1
|
Begaj K, Sperr A, Jokisch JF, Clevert DA. Improved bladder diagnostics using multiparametric ultrasound. Abdom Radiol (NY) 2025; 50:1240-1253. [PMID: 39325210 DOI: 10.1007/s00261-024-04604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
This comprehensive review examines recent advancements in the integration of multiparametric ultrasound for diagnostic imaging of the urinary bladder. It not only highlights the current state of ultrasound imaging but also projects its potential to further elevate standards of care in managing urinary bladder pathologies. Specifically, contrast-enhanced ultrasound (CEUS) and elastography show significant improvements in detecting bladder tumors and assessing bladder wall mechanics compared to traditional methods. The review also explores the future potential of ultrasound-mediated nanobubble destruction (UMND) as an investigational targeted cancer therapy, showcasing a novel approach that utilizes nanobubbles to deliver therapeutic genes into tumor cells with high precision. Emerging AI-driven innovations and novel techniques, such as microvascular ultrasonography (MVUS), are proving to be powerful tools for the non-invasive and precise management of bladder conditions, offering detailed insights into bladder structure and function. These advancements collectively underscore their transformative impact on the field of urology.
Collapse
|
2
|
Cooley M, Wegierak D, Perera R, Abenojar E, Nittayacharn P, Berg FM, Kim Y, Kolios MC, Exner AA. Assessing Therapeutic Nanoparticle Accumulation in Tumors Using Nanobubble-Based Contrast-Enhanced Ultrasound Imaging. ACS NANO 2024; 18:33181-33196. [PMID: 39566912 PMCID: PMC11619768 DOI: 10.1021/acsnano.4c11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
This study explores the challenges associated with nanoparticle-based drug delivery to the tumor parenchyma, focusing on the widely utilized enhanced permeability and retention effect (EPR). While EPR has been a key strategy, its inconsistent clinical success lacks clear mechanistic understanding and is hindered by limited tools for studying relevant phenomena. This work introduces an approach that employs multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a nanoscale contrast agent for noninvasive, real-time examination of tumor microenvironment characteristics. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features, (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma, and (3) be used to predict nanotherapeutic efficacy. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability. LS174T tumors consistently showed significantly different time intensity curve (TIC) parameters, including area under the rising curve (AUCR, 2.7×) and time to peak intensity (TTP, 1.9×) compared to U87 tumors. Crucially, a recently developed decorrelation time (DT) parameter specific to NB CEUS dynamics successfully predicted the distribution of doxorubicin-loaded liposomes within the tumor parenchyma (r = 0.86 ± 0.13). AUCR, TTP, and DT were used to correlate imaging findings to nanotherapeutic response with 100% accuracy in SKOV-3 tumors. These findings suggest that NB-CEUS parameters can effectively discern tumor vascular permeability, serving as a biomarker for identifying tumor characteristics and predicting the responsiveness to nanoparticle-based therapies. The observed differences between LS174T and U87 tumors and the accurate prediction of nanotherapeutic efficacy in SKOV-3 tumors indicate the potential utility of this method in predicting treatment efficacy and evaluating EPR in diseases characterized by pathologically permeable vasculature. Ultimately, this research contributes valuable insights into refining drug delivery strategies and assessing the broader applicability of EPR-based approaches.
Collapse
Affiliation(s)
- Michaela
B. Cooley
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Dana Wegierak
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Reshani Perera
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eric Abenojar
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Pinunta Nittayacharn
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Felipe M. Berg
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Hospital
Israelita Albert Einstein, São
Paulo, São Paulo 05652-900, Brazil
| | - Youjoung Kim
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C. Kolios
- Department
of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering, Science and Technology (iBEST), A Partnership
between St. Michael’s Hospital, A
Site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Agata A. Exner
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
3
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Na L, Fan F. Advances in nanobubbles for cancer theranostics: Delivery, imaging and therapy. Biochem Pharmacol 2024; 226:116341. [PMID: 38848778 DOI: 10.1016/j.bcp.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.
Collapse
Affiliation(s)
- Liu Na
- Ultrasound Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| |
Collapse
|
5
|
Tu B, Li Y, Wen W, Liu J. Bibliometric and visualized analysis of ultrasound combined with microbubble therapy technology from 2009 to 2023. Front Pharmacol 2024; 15:1418142. [PMID: 39119614 PMCID: PMC11306066 DOI: 10.3389/fphar.2024.1418142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Background In recent years, with the rapid advancement of fundamental ultrasonography research, the application of ultrasound in disease treatment has progressively increased. An increasing body of research indicates that microbubbles serve not only as contrast agents but also in conjunction with ultrasound, enhancing cavitation effects and facilitating targeted drug delivery, thereby augmenting therapeutic efficacy. The objective of this study is to explore the current status and prevailing research trends in this field from 2009 to 2023 through bibliometric analysis and to forecast future developmental trajectories. Methods We selected the Science Citation Index Expanded (SCI-Expanded) from the Web of Science Core Collection (WOSCC) as our primary data source. On 19 January 2024, we conducted a comprehensive search encompassing all articles and reviews published between 2009 and 2023 and utilized the bibliometric online analysis platform, CiteSpace and VOSviewer software to analyze countries/regions, institutions, authors, keywords, and references, used Microsoft Excel 2021 to visualize the trends of the number of articles published by year. Results Between 1 January 2009, and 31 December 2023, 3,326 publications on ultrasound combined with microbubble therapy technology were included. There were a total of 2,846 articles (85.6%) and 480 reviews (14.4%) from 13,062 scholars in 68 countries/regions published in 782 journals. China and the United States emerged as the primary contributors in this domain. In terms of publication output and global institutional collaboration, the University of Toronto in Canada has made the most significant contribution to this field. Professor Kullervo Hynynen has achieved remarkable accomplishments in this area. Ultrasound in Medicine and Biology is at the core of the publishing of research on ultrasound combined with microbubble therapy technology. Keywords such as "sonodynamic therapy," "oxygen," "loaded microbubbles" and "Alzheimer's disease" indicate emerging trends in the field and hold the potential to evolve into significant areas of future investigation. Conclusion This study provides a summary of the key contributions of ultrasound combined with microbubble therapy to the field's development over the past 15 years and delves into the historical underpinnings and contemporary trends of ultrasound combined with microbubble therapy technology, providing valuable guidance for researchers.
Collapse
Affiliation(s)
- Bin Tu
- Department of Ultrasound, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yan Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Wen
- Department of Ultrasound, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jian Liu
- Department of Ultrasound, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Gattegno R, Arbel L, Riess N, Shinar H, Katz S, Ilovitsh T. Enhanced capillary delivery with nanobubble-mediated blood-brain barrier opening and advanced high resolution vascular segmentation. J Control Release 2024; 369:506-516. [PMID: 38575074 DOI: 10.1016/j.jconrel.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Overcoming the blood-brain barrier (BBB) is essential to enhance brain therapy. Here, we utilized nanobubbles with focused ultrasound for targeted and improved BBB opening in mice. A microscopy technique method assessed BBB opening at a single blood vessel resolution employing a dual-dye labeling technique using green fluorescent molecules to label blood vessels and Evans blue brain-impermeable dye for quantifying BBB extravasation. A deep learning architecture enabled blood vessels segmentation, delivering comparable accuracy to manual segmentation with a significant time reduction. Segmentation outcomes were applied to the Evans blue channel to quantify extravasation of each blood vessel. Results were compared to microbubble-mediated BBB opening, where reduced extravasation was observed in capillaries with a diameter of 2-6 μm. In comparison, nanobubbles yield an improved opening in these capillaries, and equivalent efficacy to that of microbubbles in larger vessels. These results indicate the potential of nanobubbles to serve as enhanced agents for BBB opening, amplifying bioeffects in capillaries while preserving comparable opening in larger vessels.
Collapse
Affiliation(s)
- Roni Gattegno
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Arbel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Riess
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Hila Shinar
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Tran NLH, Lam TQ, Duong PVQ, Doan LH, Vu MP, Nguyen KHP, Nguyen KT. Review on the Significant Interactions between Ultrafine Gas Bubbles and Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:984-996. [PMID: 38153335 DOI: 10.1021/acs.langmuir.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Having sizes comparable with living cells and high abundance, ultrafine bubbles (UBs) are prone to inevitable interactions with different types of cells and facilitate alterations in physiological properties. The interactions of four typical cell types (e.g., bacterial, fungal, plant, and mammalian cells) with UBs have been studied over recent years. For bacterial cells, UBs have been utilized in creating the capillary force to tear down biofilms. The release of high amounts of heat, pressure, and free radicals during bubble rupture is also found to affect bacterial cell growth. Similarly, the bubble gas core identity plays an important role in the development of fungal cells. By the proposed mechanism of attachment of UBs on hydrophobin proteins in the fungal cell wall, oxygen and ozone gas-filled ultrafine bubbles can either promote or hinder the cell growth rate. On the other hand, reactive oxygen species (ROS) formation and mass transfer facilitation are two means of indirect interactions between UBs and plant cells. Likewise, the use of different gas cores in generating bubbles can produce different physical effects on these cells, for example, hydrogen gas for antioxidation against infections and oxygen for oxidation of toxic metal ions. For mammalian cells, the importance of investigating their interactions with UBs lies in the bubbles' action on cell viability as membrane poration for drug delivery can greatly affect cells' survival. UBs have been utilized and tested in forming the pores by different methods, ranging from bubble oscillation and microstream generation through acoustic cavitation to bubble implosion.
Collapse
Affiliation(s)
- Nguyen Le Hanh Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thien Quang Lam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Vu Quynh Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Linh Hai Doan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Mai Phuong Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khang Huy Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khoi Tan Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
Kancheva M, Aronson L, Pattilachan T, Sautto F, Daines B, Thommes D, Shar A, Razavi M. Bubble-Based Drug Delivery Systems: Next-Generation Diagnosis to Therapy. J Funct Biomater 2023; 14:373. [PMID: 37504868 PMCID: PMC10382061 DOI: 10.3390/jfb14070373] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Current radiologic and medication administration is systematic and has widespread side effects; however, the administration of microbubbles and nanobubbles (MNBs) has the possibility to provide therapeutic and diagnostic information without the same ramifications. Microbubbles (MBs), for instance, have been used for ultrasound (US) imaging due to their ability to remain in vessels when exposed to ultrasonic waves. On the other hand, nanobubbles (NBs) can be used for further therapeutic benefits, including chronic treatments for osteoporosis and cancer, gene delivery, and treatment for acute conditions, such as brain infections and urinary tract infections (UTIs). Clinical trials are also being conducted for different administrations and utilizations of MNBs. Overall, there are large horizons for the benefits of MNBs in radiology, general medicine, surgery, and many more medical applications. As such, this review aims to evaluate the most recent publications from 2016 to 2022 to report the current uses and innovations for MNBs.
Collapse
Affiliation(s)
- Mihaela Kancheva
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Lauren Aronson
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Tara Pattilachan
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Francesco Sautto
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Benjamin Daines
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Donald Thommes
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Angela Shar
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
9
|
Xie L, Wang J, Song L, Jiang T, Yan F. Cell-cycle dependent nuclear gene delivery enhances the effects of E-cadherin against tumor invasion and metastasis. Signal Transduct Target Ther 2023; 8:182. [PMID: 37150786 PMCID: PMC10164743 DOI: 10.1038/s41392-023-01398-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Gene delivery is the process by which foreign DNA is transferred to host cells, released from intracellular vesicles, and transported to the nuclei for transcription. This process is frequently inefficient and difficult to control spatiotemporally. We developed a gene delivery strategy that uses ultrasound to directly deliver plasmid DNA into nuclei via gas vesicles (GVs)-based intracellular cavitation. pDNA-binding GVs can be taken up by cells and cause intracellular cavitation when exposed to acoustic irradiation and delivering their pDNA payloads into nuclei. Importantly, GVs can remain stable in the cytoplasm in the absence of acoustic irradiation, allowing for temporally controlled nuclear gene delivery. We were able to achieve spatiotemporal control of E-cadherin nuclear gene delivery in this manner, demonstrating its efficacy in tumor invasion and metastasis inhibition. Interestingly, we discovered that nuclear gene delivery of E-cadherin during the G2/M phase of the cell cycle in C6 tumor cells inhibited tumor invasion and metastasis more effectively than during the G1 and S phases. The gene delivery of E-cadherin at the G2/M phase resulted in significantly lower expression of Fam50a, which reduced Fam50a/Runx2 interaction and led to reduced transactivation of MMP13, an important factor for epithelial-mesenchymal transition, as observed in a molecular mechanism assay. Thus, using remote acoustic control of intracellular cavitation of pDNA-GVs, we developed a high spatiotemporally controllable gene delivery strategy and achieved stronger tumor invasion and metastasis inhibition effects by delivering the E-cadherin gene at the G2/M phase.
Collapse
Affiliation(s)
- Liting Xie
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jieqiong Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tianan Jiang
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Kida H, Yamasaki Y, Feril Jr. LB, Endo H, Itaka K, Tachibana K. Efficient mRNA Delivery with Lyophilized Human Serum Albumin-Based Nanobubbles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1283. [PMID: 37049376 PMCID: PMC10097217 DOI: 10.3390/nano13071283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
In this study, we developed an efficient mRNA delivery vehicle by optimizing a lyophilization method for preserving human serum albumin-based nanobubbles (HSA-NBs), bypassing the need for artificial stabilizers. The morphology of the lyophilized material was verified using scanning electron microscopy, and the concentration, size, and mass of regenerated HSA-NBs were verified using flow cytometry, nanoparticle tracking analysis, and resonance mass measurements, and compared to those before lyophilization. The study also evaluated the response of HSA-NBs to 1 MHz ultrasound irradiation and their ultrasound (US) contrast effect. The functionality of the regenerated HSA-NBs was confirmed by an increased expression of intracellularly transferred Gluc mRNA, with increasing intensity of US irradiation. The results indicated that HSA-NBs retained their structural and functional integrity markedly, post-lyophilization. These findings support the potential of lyophilized HSA-NBs, as efficient imaging, and drug delivery systems for various medical applications.
Collapse
Affiliation(s)
- Hiroshi Kida
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yutaro Yamasaki
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Loreto B. Feril Jr.
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hitomi Endo
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan
| | - Katsuro Tachibana
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
11
|
Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. Int J Mol Sci 2023; 24:ijms24065474. [PMID: 36982548 PMCID: PMC10053544 DOI: 10.3390/ijms24065474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Currently, the response to cancer treatments is highly variable, and severe side effects and toxicity are experienced by patients receiving high doses of chemotherapy, such as those diagnosed with triple-negative breast cancer. The main goal of researchers and clinicians is to develop new effective treatments that will be able to specifically target and kill tumor cells by employing the minimum doses of drugs exerting a therapeutic effect. Despite the development of new formulations that overall can increase the drugs’ pharmacokinetics, and that are specifically designed to bind overexpressed molecules on cancer cells and achieve active targeting of the tumor, the desired clinical outcome has not been reached yet. In this review, we will discuss the current classification and standard of care for breast cancer, the application of nanomedicine, and ultrasound-responsive biocompatible carriers (micro/nanobubbles, liposomes, micelles, polymeric nanoparticles, and nanodroplets/nanoemulsions) employed in preclinical studies to target and enhance the delivery of drugs and genes to breast cancer.
Collapse
Affiliation(s)
- Isaiah A. Edwards
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William Varner
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
12
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
13
|
Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023; 353:105-124. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Ultrasound (US) is a mechanical wave that can penetrate biological tissues and trigger complex bioeffects. The mechanisms of US in different diagnosis and treatment are different, and the functional application of commercial US is also expanding. In particular, recent developments in nanotechnology have led to a wider use of US in precision medicine. In this review, we focus on US in combination with versatile micro and nanoparticles (NPs)/nanovesicles for tumor theranostics. We first introduce US-assisted drug delivery as a stimulus-responsive approach that spatiotemporally regulates the deposit of nanomedicines in target tissues. Multiple functionalized NPs and their US-regulated drug-release curves are analyzed in detail. Moreover, as a typical representative of US therapy, sonodynamic antitumor strategy is attracting researchers' attention. The collaborative efficiency and mechanisms of US and various nano-sensitizers such as nano-porphyrins and organic/inorganic nanosized sensitizers are outlined in this paper. A series of physicochemical processes during ultrasonic cavitation and NPs activation are also discussed. Finally, the new applications of US and diagnostic NPs in tumor-monitoring and image-guided combined therapy are summarized. Diagnostic NPs contain substances with imaging properties that enhance US contrast and photoacoustic imaging. The development of such high-resolution, low-background US-based imaging methods has contributed to modern precision medicine. It is expected that the integration of non-invasive US and nanotechnology will lead to significant breakthroughs in future clinical applications.
Collapse
Affiliation(s)
- Yang Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yitong Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
14
|
Wu T, Huang C, Yao Y, Du Z, Liu Z. Suicide Gene Delivery System Mediated by Ultrasound-Targeted Microbubble Destruction: A Promising Strategy for Cancer Therapy. Hum Gene Ther 2022; 33:1246-1259. [PMID: 36215248 DOI: 10.1089/hum.2022.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The treatment of malignant tumors has always been one of the challenges that have plagued researchers and clinicians. The ideal status in cancer treatment is to eliminate tumor cells while avoiding damage to normal tissues. Different approaches have been investigated to achieve such a goal, and suicide gene therapy has emerged as a novel mode of cancer treatment. This approach involves the delivery of genes encoding enzymes that activate non-toxic prodrugs into cytotoxic metabolites that cause the death of transfected cancer cells. Despite promising results obtained both in vitro and in vivo, this innovative approach has long been stalled in the clinic due to the lack of a suitable delivery system to introduce the suicide gene into cancer cells. Ultrasound-targeted microbubble destruction (UTMD) represents a valuable non-viral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents by increasing vascular and cell membrane permeability, especially in the presence of microbubbles. In this scenario, the true potential of suicide genes can be translated into clinically valuable treatments for patients. This review provides background information on suicide gene therapy and UTMD technology, summarizes the current state of knowledge about UTMD-mediated suicide gene delivery in cancer treatment, and presents an outlook on its future development.
Collapse
Affiliation(s)
- Tong Wu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Chi Huang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Yiran Yao
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Zhaolin Du
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| |
Collapse
|
15
|
Su C, Ren X, Yang F, Li B, Wu H, Li H, Nie F. Ultrasound-sensitive siRNA-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC. Drug Deliv 2022; 29:99-110. [PMID: 34964410 PMCID: PMC8725955 DOI: 10.1080/10717544.2021.2021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/26/2022] Open
Abstract
Due to the lack of safe, effective, and gene-targeted delivery technology. In this study, we have prepared nanobubbles loaded PDLIM5 siRNA (PDLIM5siRNA-NBs) to investigate the transfection efficiency and their antagonism in drug resistance in combination with ultrasound irradiation for non-small-cell lung cancer (NSCLC). Research results show that the PDLIM5 siRNA are effectively bound to the shell of NBs with a mean diameter of 191.6 ± 0.50 nm and a Zeta potential of 11.8 ± 0.68 mV. And the ultrasonic imaging indicated that the PDLIM5 siRNA NBs maintain the same signals as the microbubbles (SonoVue). Under the optimized conditions of 0.5 W/m2 ultrasound intensity and 1 min irradiation duration, the highest transfection efficiency of PC9GR cells was 90.23 ± 1.45%, which resulted in the inhibition of PDLIM5 mRNA and protein expression. More importantly, the anti-tumor effect of fabricated PDLIM5siRNA-NBs with the help of ultrasound irradiation has been demonstrated to significantly inhibit tumor cell growth and promote apoptosis. Therefore, NBs carrying PDLIM5siRNA may have the potential to act as gene vectors combined with ultrasound irradiation to antagonize drug resistance for NSCLC.
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, China
| | - XiaoJun Ren
- Department of Pediatric Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Bin Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Hao Wu
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
16
|
Bismuth M, Katz S, Mano T, Aronovich R, Hershkovitz D, Exner AA, Ilovitsh T. Low frequency nanobubble-enhanced ultrasound mechanotherapy for noninvasive cancer surgery. NANOSCALE 2022; 14:13614-13627. [PMID: 36070492 DOI: 10.1039/d2nr01367c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scaling down the size of microbubble contrast agents to the nanometer level holds the promise for noninvasive cancer therapy. However, the small size of nanobubbles limits the obtained bioeffects as a result of ultrasound cavitation, when operating near the nanobubble resonance frequency. Here we show that coupled with low energy insonation at a frequency of 80 kHz, well below the resonance frequency of these agents, nanobubbles serve as noninvasive therapeutic warheads that trigger potent mechanical effects in tumors following a systemic injection. We demonstrate these capabilities in tissue mimicking phantoms, where a comparison of the acoustic response of micro- and nano-bubbles after insonation at a frequency of 250 or 80 kHz revealed that higher pressures were needed to implode the nanobubbles compared to microbubbles. Complete nanobubble destruction was achieved at a mechanical index of 2.6 for the 250 kHz insonation vs. 1.2 for the 80 kHz frequency. Thus, the 80 kHz insonation complies with safety regulations that recommend operation below a mechanical index of 1.9. In vitro in breast cancer tumor cells, the cell viability was reduced to 17.3 ± 1.7% of live cells. In vivo, in a breast cancer tumor mouse model, nanobubble tumor distribution and accumulation were evaluated by high frequency ultrasound imaging. Finally, nanobubble-mediated low frequency insonation of breast cancer tumors resulted in effective mechanical tumor ablation and tumor tissue fractionation. This approach provides a unique theranostic platform for safe, noninvasive and low energy tumor mechanotherapy.
Collapse
Affiliation(s)
- Mike Bismuth
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamar Mano
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997800, Israel
| | - Agata A Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Zhang S, Li E, Liu Z, Shang H, Chen Y, Jing H. Nanoparticle-based Olaparib delivery enhances its effect, and improves drug sensitivity to cisplatin in triple negative breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Zhang N, Wang J, Foiret J, Dai Z, Ferrara KW. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv Drug Deliv Rev 2021; 178:113906. [PMID: 34333075 PMCID: PMC8556319 DOI: 10.1016/j.addr.2021.113906] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022]
Abstract
Due to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent work has incorporated this technique into cancer immunotherapy. Compared with other gene transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment the intracellular uptake of nucleic acids while safely and stably modulating the expression of immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound systems further enhance the potential translation. In this Review, we introduce the underlying mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly developing field.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| | | |
Collapse
|
19
|
Xie L, Wang J, Zhao S, Lai ML, Jiang T, Yan F. An acoustic field-based conformal transfection system for improving the gene delivery efficiency. Biomater Sci 2021; 9:4127-4138. [PMID: 33954320 DOI: 10.1039/d1bm00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasound-activated microbubble destruction is a promising platform for gene delivery due to the low toxicity, non-invasiveness, and high specificity. However, the gene transfection efficiency is still low, especially for suspension cells. It is desirable to develop a universal gene delivery tool that overcomes the drawbacks existing in ultrasound-mediated methods. Here, we present a three-dimensional acoustic field-based conformal transfection (AFCT) system by designing a Sono-hole that can fit the three-dimensional acoustic field to maximally utilize the acoustic energy from bubble cavitation, thus greatly promoting the gene delivery efficiency. Surprisingly, compared with the traditional two-dimensional transfection system, the gene transfection efficiency of the AFCT system increased by more than 3 times, achieving nearly 30%. The parameters including acoustic pressure, duration, duty cycle, DNA concentrations, and bubble kinds were optimized to obtain higher gene transfection. In conclusion, our study provides an effective ultrasound-based gene delivery approach for gene transfection, especially for suspension-cultured cells.
Collapse
Affiliation(s)
- Liting Xie
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. and CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jieqiong Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Shuai Zhao
- Department of Ultrasound, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Man Lin Lai
- Department of Ultrasound, The First Affiliated Hospital, Shenzhen University school of medicine, Shenzhen, 518061, China
| | - Tianan Jiang
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
21
|
Pellow C, Abenojar EC, Exner AA, Zheng G, Goertz DE. Concurrent visual and acoustic tracking of passive and active delivery of nanobubbles to tumors. Am J Cancer Res 2020; 10:11690-11706. [PMID: 33052241 PMCID: PMC7545999 DOI: 10.7150/thno.51316] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background: There has been growing interest in nanobubbles for their potential to extend bubble-mediated ultrasound approaches beyond that of their larger microbubble counterparts. In particular, the smaller scale of nanobubbles may enable them to access the tumor extravascular compartment for imaging and therapy in closer proximity to cancer cells. Compelling preliminary demonstrations of the imaging and therapeutic abilities of nanobubbles have thus emerged, with emphasis on their ability to extravasate. However, studies to date rely on indirect histologic evidence that cannot confirm whether the structures remain intact beyond the vasculature - leaving their extravascular potential largely untapped. Methods: Nanobubble acoustic scattering was assessed using a recently reported ultra-stable formulation at low concentration (106 mL-1) and frequency (1 MHz), over a range of pressures (100-1500 kPa) in a channel phantom. The pressure-dependent response was utilized as a basis for in vivo experiments where ultrasound transmitters and receivers were integrated into a window chamber for simultaneous intravital multiphoton microscopy and acoustic monitoring in tumor-affected microcirculation. Microscopy and acoustic data were utilized to assess passive and active delivery of nanobubbles and determine whether they remained intact beyond the vasculature. Results: Nanobubbles exhibit pressure-dependent nonlinear acoustic scattering. Nanobubbles are also found to have prolonged acoustic vascular pharmacokinetics, and passively extravasate intact into tumors. Ultrasound stimulation of nanobubbles is shown to actively enhance the delivery of both intact nanobubbles and shell material, increasing their spatial bioavailability deeper into the extravascular space. A range of acute vascular effects were also observed. Conclusion: This study presents the first direct evidence that nanobubbles passively and actively extravasate intact in tumor tissue, and is the first to directly capture acute vascular events from ultrasound-stimulation of nanobubbles. The insights gained here demonstrate an important step towards unlocking the potential of nanobubbles and extending ultrasound-based applications.
Collapse
|