1
|
Mancini A, Orlandella FM, Vitucci D, Luciano N, Alfieri A, Orrù S, Salvatore G, Buono P. Exercise's impact on lung cancer molecular mechanisms: a current overview. Front Oncol 2024; 14:1479454. [PMID: 39555455 PMCID: PMC11563951 DOI: 10.3389/fonc.2024.1479454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Lung cancer is the major cause of cancer-related deaths worldwide with an estimated 1.8 million deaths and 2.4 million new cases in 2022. Poor cardiorespiratory fitness, dyspnea and fatigue are the common features in lung cancer patients, partially limiting the exercise prescription. Exercise improves cardiorespiratory and muscular fitness and reduces the risk of some types of cancer, including lung cancer. Recently, the American Society of Clinical Oncology has encouraged preoperative exercise for lung cancer patients. Nonetheless, only limited data, mostly obtained from mouse models of lung cancer, are available on the molecular effects of exercise in lung cancer. Thus, the present minireview aims to shed light on the molecular mechanisms induced by different type of exercise in lung cancer. In particular, the role of the exercise in tumor microenvironment remodeling, angiogenesis, gene expression, apoptosis and intermediate metabolism will be examined.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Francesca Maria Orlandella
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Daniela Vitucci
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Neila Luciano
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Andreina Alfieri
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Stefania Orrù
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Giuliana Salvatore
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualina Buono
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| |
Collapse
|
2
|
Tamayo-Torres E, Garrido A, de Cabo R, Carretero J, Gómez-Cabrera MC. Molecular mechanisms of cancer cachexia. Role of exercise training. Mol Aspects Med 2024; 99:101293. [PMID: 39059039 DOI: 10.1016/j.mam.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Cancer-associated cachexia represents a multifactorial syndrome mainly characterized by muscle mass loss, which causes both a decrease in quality of life and anti-cancer therapy failure, among other consequences. The definition and diagnostic criteria of cachexia have changed and improved over time, including three different stages (pre-cachexia, cachexia, and refractory cachexia) and objective diagnostic markers. This metabolic wasting syndrome is characterized by a negative protein balance, and anti-cancer drugs like chemotherapy or immunotherapy exacerbate it through relatively unknown mechanisms. Due to its complexity, cachexia management involves a multidisciplinary strategy including not only nutritional and pharmacological interventions. Physical exercise has been proposed as a strategy to counteract the effects of cachexia on skeletal muscle, as it influences the mechanisms involved in the disease such as protein turnover, inflammation, oxidative stress, and mitochondrial dysfunction. This review will summarize the experimental and clinical evidence of the impact of physical exercise on cancer-associated cachexia.
Collapse
Affiliation(s)
- Eva Tamayo-Torres
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain; Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Amanda Garrido
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain.
| | - María Carmen Gómez-Cabrera
- Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
3
|
Vikmoen O, Strandberg E, Svindland KV, Henriksson A, Mazzoni AS, Johansson B, Jönsson J, Karakatsanis A, Annebäck M, Kudrén D, Lindman H, Wärnberg F, Berntsen S, Demmelmaier I, Nordin K, Raastad T. Effects of heavy-load strength training during (neo-)adjuvant chemotherapy on muscle strength, muscle fiber size, myonuclei, and satellite cells in women with breast cancer. FASEB J 2024; 38:e23784. [PMID: 38953567 DOI: 10.1096/fj.202400634r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
To investigate the effects of heavy-load strength training during (neo-)adjuvant chemotherapy in women with breast cancer on muscle strength, body composition, muscle fiber size, satellite cells, and myonuclei. Women with stage I-III breast cancer were randomly assigned to a strength training group (ST, n = 23) performing supervised heavy-load strength training twice a week during chemotherapy, or a usual care control group (CON, n = 17). Muscle strength and body composition were measured and biopsies from m. vastus lateralis collected before the first cycle of chemotherapy (T0) and after chemotherapy and training (T1). Muscle strength increased significantly more in ST than in CON in chest-press (ST: +10 ± 8%, p < .001, CON: -3 ± 5%, p = .023) and leg-press (ST: +11 ± 8%, p < .001, CON: +3 ± 6%, p = .137). Both groups reduced fat-free mass (ST: -4.9 ± 4.0%, p < .001, CON: -5.2 ± 4.9%, p = .004), and increased fat mass (ST: +15.3 ± 16.5%, p < .001, CON: +16.3 ± 19.8%, p = .015) with no significant differences between groups. No significant changes from T0 to T1 and no significant differences between groups were observed in muscle fiber size. For myonuclei per fiber a non-statistically significant increase in CON and a non-statistically significant decrease in ST in type I fibers tended (p = .053) to be different between groups. Satellite cells tended to decrease in ST (type I: -14 ± 36%, p = .097, type II: -9 ± 55%, p = .084), with no changes in CON and no differences between groups. Strength training during chemotherapy improved muscle strength but did not significantly affect body composition, muscle fiber size, numbers of satellite cells, and myonuclei compared to usual care.
Collapse
Affiliation(s)
- Olav Vikmoen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Emelie Strandberg
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Anna Henriksson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anne-Sophie Mazzoni
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Birgitta Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Janniz Jönsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Andreas Karakatsanis
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
- Section for Breast Surgery, Department of Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Matilda Annebäck
- Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - David Kudrén
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Wärnberg
- Institute of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sveinung Berntsen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Ingrid Demmelmaier
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Karin Nordin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| |
Collapse
|
4
|
Aires I, Duarte JA, Vitorino R, Moreira-Gonçalves D, Oliveira P, Ferreira R. Restoring Skeletal Muscle Health through Exercise in Breast Cancer Patients and after Receiving Chemotherapy. Int J Mol Sci 2024; 25:7533. [PMID: 39062775 PMCID: PMC11277416 DOI: 10.3390/ijms25147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) stands out as the most commonly type of cancer diagnosed in women worldwide, and chemotherapy, a key component of treatment, exacerbates cancer-induced skeletal muscle wasting, contributing to adverse health outcomes. Notably, the impact of chemotherapy on skeletal muscle seems to surpass that of the cancer itself, with inflammation identified as a common trigger for muscle wasting in both contexts. In skeletal muscle, pro-inflammatory cytokines modulate pathways crucial for the delicate balance between protein synthesis and breakdown, as well as satellite cell activation and myonuclear accretion. Physical exercise consistently emerges as a crucial therapeutic strategy to counteract cancer and chemotherapy-induced muscle wasting, ultimately enhancing patients' quality of life. However, a "one size fits all" approach does not apply to the prescription of exercise for BC patients, with factors such as age, menopause and comorbidities influencing the response to exercise. Hence, tailored exercise regimens, considering factors such as duration, frequency, intensity, and type, are essential to maximize efficacy in mitigating muscle wasting and improving disease outcomes. Despite the well-established anti-inflammatory role of aerobic exercise, resistance exercise proves equally or more beneficial in terms of mass and strength gain, as well as enhancing quality of life. This review comprehensively explores the molecular pathways affected by distinct exercise regimens in the skeletal muscle of cancer patients during chemotherapy, providing critical insights for precise exercise implementation to prevent skeletal muscle wasting.
Collapse
Affiliation(s)
- Inês Aires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - José Alberto Duarte
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, and Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal; (J.A.D.); (D.M.-G.)
| | - Paula Oliveira
- CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (I.A.); (R.F.)
| |
Collapse
|
5
|
Artigas-Arias M, Curi R, Marzuca-Nassr GN. Myogenic microRNAs as Therapeutic Targets for Skeletal Muscle Mass Wasting in Breast Cancer Models. Int J Mol Sci 2024; 25:6714. [PMID: 38928418 PMCID: PMC11204047 DOI: 10.3390/ijms25126714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the type of cancer with the highest prevalence in women worldwide. Skeletal muscle atrophy is an important prognostic factor in women diagnosed with breast cancer. This atrophy stems from disrupted skeletal muscle homeostasis, triggered by diminished anabolic signalling and heightened inflammatory conditions, culminating in an upregulation of skeletal muscle proteolysis gene expression. The importance of delving into research on modulators of skeletal muscle atrophy, such as microRNAs (miRNAs), which play a crucial role in regulating cellular signalling pathways involved in skeletal muscle protein synthesis and degradation, has been recognised. This holds true for conditions of homeostasis as well as pathologies like cancer. However, the determination of specific miRNAs that modulate skeletal muscle atrophy in breast cancer conditions has not yet been explored. In this narrative review, we aim to identify miRNAs that could directly or indirectly influence skeletal muscle atrophy in breast cancer models to gain an updated perspective on potential therapeutic targets that could be modulated through resistance exercise training, aiming to mitigate the loss of skeletal muscle mass in breast cancer patients.
Collapse
Affiliation(s)
- Macarena Artigas-Arias
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
6
|
Papadopetraki A, Giannopoulos A, Maridaki M, Zagouri F, Droufakou S, Koutsilieris M, Philippou A. The Role of Exercise in Cancer-Related Sarcopenia and Sarcopenic Obesity. Cancers (Basel) 2023; 15:5856. [PMID: 38136400 PMCID: PMC10741686 DOI: 10.3390/cancers15245856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
One of the most common adverse effects of cancer and its therapeutic strategies is sarcopenia, a condition which is characterised by excess muscle wasting and muscle strength loss due to the disrupted muscle homeostasis. Moreover, cancer-related sarcopenia may be combined with the increased deposition of fat mass, a syndrome called cancer-associated sarcopenic obesity. Both clinical conditions have significant clinical importance and can predict disease progression and survival. A growing body of evidence supports the claim that physical exercise is a safe and effective complementary therapy for oncology patients which can limit the cancer- and its treatment-related muscle catabolism and promote the maintenance of muscle mass. Moreover, even after the onset of sarcopenia, exercise interventions can counterbalance the muscle mass loss and improve the clinical appearance and quality of life of cancer patients. The aim of this narrative review was to describe the various pathophysiological mechanisms, such as protein synthesis, mitochondrial function, inflammatory response, and the hypothalamic-pituitary-adrenal axis, which are regulated by exercise and contribute to the management of sarcopenia and sarcopenic obesity. Moreover, myokines, factors produced by and released from exercising muscles, are being discussed as they appear to play an important role in mediating the beneficial effects of exercise against sarcopenia.
Collapse
Affiliation(s)
- Argyro Papadopetraki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| | - Antonios Giannopoulos
- Section of Sports Medicine, Department of Community Medicine & Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Dafne, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| |
Collapse
|
7
|
Lønbro S, Gam S, Hermann AP, Hansen CR, Johansen J. Accelerated loss of lean body mass in head and neck cancer patients during cisplatin-based chemoradiation. Acta Oncol 2023; 62:1403-1411. [PMID: 37589161 DOI: 10.1080/0284186x.2023.2245558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND This study investigated changes in body weight, lean body mass (LBM), fat mass (FM), muscle strength and functional performance during radiation treatment in head and neck cancer (HNSCC) patients. Secondly, it investigated the impact of cisplatin-based chemoradiation (CCRT) on LBM loss compared with radiation alone. METHODS 48 patients (all tumor sites) received either 6 weeks of radiation alone (n = 16) with 66-68 Gy in 33-34 Fx, 5-6 Fx/week or CCRT, adding weekly cisplatin or carboplatin (n = 32). LBM and FM was evaluated using Dual-energy X-ray Absorptiometry bi-weekly from pre- to two weeks post-treatment. Maximal muscle strength (knee extension, leg - and chest press) and functional performance (stair climb, chair rise, and arm curl) were assessed pre- and post-treatment. RESULTS Body weight and LBM had declined significantly already week 2 into treatment and declined significantly further through week 4 and 6 before leveling off after week 6. Bi-weekly, from treatment start to week 2, 2-4, and 4-6, LBM declined 1.2 ± 0.4 kg (p = .002; 95% CI: 0.4;2.0), 2.0 ± 0.4 kg (p < .0001; 1.2;2.8) and 1.4 ± 0.4 kg (p = .001; 0.6;2.2). With a two-week delay, FM declined significantly from week 2-8. All measures of muscle strength declined significantly from pre- to post-treatment. Functional performance was unchanged. LBM loss from pre- to post-treatment was significantly associated with impaired muscle strength (R2 = 0.3-0.5). CCRT patients lost 3.1 ± 0.8 kg of LBM (p = .0001; 1.5;4.7) more from pre- to post-treatment compared with patients receiving radiation alone. Analyses adjusting for nimorazole, tumor stage, baseline BMI, mean radiation dose to constrictor muscles and oral cavity confirmed this. CONCLUSION Accelerated and substantial LBM loss was already initiated within the first two weeks of treatment - before the onset of radiation-induced mucositis. LBM loss was associated with muscle strength impairment. Patients receiving CCRT experienced significantly larger LBM loss than patients receiving radiation alone. Registered on clinincaltrials.gov (Identifier: NCT05890859).
Collapse
Affiliation(s)
- Simon Lønbro
- Department of Public Health, Section for Sport Science, Aarhus University, Aarhus, Denmark
| | - Søren Gam
- Department of Diabetes and Endocrinology, University of Southern Denmark, Esbjerg, Denmark
| | - Anne Pernille Hermann
- Department of Endocrinology, University Hospital of Southern Denmark, Odense, Denmark
| | - Christian Rønn Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Jørgen Johansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
8
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
9
|
Hain BA, Waning DL. Bone-Muscle Crosstalk: Musculoskeletal Complications of Chemotherapy. Curr Osteoporos Rep 2022; 20:433-441. [PMID: 36087213 DOI: 10.1007/s11914-022-00749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy drugs combat tumor cells and reduce metastasis. However, a significant side effect of some chemotherapy strategies is loss of skeletal muscle and bone. In cancer patients, maintenance of lean tissue is a positive prognostic indicator of outcomes and helps to minimize the toxicity associated with chemotherapy. Bone-muscle crosstalk plays an important role in the function of the musculoskeletal system and this review will focus on recent findings in preclinical and clinical studies that shed light on chemotherapy-induced bone-muscle crosstalk. RECENT FINDINGS Chemotherapy-induced loss of bone and skeletal muscle are important clinical problems. Bone antiresorptive drugs prevent skeletal muscle weakness in preclinical models. Chemotherapy-induced loss of bone can cause muscle weakness through both changes in endocrine signaling and mechanical loading between muscle and bone. Chemotherapy-induced changes to bone-muscle crosstalk have implications for treatment strategies and patient quality of life. Recent findings have begun to determine the role of chemotherapy in bone-muscle crosstalk and this review summarizes the most relevant clinical and preclinical studies.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA
| | - David L Waning
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
10
|
Escriche-Escuder A, Trinidad-Fernández M, Pajares B, Iglesias-Campos M, Alba E, García-Almeida JM, Roldán-Jiménez C, Cuesta-Vargas AI. Responsiveness of the new index muscular echotexture in women with metastatic breast cancer: an exercise intervention study. Sci Rep 2022; 12:15148. [PMID: 36071122 PMCID: PMC9452568 DOI: 10.1038/s41598-022-19532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Ultrasound imaging texture analyses may provide information on tissue homogeneity changes in metastatic breast cancer (MBC) through second-order analyzes based on the gray-level co-occurrence matrix. This study aimed to analyze the responsiveness and correlations of biomarkers of muscular and fat echotexture after an exercise intervention in women with MBC. A 12-week exercise intervention was conducted in 2019, including aerobic and strength training. Echotexture variables were obtained at baseline and after intervention from the quadriceps (Q) and biceps brachii and brachialis. Mean differences were calculated using the T-Student parametric test for dependent samples of the differences in the means (P = 0.05; 95% CI). Data obtained from 13 MBC women showed significant differences in some echotexture variables after the intervention. QLQ-BR23 questionnaire correlated with several echotexture variables from muscle and subcutaneous fat. PFS-R scale correlated positively with the Q Subcutaneous Fat Non-Contraction Homogeneity (R = 0.43, P < 0.05). Q Muscle Non-Contraction Energy and Q Muscle Non-Contraction Textural Correlation explained 90% of the variance of QLQ-BR23. Some muscle and subcutaneous fat echotexture biomarkers showed good responsiveness after the exercise intervention. Additionally, some muscle and subcutaneous fat variables correlated with QLQ-BR23 and cancer-related fatigue measured by PFS-R scale in MBC patients. Trial registration: NCT03879096
Collapse
Affiliation(s)
- Adrian Escriche-Escuder
- Department of Physiotherapy, University of Malaga, C/ Arquitecto Peñalosa, 3, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Manuel Trinidad-Fernández
- Department of Physiotherapy, University of Malaga, C/ Arquitecto Peñalosa, 3, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Bella Pajares
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.,UGCI Oncología Médica Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Marcos Iglesias-Campos
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.,UGCI Oncología Médica Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Emilio Alba
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.,UGCI Oncología Médica Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - José Manuel García-Almeida
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.,UGCI Endocrinología y Nutrición, Hospital Regional Universitario y Virgen de la Victoria, Málaga, Spain
| | - Cristina Roldán-Jiménez
- Department of Physiotherapy, University of Malaga, C/ Arquitecto Peñalosa, 3, 29071, Málaga, Spain. .,Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - Antonio I Cuesta-Vargas
- Department of Physiotherapy, University of Malaga, C/ Arquitecto Peñalosa, 3, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.,School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Huang S, Zheng X, Zhang X, Jin Z, Liu S, Fu L, Niu Y. Exercise improves high-fat diet-induced metabolic disorder by promoting HDAC5 degradation through the ubiquitin-proteasome system in skeletal muscle. Appl Physiol Nutr Metab 2022; 47:1062-1074. [PMID: 35998371 DOI: 10.1139/apnm-2022-0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone deacetylase 4/5 are essential for regulating metabolic gene expression, AMPKα2 regulates HDAC4/5 activity and the expression of MuRF1 during exercise. In this study, we used wild type and AMPKα2-/- mice to explore the potential regulatory relationship between AMPKα2 and HDAC4/5 expression during exercise. Firstly, we fed C57BL/6J mice with high-fat diet for eight-week to assess the effects of high-fat diet on skeletal muscle metabolism and HDAC4/5 expression. We then performed a six-week treadmill exercise on both wild type and AMPKα2-/- mice. After exercise, the expressions of HDAC4/5 were examined in both gastrocnemius and soleus. The citrate synthase activity and proteins involved in skeletal muscle oxidative process were assessed. To determine the relationship of HDAC4/5 and skeletal muscle oxidative capacity, citrate synthase activity was assessed after silencing HDAC4/5. Moreover, HDAC5 ubiquitination and the association of MuRF1 to HDAC5 were also investigated. Our results showed that six-week exercise increased the skeletal muscle oxidative capacity and decreased HDAC4/5 expression only in soleus. HDAC5 silencing increased C2C12 cells oxidative capacity. Proteasome inhibition by MG132 abolished exercise-induced HDAC5 degradation mediated by MuRF1-ubiquitin-proteasome system. However, the UPS did not dominantly account for exercise-induced HDAC4 degradation. Exercise up-regulated MuRF1-HDAC5 association in wild type mice but not in AMPKα2-/- mice. Our results revealed that six-week exercise increased the skeletal muscle oxidative capacity and promoted HDAC5 degradation in soleus through the UPS, MuRF1 mediated HDAC5 ubiquitination. Although AMPKα2 played partial role in regulating MuRF1 expression and HDAC5 ubiquitination, exercise-induced HDAC5 degradation did not fully depend on AMPKα2.
Collapse
Affiliation(s)
- Song Huang
- Tianjin Medical University, Department of Rehabilitation, Tianjin, Tianjin, China;
| | - Xinyue Zheng
- Tianjin Medical University, Department of Rehabilitation, Tianjin, Tianjin, China;
| | - Xinyu Zhang
- Tianjin Medical University, Physiology and Pathophysiology, Tianjin, Tianjin, China;
| | - Zhe Jin
- Tianjin Yaohua binhai, School of Yaohua binhai, Tianjin, China;
| | - Sujuan Liu
- Tianjin Medical University, Tianjin, Tianjin, China;
| | - Li Fu
- Tianjin Medical University, Physiology, Tianjin, China;
| | - Yanmei Niu
- Tianjin Medical University, Tianjin, Tianjin, China;
| |
Collapse
|
12
|
Effectiveness of Resistance Training on Fatigue in Patients Undergoing Cancer Treatment: A Meta-Analysis of Randomized Clinical Trials. Int J Breast Cancer 2022; 2022:9032534. [PMID: 35979509 PMCID: PMC9378000 DOI: 10.1155/2022/9032534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. To assess the effectiveness of the resistance training to improve fatigue levels in people with cancer who are enrolled in adjuvant and/or neoadjuvant treatment. Methods. MEDLINE, Web of Science, Embase, SPORTDiscus, LILACS, CENTRAL, and CINAHL databases were searched from May to December 7, 2021. Randomized clinical trials (RCT) that evaluate the effects of resistance training on fatigue levels in people undergoing cancer treatment were included. The PEDro scale was considered to assess methodological quality of studies, and the evidence was summarized through the GRADE system. The standardized average differences, effect size, and inverse variance model for meta-analysis were calculated. Results. Fifteen RCT for qualitative synthesis and thirteen for meta-analysis were selected. A moderate to high level of evidence of resistance training was identified to improve fatigue in people undergoing cancer treatment. Meta-analysis showed a significant reduction in fatigue (
,
, -0.12,
) after 10 to 35 sessions of resistance training. Conclusion. The 10 to 35 sessions of resistance training are effective in reducing fatigue level in cancer patients who are undergoing cancer treatment and have a moderate level of quality evidence.
Collapse
|
13
|
Halle JL, Counts BR, Zhang Q, Carson JA. Short duration treadmill exercise improves physical function and skeletal muscle mitochondria protein expression after recovery from FOLFOX chemotherapy in male mice. FASEB J 2022; 36:e22437. [PMID: 35816153 DOI: 10.1096/fj.202200460r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
FOLFOX (5-FU, leucovorin, oxaliplatin) is a chemotherapy treatment for colorectal cancer which induces toxic side effects involving fatigue, weakness, and skeletal muscle dysfunction. There is a limited understanding of the recovery from these toxicities after treatment cessation. Exercise training can improve chemotherapy-related toxicities. However, how exercise accelerates recovery and the dose required for these benefits are not well examined. The purpose of this study was to examine the effect of exercise duration on physical function, muscle mass, and mitochondria protein expression during the recovery from FOLFOX chemotherapy. 12-week-old male mice were administered four cycles of either PBS or FOLFOX over 8-weeks. Outcomes were assessed after the fourth cycle and after either 4 (short-term; STR) or 10 weeks (long-term; LTR) recovery. Subsets of mice performed 14 sessions (6 d/wk, 18 m/min, 5% grade) of 60 min/d (long) or 15 min/d (short duration) treadmill exercise during STR. Red and white gastrocnemius mRNA and protein expression were examined. FOLFOX treatment decreased run time (RT) (-53%) and grip strength (GS) (-9%) compared to PBS. FOLFOX also reduced muscle OXPHOS complexes, COXIV, and VDAC protein expression. At LTR, FOLFOX RT (-36%) and GS (-16%) remained reduced. Long- and short-duration treadmill exercise improved RT (+58% and +56%) without restoring GS in FOLFOX mice. Both exercise durations increased muscle VDAC and COXIV expression in FOLFOX mice. These data provide evidence that FOLFOX chemotherapy induces persistent deficits in physical function that can be partially reversed by short-duration aerobic exercise.
Collapse
Affiliation(s)
- Jessica L Halle
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Cardioprotective Effects of Physical Activity: Focus on Ischemia and Reperfusion. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
This review aimed to revisit the old and introduce some of the new various cardioprotective effects of physical exercise, focusing on ischemia-reperfusion injury. A wealth of data shows that regular physical exercise is necessary to prevent cardiovascular diseases. In the last few years, a number of new training regimes, usually modified variations of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) protocols, have been rising in popularity among people of all ages. Since exercising is not limited to only healthy people, our study emphasized the benefits of HIIT and MICT in preventing or mitigating cardiac ischemia-reperfusion injury. Different kinds of research are being performed, studying the various positive and side effects of these training regimes, all in hopes of finding the most optimal ones. So far, all of them have shown that exercising to any extent, even for a short period of time, is beneficial in one way or another, and outweighs the possible risks it might have. We also revisited some of the known molecular mechanisms responsible for many of the effects of physical exercise and introduced some new findings related to them. Lastly, we summarized and compared the benefits of different HIIT and MICT protocols to narrow down the search for the most efficient training method.
Collapse
|
15
|
Vikmoen O, Wiestad TH, Thormodsen I, Nordin K, Berntsen S, Demmelmaier I, Strandberg E, Raastad T. Effects of high and low-to-moderate intensity exercise during (neo-)adjuvant chemotherapy on muscle cells, cardiorespiratory fitness and muscle function in women with breast cancer: Protocol for a randomized controlled trial (Preprint). JMIR Res Protoc 2022; 11:e40811. [DOI: 10.2196/40811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
|
16
|
Exercise Counteracts the Deleterious Effects of Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14102512. [PMID: 35626116 PMCID: PMC9139714 DOI: 10.3390/cancers14102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review provides an overview of the effects of exercise training on the major mechanisms related to cancer cachexia (CC). The review also discusses how cancer comorbidities can influence the ability of patients/animals with cancer to perform exercise training and what precautions should be taken when they exercise. The contribution of other factors, such as exercise modality and biological sex, to exercise effectiveness in ameliorating CC are also elaborated in the final sections. We provide meticulous evidence for how advantageous exercise training can be in patients/animals with CC at molecular and cellular levels. Finally, we emphasise what factors should be considered to optimise and personalise an exercise training program in CC. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterised by unintentional loss of body weight and muscle mass in patients with cancer. The major hallmarks associated with CC development and progression include imbalanced protein turnover, inflammatory signalling, mitochondrial dysfunction and satellite cell dysregulation. So far, there is no effective treatment to counteract muscle wasting in patients with CC. Exercise training has been proposed as a potential therapeutic approach for CC. This review provides an overview of the effects of exercise training in CC-related mechanisms as well as how factors such as cancer comorbidities, exercise modality and biological sex can influence exercise effectiveness in CC. Evidence in mice and humans suggests exercise training combats all of the hallmarks of CC. Several exercise modalities induce beneficial adaptations in patients/animals with CC, but concurrent resistance and endurance training is considered the optimal type of exercise. In the case of cancer patients presenting comorbidities, exercise training should be performed only under specific guidelines and precautions to avoid adverse effects. Observational comparison of studies in CC using different biological sex shows exercise-induced adaptations are similar between male and female patients/animals with cancer, but further studies are needed to confirm this.
Collapse
|
17
|
Fairman CM, Lønbro S, Cardaci TD, VanderVeen BN, Nilsen TS, Murphy AE. Muscle wasting in cancer: opportunities and challenges for exercise in clinical cancer trials. JCSM RAPID COMMUNICATIONS 2022; 5:52-67. [PMID: 36118249 PMCID: PMC9481195 DOI: 10.1002/rco2.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Low muscle in cancer is associated with an increase in treatment-related toxicities and is a predictor of cancer-related and all-cause mortality. The mechanisms of cancer-related muscle loss are multifactorial, including anorexia, hypogonadism, anaemia, inflammation, malnutrition, and aberrations in skeletal muscle protein turnover and metabolism. METHODS In this narrative review, we summarise relevant literature to (i) review the factors influencing skeletal muscle mass regulation, (ii) provide an overview of how cancer/treatments negatively impact these, (iii) review factors beyond muscle signalling that can impact the ability to participate in and respond to an exercise intervention to counteract muscle loss in cancer, and (iv) provide perspectives on critical areas of future research. RESULTS Despite the well-known benefits of exercise, there remains a paucity of clinical evidence supporting the impact of exercise in cancer-related muscle loss. There are numerous challenges to reversing muscle loss with exercise in clinical cancer settings, ranging from the impact of cancer/treatments on the molecular regulation of muscle mass, to clinical challenges in responsiveness to an exercise intervention. For example, tumour-related/treatment-related factors (e.g. nausea, pain, anaemia, and neutropenia), presence of comorbidities (e.g. diabetes, arthritis, and chronic obstructive pulmonary disease), injuries, disease progression and bone metastases, concomitant medications (e.g., metformin), can negatively affect an individual's ability to exercise safely and limit subsequent adaptation. CONCLUSIONS This review identifies numerous gaps and oppportunities in the area of low muscle and muscle loss in cancer. Collaborative efforts between preclinical and clinical researchers are imperative to both understanding the mechanisms of atrophy, and develop appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Ciaran M. Fairman
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29033, USA
- Correspondence to: Ciaran Fairman, Department of Exercise Science, University of South Carolina, Columbia, SC 29033, USA.
| | - Simon Lønbro
- Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Thomas D. Cardaci
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29033, USA
| | - Brandon N. VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tormod S. Nilsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Angela E. Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
18
|
Bae JH, Seo DY, Lee SH, Shin C, Jamrasi P, Han J, Song W. Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:585-592. [PMID: 34697269 PMCID: PMC8552830 DOI: 10.4196/kjpp.2021.25.6.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Cisplatin has been reported to cause side effects such as muscle wasting in
humans and rodents. The physiological mechanisms involved in preventing muscle
wasting, such as the regulation of AKT, PGC1-α, and autophagy-related
factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types
of exercise and in various skeletal muscle types. Eight-week-old male Wistar
rats (n = 34) were assigned to one of four groups: control (CON, n = 6),
cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg)
+ resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic
exercise (CAE, n = 11). The CRE group performed progressive ladder exercise
(starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at
85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min
for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the
levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62,
and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased
in the CRE and CAE groups. The CRE and CAE groups further showed significantly
decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT,
FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic
exercise directly affected muscle wasting by modulating the
AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle
type.
Collapse
Affiliation(s)
- Jun Hyun Bae
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Dae Yun Seo
- National ResearchLaboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University
| | - Sang Ho Lee
- Department of Taekwondo, Dong-A University, Busan 49315, Korea
| | - Chaeyoung Shin
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Parivash Jamrasi
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Jin Han
- National ResearchLaboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University
| | - Wook Song
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea.,Institute of Aging, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Ngo-Huang A, Fricke BC, Schadler KL, Parker NH. Preliminary evidence on the effects of exercise on tumor biology: a potential guide for prescribing exercise. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021; 9:136-141. [PMID: 39877142 PMCID: PMC11774500 DOI: 10.1007/s40141-021-00316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
Purpose of review This report reviews the preliminary evidence of how exercise may alter the tumor microenvironment and tumor biology in animal and human studies; and how to incorporate this information in clinical practice of oncology rehabilitation. Recent findings Potential mechanisms explaining the impact of exercise on the tumor microenvironment include activating and mobilizing immune cells, reducing inflammation, and modifying tumor vasculature which enhances the delivery of anticancer therapies. Pre-clinical data translates to promising preliminary data in human studies; however, randomized, controlled trials in patients are limited. Summary Despite the paucity of robust data demonstrating the beneficial effects of exercise on tumor biology, the strong observational and epidemiological data and limited interventional trials encourage the continued prescribing of exercise by rehabilitation professionals for cancer survivors.
Collapse
Affiliation(s)
- An Ngo-Huang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Brian C Fricke
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive - MSC 7798, San Antonio, TX, USA
| | - Keri L Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Unit 853, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nathan H Parker
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Unit 1330, CPB 3.3278, PO Box 301439, Houston, TX, 77030-1439, USA
| |
Collapse
|
21
|
The Role of Autophagy Modulated by Exercise in Cancer Cachexia. Life (Basel) 2021; 11:life11080781. [PMID: 34440525 PMCID: PMC8402221 DOI: 10.3390/life11080781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome experienced by many patients with cancer. Exercise can act as an autophagy modulator, and thus holds the potential to be used to treat cancer cachexia. Autophagy imbalance plays an important role in cancer cachexia, and is correlated to skeletal and cardiac muscle atrophy and energy-wasting in the liver. The molecular mechanism of autophagy modulation in different types of exercise has not yet been clearly defined. This review aims to elaborate on the role of exercise in modulating autophagy in cancer cachexia. We evaluated nine studies in the literature and found a potential correlation between the type of exercise and autophagy modulation. Combined exercise or aerobic exercise alone seems more beneficial than resistance exercise alone in cancer cachexia. Looking ahead, determining the physiological role of autophagy modulated by exercise will support the development of a new medical approach for treating cancer cachexia. In addition, the harmonization of the exercise type, intensity, and duration might play a key role in optimizing the autophagy levels to preserve muscle function and regulate energy utilization in the liver.
Collapse
|
22
|
Morawin B, Zembroń-Łacny A. Role of endocrine factors and stem cells in skeletal muscle
regeneration. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The process of reconstructing damaged skeletal muscles involves degeneration, inflammatory
and immune responses, regeneration and reorganization, which are regulated by
a number of immune-endocrine factors affecting muscle cells and satellite cells (SCs). One of
these molecules is testosterone (T), which binds to the androgen receptor (AR) to initiate the
expression of the muscle isoform of insulin-like growth factor 1 (IGF-1Ec). The interaction
between T and IGF-1Ec stimulates the growth and regeneration of skeletal muscles by inhibiting
apoptosis, enhancement of SCs proliferation and myoblasts differentiation. As a result
of sarcopenia, muscle dystrophy or wasting diseases, the SCs population is significantly reduced.
Regular physical exercise attenuates a decrease in SCs count, and thus elevates the
regenerative potential of muscles in both young and elderly people. One of the challenges of
modern medicine is the application of SCs and extracellular matrix scaffolds in regenerative
and molecular medicine, especially in the treatment of degenerative diseases and post-traumatic
muscle reconstruction. The aim of the study is to present current information on the
molecular and cellular mechanisms of skeletal muscle regenera,tion, the role of testosterone
and growth factors in the activation of SCs and the possibility of their therapeutic use in
stimulating the reconstruction of damaged muscle fibers.
Collapse
Affiliation(s)
- Barbara Morawin
- Katedra Fizjologii Stosowanej i Klinicznej, Collegium Medicum, Uniwersytet Zielonogórski
| | | |
Collapse
|
23
|
Escriche-Escuder A, Trinidad-Fernández M, Pajares B, Iglesias-Campos M, Alba E, Cuesta-Vargas AI, Roldán-Jiménez C. Ultrasound use in metastatic breast cancer to measure body composition changes following an exercise intervention. Sci Rep 2021; 11:8858. [PMID: 33893370 PMCID: PMC8065020 DOI: 10.1038/s41598-021-88375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 01/04/2023] Open
Abstract
Changes in body composition and muscle dysfunction are common in metastatic breast cancer (MBC). Ultrasound imaging (US) offers reliable information about muscle and fat tissue architecture (thickness) and quality (echo-intensity). This study aimed to analyze the responsiveness of thickness and echo-intensity and its possible relationship with functional and patient reported-outcomes (PRO) in MBC patients after an exercise intervention. A prospective study was conducted in 2019. A 12-week exercise program was performed, including aerobic exercise and strength training. Measurements were made at baseline and after intervention. Thickness and echo-intensity were obtained from the quadriceps and biceps brachii and brachialis (BB). Mean differences were calculated using the T-Student parametric test for dependent samples of the differences in the means before and after the intervention (p = 0.05; 95% CI). Data from 13 MBC patients showed that some US muscle variables had significant differences after intervention. Best correlations were found between the quality of life questionnaire (QLQ-BR23) PRO and variables from BB muscle thickness in contraction (r = 0.61, p < 0.01), and Non-contraction (r = 0.55, p < 0.01). BB Muscle Non-contraction Thickness also explained 70% of QLQ-BR23 variance. In conclusion, muscle architecture biomarkers showed great responsiveness and are correlated with PRO after an exercise intervention in MBC patients.
Collapse
Affiliation(s)
- Adrian Escriche-Escuder
- Department of Physiotherapy, University of Malaga, C/Arquitecto Peñalosa, 3, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Manuel Trinidad-Fernández
- Department of Physiotherapy, University of Malaga, C/Arquitecto Peñalosa, 3, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Bella Pajares
- UGCI Oncológica Médica, Hospital Regional Universitario y Virgen de la Victoria, Málaga, Spain
| | - Marcos Iglesias-Campos
- UGCI Oncológica Médica, Hospital Regional Universitario y Virgen de la Victoria, Málaga, Spain
| | - Emilio Alba
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- UGCI Oncológica Médica, Hospital Regional Universitario y Virgen de la Victoria, Málaga, Spain
| | - Antonio I Cuesta-Vargas
- Department of Physiotherapy, University of Malaga, C/Arquitecto Peñalosa, 3, 29071, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Cristina Roldán-Jiménez
- Department of Physiotherapy, University of Malaga, C/Arquitecto Peñalosa, 3, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
24
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
25
|
Strandberg E, Vassbakk-Svindland K, Henriksson A, Johansson B, Vikmoen O, Kudrén D, Schauer T, Lindman H, Wärnberg F, Berntsen S, Demmelmaier I, Nordin K, Raastad T. Effects of heavy-load resistance training during (neo-)adjuvant chemotherapy on muscle cellular outcomes in women with breast cancer. Medicine (Baltimore) 2021; 100:e24960. [PMID: 33725859 PMCID: PMC7969308 DOI: 10.1097/md.0000000000024960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION (Neo-)adjuvant chemotherapy for breast cancer has a deleterious impact on muscle tissue resulting in reduced cardiorespiratory fitness, skeletal muscle mass and function. Physical exercise during treatment may counteract some of these negative effects. However, the effects of resistance training (RT) alone have never been explored. The present study aims to investigate if heavy-load RT during (neo-)adjuvant chemotherapy counteracts deleterious effects on skeletal muscle in women diagnosed with breast cancer. We hypothesize that (neo-)adjuvant treatment with chemotherapy will reduce muscle fiber size, impair mitochondrial function, and increase indicators of cellular stress and that RT during treatment will counteract these negative effects. We also hypothesize that RT during (neo-)adjuvant chemotherapy will increase muscle and blood levels of potential antitumor myokines and reduce treatment-related side effects on muscle strength and cardiorespiratory fitness. METHODS Fifty women recently diagnosed with breast cancer scheduled to start (neo-)adjuvant chemotherapy will be randomized to either randomized to either intervention group or to control group.The intervention group will perform supervised heavy-load RT twice a week over the course of chemotherapy (approximately 16-weeks) whereas the control group will be encouraged to continue with their usual activities. Muscle biopsies from m. vastus lateralis will be collected before the first cycle of chemotherapy (T0), after chemotherapy (T1), and 6 months later (T2) for assessment of muscle cellular outcomes. The primary outcome for this study is muscle fiber size. Secondary outcomes are: regulators of muscle fiber size and function, indicators of cellular stress and mitochondrial function, myokines with potential antitumor effects, muscle strength, and cardiorespiratory fitness. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Regional Ethical Review Board in Uppsala, Sweden (Dnr:2016/230/2). Results will be disseminated through presentations at scientific meetings, publications in peer-reviewed journals, social media, and patient organizations. TRIAL REGISTRATION NUMBER NCT04586517.
Collapse
Affiliation(s)
| | | | | | - Birgitta Johansson
- Department of Public Health and Caring Sciences
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olav Vikmoen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - David Kudrén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tim Schauer
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lindman
- Department of Oncology, Uppsala University Hospital, Uppsala
| | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sveinung Berntsen
- Department of Public Health and Caring Sciences
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | | | | | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| |
Collapse
|
26
|
Looijaard SMLM, Te Lintel Hekkert ML, Wüst RCI, Otten RHJ, Meskers CGM, Maier AB. Pathophysiological mechanisms explaining poor clinical outcome of older cancer patients with low skeletal muscle mass. Acta Physiol (Oxf) 2021; 231:e13516. [PMID: 32478975 PMCID: PMC7757176 DOI: 10.1111/apha.13516] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Low skeletal muscle mass is highly prevalent in older cancer patients and affects 5% to 89% depending on the type and stage of cancer. Low skeletal muscle mass is associated with poor clinical outcomes such as post-operative complications, chemotherapy toxicity and mortality in older cancer patients. Little is known about the mediating pathophysiological mechanisms. In this review, we summarize proposed pathophysiological mechanisms underlying the association between low skeletal muscle mass and poor clinical outcomes in older cancer patients including a) systemic inflammation; b) insulin-dependent glucose handling; c) mitochondrial function; d) protein status and; e) pharmacokinetics of anticancer drugs. The mechanisms of altered myokine balance negatively affecting the innate and adaptive immune system, and altered pharmacokinetics of anticancer drugs leading to a relative overdosage of anticancer drugs are best-substantiated. The effects of glucose intolerance and circulating mitochondrial DNA as a consequence of low skeletal muscle mass are topics of interest for future research. Restoring myokine balance through physical exercise, exercise mimetics, neuro-muscular activation and adapting anticancer drug dosing on skeletal muscle mass could be targeted approaches to improve clinical outcomes in older cancer patients with low skeletal muscle mass.
Collapse
Affiliation(s)
- Stéphanie M L M Looijaard
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Miriam L Te Lintel Hekkert
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - René H J Otten
- University Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
27
|
Hjortbak MV, Grønnebæk TS, Jespersen NR, Lassen TR, Seefeldt JM, Tonnesen PT, Jensen RV, Koch LG, Britton SL, Pedersen M, Jessen N, Bøtker HE. Differences in intrinsic aerobic capacity alters sensitivity to ischemia-reperfusion injury but not cardioprotective capacity by ischemic preconditioning in rats. PLoS One 2020; 15:e0240866. [PMID: 33108389 PMCID: PMC7591019 DOI: 10.1371/journal.pone.0240866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Aerobic capacity is a strong predictor of cardiovascular mortality. Whether aerobic capacity influences myocardial ischemia and reperfusion (IR) injury is unknown. PURPOSE To investigate the impact of intrinsic differences in aerobic capacity and the cardioprotective potential on IR injury. METHODS We studied hearts from rats developed by selective breeding for high (HCR) or low (LCR) capacity for treadmill running. The rats were randomized to: (1) control, (2) local ischemic preconditioning (IPC) or (3) remote ischemic preconditioning (RIC) followed by 30 minutes of ischemia and 120 minutes of reperfusion in an isolated perfused heart model. The primary endpoint was infarct size. Secondary endpoints included uptake of labelled glucose, content of selected mitochondrial proteins in skeletal and cardiac muscle, and activation of AMP-activated kinase (AMPK). RESULTS At baseline, running distance was 203±7 m in LCR vs 1905±51 m in HCR rats (p<0.01). Infarct size was significantly lower in LCR than in HCR controls (49±5% vs 68±5%, p = 0.04). IPC reduced infarct size by 47% in LCR (p<0.01) and by 31% in HCR rats (p = 0.01). RIC did not modulate infarct size (LCR: 52±5, p>0.99; HCR: 69±6%, p>0.99, respectively). Phosphorylaion of AMPK did not differ between LCR and HCR controls. IPC did not modulate cardiac phosphorylation of AMPK. Glucose uptake during reperfusion was similar in LCR and HCR rats. IPC increased glucose uptake during reperfusion in LCR animals (p = 0.02). Mitochondrial protein content in skeletal muscle was lower in LCR than in HCR (0.77±0.10 arbitrary units (AU) vs 1.09±0.07 AU, p = 0.02), but not in cardiac muscle. CONCLUSION Aerobic capacity is associated with altered myocardial sensitivity to IR injury, but the cardioprotective effect of IPC is not. Glucose uptake, AMPK activation immediately prior to ischemia and basal mitochondrial protein content in the heart seem to be of minor importance as underlying mechanisms for the cardioprotective effects.
Collapse
Affiliation(s)
- Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| | | | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Marthinsen Seefeldt
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Pernille Tilma Tonnesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rebekka Vibjerg Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lauren Gerard Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aahus University Hospital, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Zumwalt M, Reddy AP. Stem Cells for Treatment of Musculoskeletal Conditions - Orthopaedic/Sports Medicine Applications. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165624. [PMID: 31794866 DOI: 10.1016/j.bbadis.2019.165624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/20/2022]
Abstract
A myriad of musculoskeletal conditions afflicts a vast number of the world's population from birth to death. Countless pathological diseases and traumatic injuries (acute and chronic) contribute to different human disabilities, causing a tremendous financial toll on the economy of healthcare. The medical field is continually searching for novel ways to combat orthopedically related conditions. The immediate goal is the restoration of anatomy then ultimately return of function in hopes of enhancing quality if not the quantity of life. Traditional methods involve surgical correction/reconstruction of skeletal deformities from fractures/soft tissue damage/ruptures or replacement/resection of degenerated joints. Modern research is currently concentrating on innovative procedures to replenish/restore the human body close to its original/natural state [1, 2].
Collapse
Affiliation(s)
- Mimi Zumwalt
- Texas Tech University Health Sciences Center, Department of Orthopaedic Surgery, 3601 4(th) Street STOP 9436, Lubbock, TX 79430 United States of America.
| | - Arubala P Reddy
- Texas Tech University, 1301 Akron Avenue, Lubbock, TX 79409 United States of America.
| |
Collapse
|
29
|
Guigni BA, Fix DK, Bivona JJ, Palmer BM, Carson JA, Toth MJ. Electrical stimulation prevents doxorubicin-induced atrophy and mitochondrial loss in cultured myotubes. Am J Physiol Cell Physiol 2019; 317:C1213-C1228. [PMID: 31532714 DOI: 10.1152/ajpcell.00148.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Muscle contraction may protect against the effects of chemotherapy to cause skeletal muscle atrophy, but the mechanisms underlying these benefits are unclear. To address this question, we utilized in vitro modeling of contraction and mechanotransduction in C2C12 myotubes treated with doxorubicin (DOX; 0.2 μM for 3 days). Myotubes expressed contractile proteins and organized these into functional myofilaments, as electrical field stimulation (STIM) induced intracellular calcium (Ca2+) transients and contractions, both of which were prevented by inhibition of membrane depolarization. DOX treatment reduced myotube myosin content, protein synthesis, and Akt (S308) and forkhead box O3a (FoxO3a; S253) phosphorylation and increased muscle RING finger 1 (MuRF1) expression. STIM (1 h/day) prevented DOX-induced reductions in myotube myosin content and Akt and FoxO3a phosphorylation, as well as increases in MuRF1 expression, but did not prevent DOX-induced reductions in protein synthesis. Inhibition of myosin-actin interaction during STIM prevented contraction and the antiatrophic effects of STIM without affecting Ca2+ cycling, suggesting that the beneficial effect of STIM derives from mechanotransductive pathways. Further supporting this conclusion, mechanical stretch of myotubes recapitulated the effects of STIM to prevent DOX suppression of FoxO3a phosphorylation and upregulation of MuRF1. DOX also increased reactive oxygen species (ROS) production, which led to a decrease in mitochondrial content. Although STIM did not alter DOX-induced ROS production, peroxisome proliferator-activated receptor-γ coactivator-1α and antioxidant enzyme expression were upregulated, and mitochondrial loss was prevented. Our results suggest that the activation of mechanotransductive pathways that downregulate proteolysis and preserve mitochondrial content protects against the atrophic effects of chemotherapeutics.
Collapse
Affiliation(s)
- Blas A Guigni
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont.,Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Dennis K Fix
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Joseph J Bivona
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - James A Carson
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina.,Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont.,Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont.,Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|