1
|
Lopez-Gonzalez M, Ariceta G. WT1-related disorders: more than Denys-Drash syndrome. Pediatr Nephrol 2024; 39:2601-2609. [PMID: 38326647 DOI: 10.1007/s00467-024-06302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Historically, specific mutations in WT1 gene have been associated with distinct syndromes based on phenotypic characteristics, including Denys-Drash syndrome (DDS), Frasier syndrome (FS), Meacham syndrome, and WAGR syndrome. DDS is classically defined by the triad of steroid-resistant nephrotic syndrome (SRNS) onset in the first year of life, disorders of sex development (DSD), and a predisposition to Wilms tumor (WT). Currently, a paradigm shift acknowledges a diverse spectrum of presentations beyond traditional syndromic definitions. Consequently, the concept of WT1-related disorders becomes more precise. A genotype-phenotype correlation has been established, emphasizing that the location and type of WT1 mutations significantly influence the clinical presentation, the condition severity, and the chronology of patient manifestations. Individuals presenting with persistent proteinuria, with or without nephrotic syndrome, and varying degrees of kidney dysfunction accompanied by genital malformations should prompt suspicion of WT1 mutations. Recent genetic advances enable a more accurate estimation of malignancy risk in these patients, facilitating a conservative nephron-sparing surgery (NSS) approach in select cases, with a focus on preserving residual kidney function and delaying nephrectomies. Other key management strategies include kidney transplantation and addressing DSD and gonadoblastoma. In summary, recent genetic insights underscore the imperative to implement individualized, integrated, and multidisciplinary management strategies for WT1-related disorders. This approach is pivotal in optimizing patient outcomes and addressing the complexities associated with these diverse clinical manifestations.
Collapse
Affiliation(s)
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Barcelona, Spain
- University Autonomous of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Girgis M, Benedetti DJ. A case of high-risk neuroblastoma in a child with CLOVES syndrome. Pediatr Blood Cancer 2023:e30393. [PMID: 37092956 DOI: 10.1002/pbc.30393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Marina Girgis
- Departments of Internal Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel J Benedetti
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Tüysüz B, Bozlak S, Uludağ Alkaya D, Ocak S, Kasap B, Sunamak Çifçi E, Seker A, Bayhan IA, Apak H. Investigation of 11p15.5 Methylation Defects Associated with Beckwith-Wiedemann Spectrum and Embryonic Tumor Risk in Lateralized Overgrowth Patients. Cancers (Basel) 2023; 15:cancers15061872. [PMID: 36980758 PMCID: PMC10046725 DOI: 10.3390/cancers15061872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The Beckwith-Wiedemann spectrum (BWSp) ranges from isolated lateralized overgrowth (ILO) to classic phenotypes. In this broad clinical spectrum, an epigenetic alteration on chromosome 11p15.5 can be detected. The risk for embryonal tumors is high, especially in patients with lateralized overgrowth (LO). The aim of this study is to investigate epigenetic alterations in 11p15.5 and tumor risk in 87 children with LO. The methylation level of 11p15.5 was examined in the blood of all patients and in skin samples or buccal swabs from 40 patients with negative blood tests; 63.2% of patients were compatible with the ILO phenotype, 18.4% were atypical, and 18.4% were classic. The molecular diagnosis rate was 81.2% for the atypical and classic phenotypes, and 10.9% for the ILO phenotype. In patients with epigenetic alterations, LO was statistically significantly more severe than in test negatives. Tumors developed in six (6.9%) of the total 87 patients with LO; four belonged to the atypical or classical phenotype (12.5%) and two to ILO (3.5%). Three of the four patients with atypical/classical phenotypes had pUPD11, one had IC1-GOM alteration, and two ILO patients were negative. We conclude that LO patients should be monitored for tumor risk even if their epigenetic tests are negative.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Serdar Bozlak
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Süheyla Ocak
- Department of Pediatric Hematology and Oncology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Büşra Kasap
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Evrim Sunamak Çifçi
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Ali Seker
- Department of Orthopedics and Traumatology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Ilhan Avni Bayhan
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Center, University of Health Sciences, 34470 Istanbul, Turkey
| | - Hilmi Apak
- Department of Pediatric Hematology and Oncology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| |
Collapse
|
4
|
Quarello P, Carli D, Biasoni D, Gerocarni Nappo S, Morosi C, Cotti R, Garelli E, Zucchetti G, Spadea M, Tirtei E, Spreafico F, Fagioli F. Implications of an Underlying Beckwith-Wiedemann Syndrome for Wilms Tumor Treatment Strategies. Cancers (Basel) 2023; 15:1292. [PMID: 36831633 PMCID: PMC9954715 DOI: 10.3390/cancers15041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is a pediatric overgrowth disorder involving a predisposition to embryonal tumors. Most of the tumors associated with BWS occur in the first 8-10 years of life, and the most common is Wilms tumor (WT). BWS clinical heterogeneity includes subtle overgrowth features or even silent phenotypes, and WT may be the presenting symptom of BWS. WT in BWS individuals exhibit distinct characteristics from those of sporadic WT, and the management of these patients needs a peculiar approach. The most important feature is a higher risk of developing bilateral disease at some time in the course of the illness (synchronous bilateral disease at diagnosis or metachronous recurrence after initial presentation with unilateral disease). Accordingly, neoadjuvant chemotherapy is the recommended approach also for BWS patients with unilateral WT to facilitate nephron-sparing surgical approaches. This review emphasizes the importance of early BWS recognition, particularly if a WT has already occurred, as this will result in an urgent consideration of first-line cancer therapy.
Collapse
Affiliation(s)
- Paola Quarello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Diana Carli
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Davide Biasoni
- Pediatric Surgical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | | | - Carlo Morosi
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Roberta Cotti
- Pediatric Radiology, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Emanuela Garelli
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Giulia Zucchetti
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Manuela Spadea
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Elisa Tirtei
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| |
Collapse
|
5
|
Performance Metrics of the Scoring System for the Diagnosis of the Beckwith-Wiedemann Spectrum (BWSp) and Its Correlation with Cancer Development. Cancers (Basel) 2023; 15:cancers15030773. [PMID: 36765732 PMCID: PMC9913441 DOI: 10.3390/cancers15030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Different scoring systems for the clinical diagnosis of the Beckwith-Wiedemann spectrum (BWSp) have been developed over time, the most recent being the international consensus score. Here we try to validate and provide data on the performance metrics of these scoring systems of the 2018 international consensus and the previous ones, relating them to BWSp features, molecular tests, and the probability of cancer development in a cohort of 831 patients. The consensus scoring system had the best performance (sensitivity 0.85 and specificity 0.43). In our cohort, the diagnostic yield of tests on blood-extracted DNA was low in patients with a low consensus score (~20% with a score = 2), and the score did not correlate with cancer development. We observed hepatoblastoma (HB) in 4.3% of patients with UPD(11)pat and Wilms tumor in 1.9% of patients with isolated lateralized overgrowth (ILO). We validated the efficacy of the currently used consensus score for BWSp clinical diagnosis. Based on our observation, a first-tier analysis of tissue-extracted DNA in patients with <4 points may be considered. We discourage the use of the consensus score value as an indicator of the probability of cancer development. Moreover, we suggest considering cancer screening for negative patients with ILO (risk ~2%) and HB screening for patients with UPD(11)pat (risk ~4%).
Collapse
|
6
|
Nussbaumer G, Benesch M. Hepatoblastoma in molecularly defined, congenital diseases. Am J Med Genet A 2022; 188:2527-2535. [PMID: 35478319 PMCID: PMC9545988 DOI: 10.1002/ajmg.a.62767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 01/24/2023]
Abstract
Beckwith-Wiedemann spectrum, Simpson-Golabi-Behmel syndrome, familial adenomatous polyposis and trisomy 18 are the most common congenital conditions associated with an increased incidence of hepatoblastoma (HB). In patients with these genetic disorders, screening protocols for HB are proposed that include periodic abdominal ultrasound and measurement of alpha-fetoprotein levels. Surveillance in these children may contribute to the early detection of HB and possibly improve their chances of overall survival. Therefore, physicians must be aware of the high HB incidence in children with certain predisposing genetic diseases.
Collapse
Affiliation(s)
- Gunther Nussbaumer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent MedicineMedical University of GrazGrazAustria
| | - Martin Benesch
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent MedicineMedical University of GrazGrazAustria
| |
Collapse
|
7
|
Fiandrino G, Arossa A, Ghirardello S, Kalantari S, Rossi C, Bonasoni MP, Cesari S, Rizzuti T, Giorgio E, Bassanese F, Scatigno AL, Meroni A, Melito C, Feltri M, Longo S, Figar TA, Andorno A, Gelli MC, Bertozzi M, Spinillo A, Riccipetitoni G, Valente EM, Paulli M, Sirchia F. SIMPSON-GOLABI-BEHMEL syndrome type 1: How placental immunohistochemistry can rapidly Predict the diagnosis. Placenta 2022; 126:119-124. [DOI: 10.1016/j.placenta.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
8
|
Ramachandran L, Patel G, Fatima S, Khan M. Breast Cancer Secondary to Radiation Therapy in a Patient With Wilms Tumor. Cureus 2022; 14:e23597. [PMID: 35505703 PMCID: PMC9053353 DOI: 10.7759/cureus.23597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Wilms tumor, one of the most common childhood malignancies, is typically treated with a combination of chemotherapy, radiation, and surgical resection. Wilms tumor survivors who received radiation therapy are, however, at a higher risk of secondary malignancies and need vigilant monitoring. We present the case of a 35-year-old female with history of Wilms tumor at age five, who received radiation therapy for pulmonary metastasis, and was found to have breast cancer at the age of 35. We discuss different protocols in treatment of Wilms tumor and current secondary malignancy screening recommendations. We also recognize the importance of screening guideline awareness among primary care physicians and its mortality and morbidity implications.
Collapse
|
9
|
Mussa A, Carli D, Cardaropoli S, Ferrero GB, Resta N. Lateralized and Segmental Overgrowth in Children. Cancers (Basel) 2021; 13:cancers13246166. [PMID: 34944785 PMCID: PMC8699773 DOI: 10.3390/cancers13246166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/19/2023] Open
Abstract
Congenital disorders of lateralized or segmental overgrowth (LO) are heterogeneous conditions with increased tissue growth in a body region. LO can affect every region, be localized or extensive, involve one or several embryonic tissues, showing variable severity, from mild forms with minor body asymmetry to severe ones with progressive tissue growth and related relevant complications. Recently, next-generation sequencing approaches have increased the knowledge on the molecular defects in LO, allowing classifying them based on the deranged cellular signaling pathway. LO is caused by either genetic or epigenetic somatic anomalies affecting cell proliferation. Most LOs are classifiable in the Beckwith-Wiedemann spectrum (BWSp), PI3KCA/AKT-related overgrowth spectrum (PROS/AROS), mosaic RASopathies, PTEN Hamartoma Tumor Syndrome, mosaic activating variants in angiogenesis pathways, and isolated LO (ILO). These disorders overlap over common phenotypes, making their appraisal and distinction challenging. The latter is crucial, as specific management strategies are key: some LO is associated with increased cancer risk making imperative tumor screening since childhood. Interestingly, some LO shares molecular mechanisms with cancer: recent advances in tumor biological pathway druggability and growth downregulation offer new avenues for the treatment of the most severe and complicated LO.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
- Pediatric Clinical Genetics Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
- Correspondence: ; Tel.: +39-0113135372
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
| | | | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| |
Collapse
|
10
|
Duffy KA, Getz KD, Hathaway ER, Byrne ME, MacFarland SP, Kalish JM. Characteristics Associated with Tumor Development in Individuals Diagnosed with Beckwith-Wiedemann Spectrum: Novel Tumor-(epi)Genotype-Phenotype Associations in the BWSp Population. Genes (Basel) 2021; 12:genes12111839. [PMID: 34828445 PMCID: PMC8621885 DOI: 10.3390/genes12111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023] Open
Abstract
Beckwith–Wiedemann Spectrum (BWSp) is the most common epigenetic childhood cancer predisposition disorder. BWSp is caused by (epi)genetic changes affecting the BWS critical region on chromosome 11p15. Clinically, BWSp represents complex molecular and phenotypic heterogeneity resulting in a range of presentations from Classic BWS to milder features. The previously reported tumor risk based on Classic BWS cohorts is 8–10% and routine tumor screening has been recommended. This work investigated the tumor risk and correlation with phenotype within a cohort of patients from Classic BWS to BWSp using a mixed-methods approach to explore phenotype and epigenotype profiles associated with tumor development through statistical analyses with post-hoc retrospective case series review. We demonstrated that tumor risk across BWSp differs from Classic BWS and that certain phenotypic features are associated with specific epigenetic causes; nephromegaly and/or hyperinsulinism appear associated with cancer in some patients. We also demonstrated that prenatal and perinatal factors that are not currently part of the BWSp classification may factor into tumor risk. Additionally, blood testing results are not necessarily synonymous with tissue testing results. Together, it appears that the current understanding from Classic BWS of (epi)genetics and phenotype correlations with tumors is not represented in the BWSp. Further study is needed in this complex population.
Collapse
Affiliation(s)
- Kelly A. Duffy
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Kelly D. Getz
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Evan R. Hathaway
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Mallory E. Byrne
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
| | - Suzanne P. MacFarland
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer M. Kalish
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (K.A.D.); (E.R.H.); (M.E.B.)
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA;
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-215-590-1278
| |
Collapse
|
11
|
Characteristics of Nephroblastoma/Nephroblastomatosis in Children with a Clinically Reported Underlying Malformation or Cancer Predisposition Syndrome. Cancers (Basel) 2021; 13:cancers13195016. [PMID: 34638500 PMCID: PMC8507684 DOI: 10.3390/cancers13195016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary It is well known that different cancer predisposition syndromes are associated with characteristic WT-features. The following findings from our retrospective analysis of patients with nephroblastoma treated according to the SIOP/GPOH trials between 1989 and 2017 are relevant: (1) The outcome of patients with a cancer predisposition syndrome is not always favorable despite early diagnosis, small tumors and less metastatic disease. This finding is partly depending on complications related to the underlying syndrome. (2) Predisposition syndromes seem to be underdiagnosed as several clinical and pathological features of Wilms tumor being clearly linked to a cancer predisposition syndrome did not lead to genetic counseling before and after WT diagnosis. As a conclusion, in children with a nephroblastoma and specific clinical and pathological features that are in line with a nephroblastoma cancer predisposition syndrome such a syndrome should always be considered and ruled out if unknown at the time of tumor diagnosis. Abstract (1) Background: about 10% of Wilms Tumor (WT) patients have a malformation or cancer predisposition syndrome (CPS) with causative germline genetic or epigenetic variants. Knowledge on CPS is essential for genetic counselling. (2) Methods: this retrospective analysis focused on 2927 consecutive patients with WTs registered between 1989 and 2017 in the SIOP/GPOH studies. (3) Results: Genitourinary malformations (GU, N = 66, 2.3%), Beckwith-Wiedemann spectrum (BWS, N = 32, 1.1%), isolated hemihypertrophy (IHH, N = 29, 1.0%), Denys-Drash syndrome (DDS, N = 24, 0.8%) and WAGR syndrome (N = 20, 0.7%) were reported most frequently. Compared to others, these patients were younger at WT diagnosis (median age 24.5 months vs. 39.0 months), had smaller tumors (349.4 mL vs. 487.5 mL), less often metastasis (8.2% vs. 18%), but more often nephroblastomatosis (12.9% vs. 1.9%). WT with IHH was associated with blastemal WT and DDS with stromal subtype. Bilateral WTs were common in WAGR (30%), DDS (29%) and BWS (31%). Chemotherapy induced reduction in tumor volume was poor in DDS (0.4% increase) and favorable in BWS (86.9% reduction). The event-free survival (EFS) of patients with BWS was significantly (p = 0.002) worse than in others. (4) Conclusions: CPS should be considered in WTs with specific clinical features resulting in referral to a geneticist. Their outcome was not always favorable.
Collapse
|
12
|
Hol JA, Jewell R, Chowdhury T, Duncan C, Nakata K, Oue T, Gauthier-Villars M, Littooij AS, Kaneko Y, Graf N, Bourdeaut F, van den Heuvel-Eibrink MM, Pritchard-Jones K, Maher ER, Kratz CP, Jongmans MCJ. Wilms tumour surveillance in at-risk children: Literature review and recommendations from the SIOP-Europe Host Genome Working Group and SIOP Renal Tumour Study Group. Eur J Cancer 2021; 153:51-63. [PMID: 34134020 DOI: 10.1016/j.ejca.2021.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Since previous consensus-based Wilms tumour (WT) surveillance guidelines were published, novel genes and syndromes associated with WT risk have been identified, and diagnostic molecular tests for previously known syndromes have improved. In view of this, the International Society of Pediatric Oncology (SIOP)-Europe Host Genome Working Group and SIOP Renal Tumour Study Group hereby present updated WT surveillance guidelines after an extensive literature review and international consensus meetings. These guidelines are for use by clinical geneticists, pediatricians, pediatric oncologists and radiologists involved in the care of children at risk of WT. Additionally, we emphasise the need to register all patients with a cancer predisposition syndrome in national or international databases, to enable the development of better tumour risk estimates and tumour surveillance programs in the future.
Collapse
Affiliation(s)
- Janna A Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Tanzina Chowdhury
- Great Ormond Street Hospital for Children, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Catriona Duncan
- Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | - Takaharu Oue
- Department of Pediatric Surgery, Hyōgo College of Medicine, Nishinomiya, Hyōgo, Japan
| | | | - Annemieke S Littooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Norbert Graf
- Department of Pediatric Oncology & Hematology, Saarland University, Homburg, Germany
| | - Franck Bourdeaut
- SIREDO Pediatric Oncology Center, Institut Curie Hospital, Paris, France
| | | | - Kathy Pritchard-Jones
- Great Ormond Street Hospital for Children, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology & Rare Disease Program, Hannover Medical School, Center for Pediatrics and Adolescent Medicine, Hannover, Germany
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht / Wilhelmina Children's Hospital, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Andreas D, Glick RD, Fish JD, Fein Levy C, Gitlin JS. Association of Wilms tumor in multicystic dysplastic kidneys: case report and review of the literature. JOURNAL OF CLINICAL UROLOGY 2021. [DOI: 10.1177/20514158211024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multicystic dysplastic kidney is a rare urinary anomaly characterized by multiple non-communicating cysts resulting in a non-functional kidney. In addition to association with hypertension and contralateral renal anomalies, children with multicystic dysplastic kidney have an increased risk of Wilms tumor. Cohort studies and systematic reviews are hampered in estimating the true risk of this association due to the rarity and infrequent reporting of the condition. We present a case of a 2-year-old male child with an antenatal diagnosis of multicystic dysplastic kidney undergoing surveillance ultrasonography who presented with a symptomatic Wilms tumor. Level of evidence: Not applicable for this multicentre audit.
Collapse
Affiliation(s)
| | - Richard D Glick
- Division of Pediatric Surgery, Cohen Children’s Medical Center, USA
- Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, USA
| | - Jonathan D Fish
- Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, USA
- Division of Pediatric Hematology and Oncology, Cohen Children’s Medical Center, USA
| | - Carolyn Fein Levy
- Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, USA
- Division of Pediatric Hematology and Oncology, Cohen Children’s Medical Center, USA
| | | |
Collapse
|
14
|
Fischer KM, Mittal S, Long CJ, Duffy KA, Kalish JM, Evageliou NF, Kolon TF. The following 3 cases were presented at the 2020 virtual PUOWG conferenceLate Presentation of Wilms Tumor in a Patient with Hemihypertrophy after Normal Screening. Urology 2021; 154:271-274. [PMID: 33581236 DOI: 10.1016/j.urology.2021.01.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 11/30/2022]
Abstract
An identifiable genetic malformation or predisposition syndrome is present in 18% of Wilms tumor cases. Given this, children with conditions associated with a greater than 1% risk of developing Wilms tumor are recommended to have regular surveillance imaging with renal ultrasound until age 7. Seven years is the recommended screening duration because 95% of cases will occur by this age. We present a case of a child with isolated hemihypertrophy, associated with 5% risk of Wilms tumor, who presented with a tumor after the recommended screening, at age 9, brining into question the age cutoffs currently used.
Collapse
Affiliation(s)
- Katherine M Fischer
- Division of Urology, Hospital of the University of Pennsylvania, Perelman Center for Advanced Care, Philadelphia, PA; Division of Urology, Children's Hospital of Philadelphia, Philadelphia, PA.
| | - Sameer Mittal
- Division of Urology, Hospital of the University of Pennsylvania, Perelman Center for Advanced Care, Philadelphia, PA; Division of Urology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Christopher J Long
- Division of Urology, Hospital of the University of Pennsylvania, Perelman Center for Advanced Care, Philadelphia, PA; Division of Urology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Nicholas F Evageliou
- Division of Hematology and Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Thomas F Kolon
- Division of Urology, Hospital of the University of Pennsylvania, Perelman Center for Advanced Care, Philadelphia, PA; Division of Urology, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
15
|
McGrath CP, Boyle MA. Does Beckwith-Wiedemann syndrome require intensive Wilms tumour surveillance? Arch Dis Child 2021; 106:archdischild-2020-320936. [PMID: 33408065 DOI: 10.1136/archdischild-2020-320936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/03/2022]
|
16
|
Duffy KA, Trout KL, Gunckle JM, Krantz SM, Morris J, Kalish JM. Results From the WAGR Syndrome Patient Registry: Characterization of WAGR Spectrum and Recommendations for Care Management. Front Pediatr 2021; 9:733018. [PMID: 34970513 PMCID: PMC8712693 DOI: 10.3389/fped.2021.733018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
WAGR syndrome is a rare genetic disorder characterized by Wilms tumor, Aniridia, Genitourinary anomalies, and Range of developmental delays. In addition to the classic features, patients affected by WAGR syndrome can develop obesity and kidney failure, and a wide variety of non-classical manifestations have also been described. This suggests that a broader phenotypic spectrum beyond the classic syndrome exists and here we demonstrate that spectrum using data from the WAGR Syndrome Patient Registry. In the present study, we collected information from 91 individuals enrolled in the registry to explore self-reported health issues in this patient population. A wide variety of common clinical issues not classically associated with the disorder were found, prompting the redefinition from WAGR syndrome to WAGR spectrum disorder to incorporate the phenotypic variations that occur. A comprehensive care management approach is needed to address the wide range of clinical issues and we propose a care model for patients affected by WAGR spectrum disorder. Further research is needed to solidify the breath of the phenotype and confirm the observations in this study to advance individualized patient care in this population.
Collapse
Affiliation(s)
- Kelly A Duffy
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kelly L Trout
- International WAGR Syndrome Association, Montgomery Village, MD, United States
| | - Jennifer M Gunckle
- International WAGR Syndrome Association, Montgomery Village, MD, United States
| | | | - John Morris
- International WAGR Syndrome Association, Montgomery Village, MD, United States
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Genetics and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Hepatocellular Carcinoma in a 24-Year-Old Female with Beckwith-Wiedemann Syndrome: A Case Report and Review of the Literature. Case Rep Genet 2020; 2020:8811296. [PMID: 33083068 PMCID: PMC7563044 DOI: 10.1155/2020/8811296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022] Open
Abstract
In this report, the case of a 24-year-old female with Beckwith–Wiedemann Syndrome (BWS) who was diagnosed with well-differentiated hepatocellular carcinoma (HCC) is described. While BWS has been associated with childhood embryonal tumors, most commonly Wilms tumors and hepatoblastomas, this is the first case report to describe HCC in an adult with BWS. Although HCC typically occurs in elderly adults or those with underlying liver disease, in this case, we show that HCC can occur in a young adult with BWS without any underlying liver disease.
Collapse
|
18
|
Griff JR, Duffy KA, Kalish JM. Characterization and Childhood Tumor Risk Assessment of Genetic and Epigenetic Syndromes Associated With Lateralized Overgrowth. Front Pediatr 2020; 8:613260. [PMID: 33392121 PMCID: PMC7773942 DOI: 10.3389/fped.2020.613260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022] Open
Abstract
Lateralized overgrowth (LO), or segmental overgrowth, is defined as an increase in growth of tissue (bone, muscle, connective tissue, vasculature, etc.) in any region of the body. Some overgrowth syndromes, characterized by both generalized and lateralized overgrowth, have been associated with an increased risk of tumor development. This may be due to the underlying genetic and epigenetic defects that lead to disrupted cell growth and proliferation pathways resulting in the overgrowth and tumor phenotypes. This chapter focuses on the four most common syndromes characterized by LO: Beckwith-Wiedemann spectrum (BWSp), PIK3CA-related overgrowth spectrum (PROS), Proteus syndrome (PS), and PTEN hamartoma tumor syndrome (PHTS). These syndromes demonstrate variable risks for tumor development in patients affected by LO, and we provide a comprehensive literature review of all common tumors reported in patients diagnosed with an LO-related disorder. This review summarizes the current data on tumor risk among these disorders and their associated tumor screening guidelines. Furthermore, this chapter highlights the importance of an accurate diagnosis when a patient presents with LO as similar phenotypes are associated with different tumor risks, thereby altering preventative screening protocols.
Collapse
Affiliation(s)
- Jessica R Griff
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Departments of Genetics and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|