidney renal clear cell carcinoma (KIRC). Meanwhile, autophagy has been demonstrated to regulate KIRC pathogenesis and targeting therapy resistance. However, the prognostic value of autophagy-related lncRNAs in KIRC patients has not been reported before. METHODS In this study, we obtained transcriptome data of 611 KIRC cases from the TCGA database and 258 autophagy-related mRNAs from the HADb database to identify autophagy-related lncRNAs by co-expression network. A prognostic model was then established basing on these autophagy-related lncRNAs, dividing patients into high-risk and low-risk groups. Survival analysis, clinical variables dependent receiver operating characteristic (ROC) analyses, univariate/multivariate Cox analyses, and clinical correlation analysis were performed based on risk signature with R language. Gene set enrichment analysis (GSEA) was then performed to investigate the potential mechanism of the risk signature promoting KIRC progression with GSEA software. CIBERSORT algorithm was performed to assess the impact of these lncRNAs on the infiltration of immune cells. RESULTS A total of 17 lncRNAs were screened out and all these lncRNAs were found significantly related to KIRC patients' overall survival in subsequent survival analyses. Besides, the overall survival time in the high-risk group was much poorer than in the low-risk group. The ROC analysis revealed that the prognostic value of risk signature was better than age, gender, grade, and N stage. Univariate/multivariate analyses suggested that the risk signature was an independent predictive factor for KIRC patients. Immune and autophagy related pathways were dramatically enriched in high-risk and low-risk groups, respectively, and lncRNAs related immune cells were identified by CIBERSORT. CONCLUSIONS In summary, our identified 17 autophagy-related lncRNAs had prognostic value for KIRC patients which may function in immunomodulation.
Collapse
Affiliation(s)
- Yankang Cui
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shaobo Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junchen Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Su Y, Zhang T, Tang J, Zhang L, Fan S, Zhou J, Liang C. Construction of Competitive Endogenous RNA Network and Verification of 3-Key LncRNA Signature Associated With Distant Metastasis and Poor Prognosis in Patients With Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:640150. [PMID: 33869028 PMCID: PMC8044754 DOI: 10.3389/fonc.2021.640150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignancy with high distant metastasis rate. Long non-coding RNAs (LncRNAs) are reported to be upregulated or downregulated in multiple cancers and play a crucial role in the metastasis of tumors or prognosis. Therefore, the purpose of our study is to construct a prognostic signature for ccRCC based on distant metastasis-related lncRNAs and explore the involved potential competitive endogenous RNA (ceRNA) network. The differentially expressed genes (DEGs) screened from the database of the cancer genome atlas (TCGA) were used to construct a co-expression network and identify the distant metastasis-related module by weighted gene co-expression network analysis (WGCNA). Key genes with metastatic and prognostic significance were identified through rigorous screening, including survival analysis, correlation analysis, and expression analyses in stage, grade, and distant metastasis, and were verified in the data set of gene expression omnibus (GEO) and the database from gene expression profiling interactive analysis (GEPIA). The potential upstream miRNAs and lncRNAs were predicted via five online databases and LncBase. Here, we constructed a ceRNA network of key genes that are significantly associated with the distant metastasis and prognosis of patients with ccRCC. The distant metastasis-related lncRNAs were used to construct a risk score model through the univariate, least absolute shrinkage selection operator (LASSO), and multivariate Cox regression analyses, and the patients were divided into high- and low-risk groups according to the median of the risk score. The Kaplan–Meier survival analysis demonstrated that mortality was significantly higher in the high-risk group than in the low-risk group. Considering the other clinical phenotype, the Cox regression analyses indicated that the lncRNAs model could function as an independent prognostic factor. Quantitative real-time (qRT)-PCR in the tissues and cells of ccRCC verified the high-expression level of three lncRNAs. Gene set enrichment analysis (GSEA) revealed that the lncRNA prognostic signature was mainly enriched in autophagy- and immune-related pathways, indicating that the autophagy and immune functions may play an important role in the distant metastasis of ccRCC. In summary, the constructed distant metastasis-related lncRNA signature could independently predict prognosis in patients with ccRCC, and the related ceRNA network provided a new sight on the potential mechanism of distant metastasis and a promising therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yang Su
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Tianxiang Zhang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Jieqiong Tang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
He YH, Tian G. Autophagy as a Vital Therapy Target for Renal Cell Carcinoma. Front Pharmacol 2021; 11:518225. [PMID: 33643028 PMCID: PMC7902926 DOI: 10.3389/fphar.2020.518225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process that degrades and recycles superfluous organelles or damaged cellular contents. It has been found to have dual functions in renal cell carcinoma (RCC). Many autophagy-related proteins are regarded as prognostic markers of RCC. Researchers have attempted to explore synthetic and phytochemical drugs for RCC therapy that target autophagy. In this review, we highlight the importance of autophagy in RCC and potential treatments related to autophagy.
Collapse
Affiliation(s)
- Ying-Hua He
- Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guo Tian
- Hepatobiliary and Pancreatic Intervention Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
22
|
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M. An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 2021; 135:111198. [PMID: 33412388 DOI: 10.1016/j.biopha.2020.111198] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNA-124 (miR-124) is a copious miRNA in the brain, but it is expressed in a wide range of human/animal tissues participating in the pathogenesis of several disorders. Based on its important function in the development of the nervous system, abnormal expression of miR-124 has been detected in nervous system diseases including Alzheimer's disease, Parkinson's disease, Hypoxic-Ischemic Encephalopathy, Huntington's disease, and ischemic stroke. In addition to these conditions, miR-124 contributes to the pathogenesis of cardiovascular disorders, hypertension, and atherosclerosis. Besides, it has been shown to be down-regulated in a wide range of human cancers such as colorectal cancer, breast cancer, gastric cancer, glioma, pancreatic cancer, and other types of cancer. Yet, few studies have reported upregulation of miR-124 in some cancer types. In the current study, we describe the role of miR-124 in these malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Liu K, Ni J, Li W, Pan B, Yang Y, Xia Q, Huang J. The Sp1/FOXC1/HOTTIP/LATS2/YAP/β-catenin cascade promotes malignant and metastatic progression of osteosarcoma. Mol Oncol 2020; 14:2678-2695. [PMID: 32634265 PMCID: PMC7530777 DOI: 10.1002/1878-0261.12760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/02/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
The prognosis for osteosarcoma (OS) is dismal due to the aggressive tumor growth and high incidence of metastasis. The long noncoding RNA human homeobox A transcript at the distal tip (HOTTIP) and the transcription factor forkhead box C1 (FOXC1) present oncogenic activities in OS. Here, we aimed at gaining insights into the underlying mechanisms and their crosstalk. The expression of FOXC1 and HOTTIP in OS tissues or cell lines was examined by real-time PCR (RT-PCR) and western blot. The in vitro effects of FOXC1 or HOTTIP on cell viability, proliferation, migration, invasion, and expression of target genes were examined using MTT, colony-forming assay, wound-healing, Transwell invasion, and western blot, respectively; the in vivo effects were examined using xenograft and experimental metastasis models. Molecular control of HOTTIP on large tumor suppressor 2 (LATS2) or transactivation of FOXC1 or Sp1 on HOTTIP was assessed by combining RNA immunoprecipitation, qRT-PCR, western blot, ChIP, and luciferase assay. Both FOXC1 and HOTTIP were potently up-regulated in OS tissues and cell lines. FOXC1 and HOTTIP essentially maintained viability, proliferation, migration, and invasion of OS cells in vitro and contributed to xenograft growth or lung metastasis in vivo. Mechanistically, HOTTIP recruited enhancer of zeste homolog 2 (EZH2) and lysine-specific demethylase 1 (LSD1) to silence LATS2 and thus activated YAP/β-catenin signaling. Upstream, Sp1 activated FOXC1 and they both directly transactivated HOTTIP. In summary, we showed that the Sp1/FOXC1/HOTTIP/LATS2/YAP/β-catenin cascade presented oncogenic activities in OS cells. Targeting FOXC1 or HOTTIP may therefore prove beneficial for OS treatment.
Collapse
Affiliation(s)
- Ke Liu
- Department of OphthalmologyThe 2nd Xiangya HospitalCentral South UniversityChangshaChina
| | - Jiang‐Dong Ni
- Department of OrthopaedicsThe 2nd Xiangya HospitalCentral South UniversityChangshaChina
| | - Wen‐Zhao Li
- Department of OrthopaedicsThe 2nd Xiangya HospitalCentral South UniversityChangshaChina
| | - Bai‐Qi Pan
- Department of OrthopaedicsThe 2nd Xiangya HospitalCentral South UniversityChangshaChina
| | - Yu‐Ting Yang
- Department of OphthalmologyThe 2nd Xiangya HospitalCentral South UniversityChangshaChina
| | - Qin Xia
- Department of OrthopaedicsThe 2nd Xiangya HospitalCentral South UniversityChangshaChina
| | - Jun Huang
- Department of OrthopaedicsThe 2nd Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
24
|
Liu J, Hu HB, Liu YM, Li FX, Zhang LP, Liao ZM. LncRNA HOTTIP promotes the proliferation and invasion of ovarian cancer cells by activating the MEK/ERK pathway. Mol Med Rep 2020; 22:3667-3676. [PMID: 33000231 PMCID: PMC7533522 DOI: 10.3892/mmr.2020.11452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed that long non-coding RNAs (lncRNAs) serve important roles in carcinogenesis and that this type of gene may be used as biomarkers in cancer. A high level of lncRNA HOXA distal transcript antisense RNA (HOTTIP) is associated with unfavorable prognosis for patients with ovarian cancer (OC), but the mechanism of HOTTIP involved in OC development remains to be elucidated. The present study aimed to investigate the mechanism of HOTTIP in metastasis-associated OC cell behaviors. HOTTIP levels in ovarian cells were quantified by reverse transcription-quantitative PCR, cell proliferation was analyzed by colony formation assay, and apoptosis was assessed by flow cytometry. Cell migratory and invasive abilities were evaluated by wound healing and Transwell assays, respectively. The expression levels of mitogen-activated protein kinase kinase (MEK)/ERK pathway-associated proteins were detected by western blotting. The results demonstrated that knockdown of HOTTIP in OC cells significantly reduced the phosphorylation levels of MEK and ERK, inhibited the proliferation and invasion of OC cells and promoted their apoptosis. Furthermore, the effects of HOTTIP on cell migration and invasion were partly associated with the epithelial-mesenchymal transition (EMT) process. Proliferation, invasion and EMT of OC cells were enhanced following overexpression of HOTTIP; however, these effects were reversed by the MEK/ERK pathway inhibitor U0126. In conclusion, HOTTIP was demonstrated to promote the proliferation, migration and invasion of OC cells by activating the MEK/ERK pathway. Therefore, HOTTIP may serve as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Hong-Bo Hu
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yan-Ming Liu
- Department of Clinical Laboratory, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Fan-Xiang Li
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Liu-Ping Zhang
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zong-Min Liao
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
25
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
26
|
LncRNA MCM3AP-AS1 promotes breast cancer progression via modulating miR-28-5p/CENPF axis. Biomed Pharmacother 2020; 128:110289. [PMID: 32485570 DOI: 10.1016/j.biopha.2020.110289] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the commonly occurred cancers among women and poses a huge threat against female health. Abnormal expression of lncRNA has been confirmed to be an important inducer of cancer. By searching GEO and TCGA database, we found that CENPF was upregulated in breast cancer tissues. Through RT-qPCR, CENPF was found to be upregulated in breast cancer cells. Functional experiments revealed that CENPF had positive effect on the cellular functions, including proliferation, migration and invasion. Subsequently, CENPF was confirmed to combine with miR-28-5p, and its expression was suppressed by miR-28-5p. Furthermore, it was found that miR-28-5p bound to MCM3AP-AS1, and MCM3AP-AS1 expressed at a high level in breast cancer cells. Besides, MCM3AP-AS1 was confirmed as a cytoplasmic RNA. In addition, there was a positive expression correlation between MCM3AP-AS1 and CENPF. Therefore, MCM3AP-AS1 was confirmed to regulate CENPF via competitively binding to miR-28-5p. At last, rescue assays demonstrated that knockdown of CENPF restored miR-28-5p repression-induced cellular processes in MCM3AP-AS1-silenced cells. In vivo assay revealed that MCM3AP-AS1 could hasten tumor growth in breast cancer by targeting CENPF. All results indicated that MCM3AP-AS1/miR-28-5p/CENPF axis accelerates breast cancer progression.
Collapse
|
27
|
Zhao R, Zhang X, Zhang Y, Zhang Y, Yang Y, Sun Y, Zheng X, Qu A, Umwali Y, Zhang Y. HOTTIP Predicts Poor Survival in Gastric Cancer Patients and Contributes to Cisplatin Resistance by Sponging miR-216a-5p. Front Cell Dev Biol 2020; 8:348. [PMID: 32457911 PMCID: PMC7225723 DOI: 10.3389/fcell.2020.00348] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/20/2020] [Indexed: 01/30/2023] Open
Abstract
Gastric cancer (GC) is a significant public health burden worldwide, and cisplatin resistance is the leading cause for the failure of chemotherapy in this disease. Previous studies have revealed that HOXA transcript at the distal tip (HOTTIP) is involved in the pathology of GC and is associated with poor overall survival. However, the functional role of HOTTIP in GC chemoresistance remains unclear. In this study, quantitative real-time PCR was used to analyze HOTTIP expression in GC cell lines and in tissues of GC patients who received cisplatin-based chemotherapy. The mechanism of HOTTIP-mediated chemoresistance was assessed using cell viability, apoptosis, and autophagy assays. The relationships among HOTTIP, miR-216a-5p, and Bcl-2 were determined using luciferase reporter and western blot assays. HOTTIP was markedly upregulated in the tissues of GC patients who were treated with gastrectomy and cisplatin chemotherapy, especially in those with recurrent tumors. Further, HOTTIP was increased in the cisplatin-resistant cell line, SGC7901/DDP, compared to the parental cells, SGC7901. Functional assays demonstrated that HOTTIP expression promoted cisplatin resistance and inhibited apoptosis and autophagy in GC cells. Mechanistic investigations revealed that HOTTIP may regulate the functions of GC cells by sponging miR-216a-5p. MiR-216a-5p overexpression decreased Bcl-2 expression, enhanced Beclin1 expression, and active autophagy. Taken together, our study demonstrated that HOTTIP is closely associated with recurrence in GC patients. HOTTIP expression confers cisplatin resistance by regulating the miR-216a-5p/BCL-2/Beclin1/autophagy pathway, which provides a novel strategy to overcome resistance to chemotherapy in GC.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Yaping Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| | - Yue Sun
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| | - Xin Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| | - Ailin Qu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| | - Yvette Umwali
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, China
| |
Collapse
|
28
|
Cheng G, Yu Y, Wang L, Pan Q. Overexpression of LINC00160 predicts poor outcome and promotes progression of clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:7448-7464. [PMID: 32315986 PMCID: PMC7202521 DOI: 10.18632/aging.103091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/10/2020] [Indexed: 01/20/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal carcinoma and exhibits a high risk of invasion and metastasis. It is urgent to uncover a novel biomarker and clarify the underlying mechanism for ccRCC progression and metastasis. Although accumulating research has demonstrated that long non-coding RNAs (lncRNAs) play crucial roles in tumor progression, numerous lncRNAs in ccRCC are largely unknown. Therefore, we screened the differentially expressed lncRNAs among several GEO datasets and chose LNC00160 for further investigation. LNC00160 was significantly upregulated in ccRCC and high expression predicted poor prognosis; higher expression of LNC00160 was associated with advanced clinic pathological parameters in TCGA_KIRC Cohort. Knockdown of LNC00160 suppressed malignancy of ccRCC in vitro and in vivo. Correlation analysis and gene set enrichment analysis (GSEA) revealed that LNC00160 might be associated with Wnt signaling pathway, mTOR signaling pathway, fatty acid metabolism and cell cycle. In conclusion, our results demonstrated that LNC00160 acted as an oncogenic gene and a specific prognostic indicator for patients with ccRCC, and that LNC00160 might be a targeted intervention for ccRCC patients in the future.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Longwang Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiufeng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
29
|
Han L, Yan Y, Zhao L, Liu Y, Lv X, Zhang L, Zhao Y, Zhao H, He M, Wei M. LncRNA HOTTIP facilitates the stemness of breast cancer via regulation of miR-148a-3p/WNT1 pathway. J Cell Mol Med 2020; 24:6242-6252. [PMID: 32307830 PMCID: PMC7294123 DOI: 10.1111/jcmm.15261] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that dysregulation of long non‐coding RNA (lncRNA) plays a key role in tumorigenesis. The lncRNA, HOXA transcript at the distal tip (HOTTIP), has been reported to be up‐regulated in multiple cancers, including breast cancer, and is involved in various biological processes, including the maintenance of stemness. However, the biological function and underlying modulatory mechanism of HOTTIP in breast cancer stem cells (BCSCs) remains unknown. In this study, we found that HOTTIP was markedly up‐regulated in BCSCs and had a positive correlation with breast cancer progression. Functional studies revealed that overexpression of HOTTIP markedly promoted cell clonogenicity, increased the expression of the stem cell markers, OCT4 and SOX2, and decreased the expression of the differentiation markers, CK14 and CK18, in breast cancer cells. Knockdown of HOTTIP inhibited the CSC‐like properties of BCSCs. Consistently, depletion of HOTTIP suppressed tumour growth in a humanized model of breast cancer. Mechanistic studies demonstrated that HOTTIP directly binds to miR‐148a‐3p and inhibits the mediation of WNT1, which leads to inactivation of the Wnt/β‐catenin signalling pathway. Our study is the first to report that HOTTIP regulates the CSC‐like properties of BCSCs by as a molecular sponge for miR‐148a‐3p to increase WNT1 expression, offering a new target for breast cancer therapy.
Collapse
Affiliation(s)
- Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yinuo Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Li G, Xie M, Huang Z, Li H, Li P, Zhang Z, Ding Y, Jia Z, Yang J. Overexpression of antisense long non‑coding RNA ZNF710‑AS1‑202 promotes cell proliferation and inhibits apoptosis of clear cell renal cell carcinoma via regulation of ZNF710 expression. Mol Med Rep 2020; 21:2502-2512. [PMID: 32236626 PMCID: PMC7185300 DOI: 10.3892/mmr.2020.11032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Antisense long non-coding RNAs (AS lncRNAs) have been increasingly recognized as important regulators of gene expression and have been found to play crucial roles in the development and progression of tumors. The present study explored the roles of AS lncRNA ZNF710-AS1-202 in clear cell renal cell carcinoma (ccRCC). The expression levels of ZNF710-AS1-202 were detected in 46 human ccRCC tissues and 34 healthy adjacent renal tissues. The associations between the levels of ZNF710-AS1-202 expression and the clinicopathological features of the patients were evaluated by the χ2 test. Gain- and loss-of-function experiments were performed to analyze the role of ZNF710-AS1-202 in ccRCC cell proliferation and survival in vitro. Reverse transcription-quantitative PCR and/or western blotting were employed to detect ZNF710-AS1-202, zinc finger protein 710 (ZNF710) and cyclin B1 expression. The Cell Counting Kit-8 and colony formation assays, as well as flow cytometry, were used to detect cell proliferation or apoptosis. The subcellular localization of ZNF710-AS1-202 was analyzed by RNA fluorescence in situ hybridization. The results revealed that ZNF710-AS1-202 was downregulated in human ccRCC tissues and was associated with the pathological grade, tumor size, local invasion and TNM stage, but not with lymph node metastasis or distant metastasis. However, ZNF710-AS1-202 overexpression promoted the proliferation of RCC cells and inhibited apoptosis. Opposite results were observed when ZNF710-AS1-202 was knocked down by small interfering RNA. Furthermore, ZNF710-AS1-202, which was mainly expressed in the cytoplasm of RCC cells, regulated ZNF710 mRNA and protein expression in opposing manners. In conclusion, the present study revealed that ZNF710-AS1-202 and ZNF710 may serve as promising therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Gang Li
- Second Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Menghan Xie
- First Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenlin Huang
- Second Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hao Li
- Second Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng Li
- Second Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhengguo Zhang
- Second Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yinghui Ding
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhankui Jia
- Second Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jinjian Yang
- Second Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
31
|
lncRNA 00312 Attenuates Cell Proliferation and Invasion and Promotes Apoptosis in Renal Cell Carcinoma via miR-34a-5p/ASS1 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5737289. [PMID: 32308805 PMCID: PMC7140129 DOI: 10.1155/2020/5737289] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/16/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
Background Previous studies have demonstrated that lncRNAs play functional roles in regulating cancer cell proliferation, invasion, and apoptosis. Recent studies confirmed that lncRNA 00312 has important biological functions in lung and colorectal cancer. However, the role of lncRNA 00312 in renal cell carcinoma (RCC) remains unclear. Our aim was to explore the function of lncRNA 00312 in RCC and its potential molecular mechanism. Methods RCC cell lines A498 and ACHN were used as in vitro models in this study. RT-PCR was performed to determine lncRNA 00312, miR-34a-5p, and ASS1 mRNA expression. Proliferation and invasion were examined by CCK-8 and Transwell assay to confirm the function role of lncRNA 00312. Western blot analysis was used to examine the expression of apoptotic proteins Bax and Bcl-2. Results lncRNA was significantly downregulated in RCC cells such as A498 and ACHN; the expression of lncRNA 00312 in RCC tissues was significantly lower than that in adjacent normal tissues. Patients with low expression of lncRNA 00312 have worse prognosis regarding pathological grade, tumor size, and TNM stage. Overexpression of lncRNA 00312 suppressed A498 and ACHN cell proliferation and invasion, while promoting apoptosis. Our study found that miR-34a-5p had the potential binding site with lncRNA 00312 and revealed the role of miR-34a-5p in RCC. Furthermore, we confirmed that lncRNA 00312 played its role with the participation of ASS1 and miR-34a-5p. Conclusion lncRNA 00312 can inhibit RCC proliferation and invasion and promote apoptosis in vitro by suppressing miR-34a-5p and overexpressing ASS1. Our study demonstrated that the lncRNA 00312/miR-34a-5p/ASS1 axis may play a functional role in the progression of RCC; lncRNA 00312 abundance is a prognostic factor candidate for RCC survival, which provides new insights for RCC clinical treatment.in vitro models in this study. RT-PCR was performed to determine lncRNA 00312, miR-34a-5p, and ASS1 mRNA expression. Proliferation and invasion were examined by CCK-8 and Transwell assay to confirm the function role of lncRNA 00312. Western blot analysis was used to examine the expression of apoptotic proteins Bax and Bcl-2.
Collapse
|
32
|
Chen Z, Wang C, Dong H, Wang X, Gao F, Zhang S, Zhang X. Aspirin has a better effect on PIK3CA mutant colorectal cancer cells by PI3K/Akt/Raptor pathway. Mol Med 2020; 26:14. [PMID: 32000660 PMCID: PMC6993447 DOI: 10.1186/s10020-020-0139-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background Aspirin, as a non-steroidal anti-inflammatory drug, can improve the survival rate of patients with colorectal cancer, while aspirin is effective in patients with PIK3CA mutant colorectal cancer (CRC). However, the mechanism of aspirin in the treatment of PIK3CA mutated CRC patients remains unclear. Methods In this study, immunohistochemistry was used to detect the expression levels of PI3K and Raptor in colorectal cancer patients with PIK3CA mutation and PIK3CA wild-type patients. To demonstrate that aspirin has a better effect on the CRC of PIK3CA mutations in association with the PI3K/Akt/Raptor pathway, we used aspirin to treat PIK3CA mutant CRC cells (HCT-116 and RKO). Subsequently, the CCK8 assay and flow cytometry assay were used to detect the apoptosis of PIK3CA mutant CRC cells before and after aspirin use. Western blot was used to detect the changes of PI3K/Akt/Raptor-associated protein, autophagy protein microtubule associated protein 1 light chain 3 alpha (MAP1LC3A, LC3), beclin 1 (BECN1) and apoptosis protein BCL2-associated X protein/ BCL2 apoptosis regulator (Bax/Bcl2), Caspase 3 after treatment of CRC cells with PIK3CA mutation by aspirin. Results Phosphoinositide-3-kinase (PI3K) and regulatory associated protein of MTOR complex 1 (Raptor) protein expression levels were higher in PIK3CA-mutant patients than in IK3CA wild-type patients. The expression of Bax/Bcl2 increased after treatment indicates that aspirin can induce apoptosis of PIK3CA-mutant CRC cells. The expression level of MAP1LC3 (LC3) in cells increases with the concentration of aspirin demonstrates that aspirin can induce autophagy in CRC cells. After 48 h of treatment with aspirin, the phosphorylation of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) and ribosomal protein S6 kinase B1 (S6K1) was reduced, cell proliferation has been inhibited. After treatment with aspirin, as phosphorylation of PI3K and Protein kinase B (PKB, Akt) was decreased, Raptor expression was also decreased. Conclusion Aspirin can regulate the proliferation, apoptosis and autophagy of CRC cells through the PI3K/Akt/Raptor pathway, affecting PIK3CA-mutant CRC.
Collapse
Affiliation(s)
- Zhihang Chen
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Hao Dong
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xing Wang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolong Zhang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
33
|
Liang M, Hu K. Involvement of lncRNA-HOTTIP in the Repair of Ultraviolet Light-Induced DNA Damage in Spermatogenic Cells. Mol Cells 2019; 42:794-803. [PMID: 31697875 PMCID: PMC6883981 DOI: 10.14348/molcells.2019.0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022] Open
Abstract
Ultraviolet light (UV)-induced cellular response has been studied by numerous investigators for many years. Long noncoding RNAs (lncRNAs) are emerging as new regulators of diverse cellular process; however, little is known about the role of lncRNAs in the cellular response to UV treatment. Here, we demonstrate that levels of lncRNA-HOTTIP significantly increases after UV stimulation and regulates the UV-mediated cellular response to UV through the coordinate activation of its neighboring gene Hoxa13 in GC-1 cells (spermatogonia germ cell line). UV-induced, G2/M-phase arrest and early apoptosis can be regulated by lncRNA-HOTTIP and Hoxa13. Furthermore, lncRNA-HOTTIP can up-regulate γ-H2AX and p53 expression via Hoxa13 in UV-irradiated GC-1 cells. In addition, p53 has the ability to regulate the expression of both lncRNA-HOTTIP and Hoxa13 in vitro and in vivo. Our results provide new data regarding the role lncRNAs play in the UV response in spermatogenic cells.
Collapse
Affiliation(s)
- Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu 233030,
China
| | - Ke Hu
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu 233030,
China
| |
Collapse
|
34
|
Zhao Y, Wang Z, Zhang W, Zhang L. Non-coding RNAs regulate autophagy process via influencing the expression of associated protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:32-39. [PMID: 31786247 DOI: 10.1016/j.pbiomolbio.2019.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a tightly-regulated multi-step process involving the lysosomal degradation of proteins and cytoplasmic organelles. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is fuse with lysosomes or endosomes, and then deliver its cytoplasmic cargo to the lysosomes. Here, we summarize the recent process of autophagy, focusing on protein molecules, their complexes, and its essential roles of autophagy in various phases. Emerging evidence has revealed that miRNAs, lncRNAs, and circRNAs play an indispensable role in autophagy regulation by modulating targeting gene expression. This review we will summarize the main features of ncRNAs and point to gaps in our current knowledge of the connection between ncRNAs and autophagy, as well as their potential utilization in various disease phenotypes. Also, we highlight recent advances in ncRNAs and autophagy-associated protein interaction and how they regulate the autophagy process.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China.
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
35
|
Sun SN, Hu S, Shang YP, Li LY, Zhou H, Chen JS, Yang JF, Li J, Huang Q, Shen CP, Xu T. Relevance function of microRNA-708 in the pathogenesis of cancer. Cell Signal 2019; 63:109390. [PMID: 31419576 DOI: 10.1016/j.cellsig.2019.109390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally responsible for regulating >70% of human genes. MicroRNA-708 (miR-708) is encoded in the intron 1 of the Odd Oz/ten-m homolog 4 (ODZ4) gene. Numerous researches have confirmed that the abnormal expressed miR-708 is involved in the regulation of multiple types of cancer. Notably, the expression level of miR-708 was higher in lung cancer, bladder cancer (BC) and colorectal cancer (CRC) cell lines while lower in hepatocellular carcinoma (HCC), prostate cancer (PC), gastric cancer (GC) and so on. This review provides a current view on the association between miR-708 and several cancers and focuses on the recent studies of miR-708 regulation, discussing its potential as an epigenetic biomarker and therapeutic target for these cancers. In particular, the regulated mechanisms and clinical application of miR-708 in these cancers are also discussed.
Collapse
Affiliation(s)
- Si-Nan Sun
- The First Affiliation Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shuang Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | | | - Liang-Yun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Hong Zhou
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jia-Si Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jun-Fa Yang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Qiang Huang
- The First Affiliation Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Chuan-Pu Shen
- Teaching and Research Department of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China.
| | - Tao Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
36
|
A long non-coding RNA signature to improve prognostic prediction in clear cell renal cell carcinoma. Biomed Pharmacother 2019; 118:109079. [PMID: 31351427 DOI: 10.1016/j.biopha.2019.109079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Accumulating research reports have indicated that long non-coding RNAs (lncRNAs) are abnormally expressed in many types of cancers. However, few lncRNA signatures for predicting cancer prognosis have been established. Our goal is to establish a lncRNA signature for predicting the prognosis of clear cell renal cell carcinoma (ccRCC). METHODS We downloaded KIRC lncRNA FPKM (Fragments Per Kilobase of transcript per Million Fragments) standardized expression data from The Cancer Genome Atlas (TCGA) by using the TANRIC tool. We established an 11-lncRNA signature that was clearly linked to the overall survival (OS) rates in the training and test sets. RESULTS The training set was divided into the high-risk and low-risk subgroups, between which the OS was disparate (HR = 1.51, 95%CI = 1.39-1.64, P < 0.0001). The accuracy of the 11-lncRNA signature for predicting prognosis was confirmed in the test set. Further analysis revealed that the prognostic value of this signature was independent of the neoplasm grade and TNM stage. Gene set enrichment analysis (GSEA) was performed, and a summary of 4 gene sets related to canonical pathway, biological process, molecular function and cellular component was obtained. We demonstrated the biological function of these lncRNAs in ccRCC cell lines and found that LINC00488 and HOTTIP promoted tumour proliferation and inhibited apoptosis. However, LINC-PINT had the opposite effect. CONCLUSIONS The establishment of the 11-lncRNA signature indicated the underlying biochemical functional roles of the selected lncRNAs in ccRCC. Our results may provide a reliable theoretical basis for clinical evaluation of ccRCC prognosis.
Collapse
|
37
|
Su Y, Zhou LL, Zhang YQ, Ni LY. Long noncoding RNA HOTTIP is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation. Mol Genet Genomic Med 2019; 7:e870. [PMID: 31328440 PMCID: PMC6732273 DOI: 10.1002/mgg3.870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/01/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Background It has been proposed that lncRNAs, widely transcribed from genomes, play pivotal regulatory roles in a variety of biological processes, but their function in regulating spermatogenesis in human males is rarely reported. Methods QRT‐PCR was adopted to detect HOTTIP expression level in testicular tissues from hypospermatogenesis (Hypo) patients or controls. The proliferation levels of NT2 and 293T were measured via CCK‐8 and EdU detection. Meanwhile, luciferase reporter gene assay and bioinformatics analysis were carried out to identify a target of HOTTIP. Additionally, the underlying mechanism of HOTTIP’s function was investigated using western blotting and RIP analysis. Results The research results manifested that the expression of HOTTIP in testicular tissues from Hypo patients was prominently reduced in comparison with that in control testicular tissues. Interestingly, it was noted that HOTTIP exhibited a high expression in testicular embryonal carcinoma cell line NT2 compared with that in normal control cell line 293T. It was denoted in cell function evaluation that cell proliferation was impeded by downregulated HOTTIP but evidently stimulated by overexpressed HOTTIP. Moreover, HOTTIP was capable of positively modulating HOXA13 expression via the competitive binding to miR‐128‐3p. Conclusion Therefore, HOTTIP acting as ceRNAs to promote testicular embryonal carcinoma cell proliferation.
Collapse
Affiliation(s)
- Yang Su
- Department of Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling-Ling Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Qing Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang-Yu Ni
- Department of Andrology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Abstract
Autophagy is a highly conserved catabolic process with critical functions in maintenance of cellular homeostasis under normal growth conditions and in preservation of cell viability under stress. The role of autophagy in cancer is dual-sided. Autophagy-deficient cells are often more tumorigenic than their wild type counterparts in association with DNA damage accumulation, oxidative stress. At the same time, autophagy is a major cell survival mechanism. In recent years, it has been well demonstrated that autophagy may have relation with renal cell carcinoma (RCC). This review focuses on the research progress in relation between autophagy and RCC and the pharmacologic manipulation of autophagy for RCC treatment.
Collapse
Affiliation(s)
- Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Bai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
39
|
Ren Z, Liang J, Zhang P, Chen J, Wen J. Inhibition of human glioblastoma cell invasion involves PION@E6 mediated autophagy process. Cancer Manag Res 2019; 11:2643-2652. [PMID: 31015768 PMCID: PMC6446987 DOI: 10.2147/cmar.s200151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Glioblastoma (GBM) is the most severe brain cancer due to its ability to invade surrounding brain tissue. Iron oxide nanoparticles (ION) could effectively induce a decrease of cell migration/invasion. Also IONs could generate ROS stress which induces autophagy elevation. Autophagy is associated with both anti-tumorigenesis and protumorigenesis. Objective To explore the effect of PEGylated IONs (PION@E6) on the GBM cell invasion and its mechanism based on autophagy. Materials and methods PION@E6 were prepared and characterized according to our previous study. After incubation of U251 cells with PION@E6, cellular uptake of PION@E6 and cell viability were tested by Prussian blue staining and Cell Counting Kit-8, respectively. The migration and invasive capability was assessed by transwell cell migration and invasion assay. Expressions of autophagy biomarkers were detected by Western blotting. Intracellular ROS level was determined using 2′–7′-dichlorodihydrofluorescein diacetate. Results Average hydrate particle size and zeta potential of PION@E6 were 37.86±12.90 nm and –23.8 mV, respectively, and uniformly distributed nanoparticles with an average diameter of 10 nm were observed by TEM. Chlorin e6 successfully incorporated onto PION@E6 was demonstrated by ultraviolet and visible absorption spectrophotometry, and PION@E6 owning excellent water solubility and stability were showed by Colloid stability test. PION@E6 were successfully taken up by U251 cells with Prussian blue staining, and they showed in vitro cytotoxicity to glioma cells after long incubation of 72 hours. Migration/invasion of cells was significantly inhibited by PION@E6, which could be counteracted by pretreatment with 3-MA. Additionally, the expression of beclin-1, IC3I, and IC3II proteins was higher, whereas that of p62 protein was lower. Moreover, a dose dependent intracellular ROS generation of PION@E6 was detected. Conclusion Invasiveness of human GBM cells involves the PION@E6-mediated autophagy process, which may be related to the intracellular ROS induced by PION@E6.
Collapse
Affiliation(s)
- Zhongyu Ren
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| | - Jing Liang
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| | - Peng Zhang
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| | - Jianjiao Chen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| | - Jian Wen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, People's Republic of China,
| |
Collapse
|